Please use this identifier to cite or link to this item: doi:10.22028/D291-28348
Title: Counting Problems on Quantum Graphs: Parameterized and Exact Complexity Classifications
Author(s): Roth, Marc
Language: English
Year of Publication: 2019
Free key words: Counting problems
Parameterized complexity theory
DDC notations: 510 Mathematics
Publikation type: Doctoral Thesis
Abstract: Quantum graphs, as defined by Lovász in the late 60s, are formal linear combinations of simple graphs with finite support. They allow for the complexity analysis of the problem of computing finite linear combinations of homomorphism counts, the latter of which constitute the foundation of the structural hardness theory for parameterized counting problems: The framework of parameterized counting complexity was introduced by Flum and Grohe, and McCartin in 2002 and forms a hybrid between the classical field of computational counting as founded by Valiant in the late 70s and the paradigm of parameterized complexity theory due to Downey and Fellows which originated in the early 90s. The problem of computing homomorphism numbers of quantum graphs subsumes general motif counting problems and the complexity theoretic implications have only turned out recently in a breakthrough regarding the parameterized subgraph counting problem by Curticapean, Dell and Marx in 2017. We study the problems of counting partially injective and edge-injective homomorphisms, counting induced subgraphs, as well as counting answers to existential first-order queries. We establish novel combinatorial, algebraic and even topological properties of quantum graphs that allow us to provide exhaustive parameterized and exact complexity classifications, including necessary, sufficient and mostly explicit tractability criteria, for all of the previous problems.
Diese Arbeit befasst sich mit der Komplexit atsanalyse von mathematischen Problemen die als Linearkombinationen von Graphhomomorphismenzahlen darstellbar sind. Dazu wird sich sogenannter Quantengraphen bedient, bei denen es sich um formale Linearkombinationen von Graphen handelt und welche von Lov asz Ende der 60er eingef uhrt wurden. Die Bestimmung der Komplexit at solcher Probleme erfolgt unter dem von Flum, Grohe und McCartin im Jahre 2002 vorgestellten Paradigma der parametrisierten Z ahlkomplexit atstheorie, die als Hybrid der von Valiant Ende der 70er begr undeten klassischen Z ahlkomplexit atstheorie und der von Downey und Fellows Anfang der 90er eingef uhrten parametrisierten Analyse zu verstehen ist. Die Berechnung von Homomorphismenzahlen zwischen Quantengraphen und Graphen subsumiert im weitesten Sinne all jene Probleme, die das Z ahlen von kleinen Mustern in gro en Strukturen erfordern. Aufbauend auf dem daraus resultierenden Durchbruch von Curticapean, Dell und Marx, das Subgraphz ahlproblem betre end, behandelt diese Arbeit die Analyse der Probleme des Z ahlens von partiell- und kanteninjektiven Homomorphismen, induzierten Subgraphen, und Tre ern von relationalen Datenbankabfragen die sich als existentielle Formeln ausdr ucken lassen. Insbesondere werden dabei neue kombinatorische, algebraische und topologische Eigenschaften von Quantengraphen etabliert, die hinreichende, notwendige und meist explizite Kriterien f ur die Existenz e zienter Algorithmen liefern.
Link to this record: urn:nbn:de:bsz:291--ds-283486
hdl:20.500.11880/27575
http://dx.doi.org/10.22028/D291-28348
Advisor: Dell, Holger
Date of oral examination: 15-Jul-2019
Date of registration: 24-Jul-2019
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Informatik
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
thesis.pdfDissertation1,46 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons