
DEPARTMENT OF COMPUTER SCIENCE

 Counting Problems on Quantum Graphs
 Parameterized and Exact Complexity Classifications

A dissertation submitted towards the degree

Doctor of Natural Sciences (Doctor rer. nat.)

of the Faculty of Mathematics and Computer Science

of Saarland University

Submitted by

Marc Roth
Saarbrücken, May 2019

ii

iii

To Felix

iv

Colloquium Information

Date: July 15th, 2019
12:00 CEST
Saarbrücken, Germany

Dean: Prof. Dr. Sebastian Hack
Saarland University

Chairman: Prof. Dr. Gert Smolka
Saarland University

Reviewers: Prof. Dr. Holger Dell
IT University of Copenhagen

Prof. Dr. Markus Bläser
Saarland University

Prof. Dr. Fedor V. Fomin
University of Bergen

Scientific Assistant: Dr. Daniel Stan
Saarland University

vi

Abstract

Quantum graphs, as defined by Lovász in the late 60s, are formal linear
combinations of simple graphs with finite support. They allow for the
complexity analysis of the problem of computing finite linear combinations
of homomorphism counts, the latter of which constitute the foundation of
the structural hardness theory for parameterized counting problems: The
framework of parameterized counting complexity was introduced by Flum
and Grohe, and McCartin in 2002 and forms a hybrid between the classical
field of computational counting as founded by Valiant in the late 70s and the
paradigm of parameterized complexity theory due to Downey and Fellows
which originated in the early 90s.

The problem of computing homomorphism numbers of quantum graphs
subsumes general motif counting problems and the complexity theoretic
implications have only turned out recently in a breakthrough regarding the
parameterized subgraph counting problem by Curticapean, Dell and Marx in
2017.

We study the problems of counting partially injective and edge-injective
homomorphisms, counting induced subgraphs, as well as counting answers
to existential first-order queries. We establish novel combinatorial, algebraic
and even topological properties of quantum graphs that allow us to provide
exhaustive parameterized and exact complexity classifications, including
necessary, sufficient and mostly explicit tractability criteria, for all of the
previous problems.

viii

Zusammenfassung

Diese Arbeit befasst sich mit der Komplexitätsanalyse von mathematischen
Problemen die als Linearkombinationen von Graphhomomorphismenzahlen
darstellbar sind. Dazu wird sich sogenannter Quantengraphen bedient, bei
denen es sich um formale Linearkombinationen von Graphen handelt und
welche von Lovász Ende der 60er eingeführt wurden.

Die Bestimmung der Komplexität solcher Probleme erfolgt unter dem
von Flum, Grohe und McCartin im Jahre 2002 vorgestellten Paradigma der
parametrisierten Zählkomplexitätstheorie, die als Hybrid der von Valiant
Ende der 70er begründeten klassischen Zählkomplexitätstheorie und der von
Downey und Fellows Anfang der 90er eingeführten parametrisierten Analyse
zu verstehen ist.

Die Berechnung von Homomorphismenzahlen zwischen Quantengraphen
und Graphen subsumiert im weitesten Sinne all jene Probleme, die das
Zählen von kleinen Mustern in großen Strukturen erfordern. Aufbauend auf
dem daraus resultierenden Durchbruch von Curticapean, Dell und Marx, das
Subgraphzählproblem betreffend, behandelt diese Arbeit die Analyse der
Probleme des Zählens von partiell- und kanteninjektiven Homomorphismen,
induzierten Subgraphen, und Treffern von relationalen Datenbankabfragen
die sich als existentielle Formeln ausdrücken lassen. Insbesondere werden
dabei neue kombinatorische, algebraische und topologische Eigenschaften
von Quantengraphen etabliert, die hinreichende, notwendige und meist
explizite Kriterien für die Existenz effizienter Algorithmen liefern.

x

Acknowledgements

I am very grateful to Holger Dell for providing me with most valuable advise
and the freedom to perform my own research during my PhD studies. I am
especially thankful to Holger for introducing me to the counting complexity
community in the course of the program “Counting Complexity and Phase
Transitions” at the Simons Institute for the Theory of Computing in 2016.
Moreover, I thank Markus Bläser and Radu Curticapean for introducing
me to complexity theory, in particular, to parameterized counting problems.
Both, Markus and Radu, have been reliable sources for fruitful discussions
and helpful advise since my undergraduate studies at Saarland University.
In addition to the above, I am very grateful to Holger, Markus, as well as
to Fedor V. Fomin, for reviewing this thesis.

Further, I express my gratitude to Johannes Schmitt and Johannes
Lengler for providing access to an oracle for advanced topics in algebra and
number theory that have been necessary for my research, but exceeded the
topics I encountered during my studies in computer science.

I thank Philip Wellnitz, Yannick Forster and Fabian Kunze for proof
reading and Felix Rech for proof reading and for the design of the title page
of this thesis.

I also thank Kathrin Stark for the daily ICoffee breaks and Cornelius
Brand for many interesting discussions, often, but not always related to
computer science. Moreover, I owe Cornelius for saying “Tutte Polynomial”
every once in a while. Furthermore, I am very grateful to all my friends
for helping me relax and having a good time during evenings, weekends and
holidays. In particular, I am going to miss the weekly meetings at Phil’s
place as well as at Al’Bacio, the latter of which provided us with delicious
and cheap pizza since 2011.

I wish to thank my roommates Jan and Osman for being patient with
me on the days I prioritized information theoretic entropy over the entropy
in our living room.

Last but not least, I am very grateful to my family, especially to my
parents, and to Felix for always supporting me.

xii

Contents

1 Introduction 1

1.1 Counting Problems . 3

1.1.1 Parameterized Counting Complexity Theory 6

1.1.2 Quantum Graphs . 9

1.2 Overview, Contributions and Techniques 10

2 Preliminaries 13

2.1 Mathematical Notations . 13

2.2 Graphs . 13

2.2.1 Treewidth and Graph Minors 15

2.2.2 Homomorphisms, Embeddings and Induced Subgraphs 17

2.3 Computational Counting . 19

2.3.1 Parameterized Counting Complexity 19

2.3.2 Fine-Grained Complexity Theory 22

2.4 Combinatorial and Algebraic Methods 24

2.4.1 Matroids . 24

2.4.2 Möbius Inversion and Inclusion-Exclusion 25

2.4.3 Multivariate Polynomial Interpolation 27

2.4.4 Transformation Groups and Simplicial Complexes . . 28

2.5 A Classification for Counting Homomorphisms 30

2.6 First-Order Logic . 43

3 Quantum Graphs 47

3.1 Basic Definitions . 47

3.2 Linear Combinations of Homomorphisms 48

3.2.1 Matchings and Triangles 52

3.2.2 Complexity Monotonicity 55

4 Constrained Homomorphisms 59

4.1 Partially Injective Homomorphisms 60

4.1.1 Locally Injective Homomorphisms 65

4.1.2 Quantum Graphs with Inequalities 67

4.2 Edge-Injective Homomorphisms 71

xiv Contents

4.2.1 An Implicit Exhaustive Classification 72
4.2.2 Hereditary Graph Classes 74
4.2.3 Edge-Disjoint Paths and Cycles 86

5 Induced Subgraphs 93
5.1 A Topological Approach to Hardness 97

5.1.1 Simplicial Graph Complexes and Evasiveness 100
5.2 An Algebraic Approach to Hardness 109

5.2.1 Alternating Enumerators of p-Edge-Transitive Graphs 110

6 Existential First-order Formulas 125
6.1 The #A-Hierarchy . 126
6.2 Conjunctive Queries . 126

6.2.1 Graphical Conjunctive Queries and Colorings 131
6.3 Classifying Graphical Conjunctive Queries 138

6.3.1 Query Classes that are Polynomial-time 139
6.3.2 Query Classes that are W[1]-equivalent 140
6.3.3 Query Classes that are #W[1]-equivalent 141
6.3.4 Query Classes that are #W[2]-hard 143
6.3.5 Query Classes that are #A[2]-equivalent 146
6.3.6 A Pentachotomy-Theorem 150

6.4 Quantum Queries . 151
6.4.1 Complexity Monotonicity revisited 155
6.4.2 Conjunctive Queries with Inequalities 156
6.4.3 Positive Formulas with Inequalities 158
6.4.4 Non-monotone Constraints over Free Variables 161

6.5 Generalization to Structures 165
6.5.1 Reduction from the Gaifman Graph 165
6.5.2 Equivalence of Conjunctive Queries 167
6.5.3 The Generalized Classification Theorem 169

7 Conclusions and Future Research 173

A Proof of Lemma 4.11: Counting Subtrees of a Tree 175

B Modular Counting of Induced Subgraphs 179

C Normalization for #A[2] 183
C.1 Hardness for Graphs without Self-Loops 183
C.2 Counting Vertex Sets matching to a Clique 185
C.3 Proof of Lemma 6.26: Hardness for Grates 186

Bibliography 189

Index 199

Chapter 1

Introduction

Complexity theory is a branch of theoretical computer science and concerned
with the analysis of the inherent difficulty of computational problems. The
approach is rigorous and mathematical in nature and thus the results are
essentially independent of current or future hardware. Abstractly speaking,
a computational problem requires some kind of input and produces some
kind of output (see Figure 1.1). Let us take a look at the following examples
which will be the guides of this introduction:

k-SAT: Input: A boolean formula ϕ in k-CNF.

Output:

{
1 if ϕ is satisfiable

0 otherwise

PerfMatch: Input: A simple graph G.

Output:

{
1 if G is contains a perfect matching

0 otherwise

VC: Input: A simple graph G and a positive integer k.

Output:

{
1 if G is contains a vertex cover of size k

0 otherwise

Clique: Input: A simple graph G and a positive integer k.

Output:

{
1 if G is contains a clique of size k

0 otherwise

DomSet: Input: A simple graph G and a positive integer k.

Output:

{
1 if G is contains a k-dominating set

0 otherwise

We encourage the reader unfamiliar with the graph-theoretic terminology in
the above problems to consult Chapter 2 or e.g. [69, Chapter A.1.1 & A.9.1].

2 Chapter 1: Introduction

Input Problem Output

Figure 1.1: A computational problem.

All five of the previous problems have in common that they decide the
existence of some kind of solution, e.g., a satisfying assignment for ϕ or a
perfect matching in G. Such problems are hence called decision problems.

A computational problem is referred to as feasible, if it can be solved
by an efficient algorithm. Classically, an algorithm is considered efficient if
its worst-case running time is bounded by a polynomial in the input size;
we refer the reader to [69, Chapter 1.3] and [71, Chapter 2.1] for a detailed
discussion. From all of the five preceding examples, only PerfMatch is
known to admit a polynomial-time algorithm [61]. The other four are merely
conjectured to not allow for a polynomial-time algorithm.

The latter is due to the fact that disproving the existence of an efficient
algorithm for a computational problem seems to be an incredibly difficult
task. Examples are rare and include the Time Hierarchy Theorem (cf. [71,
Chapter 4]) and, in some sense, unconditional circuit lower bounds such
as [135]. For this reason, one usually assumes some popular infeasibility
conjecture such as P 6= NP, stating that the set P of decision problems that
admit a polynomial-time algorithm is not equal to the set NP of decision
problems whose solutions can be verified in time polynomial in the input
size (cf. [71, Chapter 2.1.2]). This conjecture is the most fundamental open
problem in complexity theory, perhaps even in computer science in general.
We refer the reader to the standard textbook of Garey and Johnson [69] for
an exposition of the topic.

Indeed, all of the previous problems except for PerfMatch have been
shown to be among the hardest problems in NP by Karp in his famous list
of 21 NP-complete problems [86].1 Consequently, none of the problems can
be solved in polynomial time, unless P = NP holds.

In recent years, potentially stronger assumptions than P 6= NP arose with
the goal of a more fine-grained analysis of the best possible running time
for computational problems. In particular, one aims to discover whether
existing algorithms that possibly rely on mere brute force, can be improved.

1To be precise, DomSet is not contained in this list but rather its generalized version
SetCover.

1.1. Counting Problems 3

Input Problem Number

Figure 1.2: A counting problem.

Examples of such conjectures are the Exponential Time Hypothesis (ETH),
stating that 3-SAT cannot be solved in subexponential time, as well as
the Strong Exponential Time Hypothesis (SETH), intuitively stating that
k-SAT cannot be solved faster than brute-force for k → ∞. Those
conjectures have been introduced by Calabro, Impagliazzo and Paturi [76,
26] and became popular in the context of fine-grained complexity theory; a
formal introduction and exposition of some consequences of ETH and SETH
is provided in Chapter 2.3.2. In case of Clique, ETH rules out the existence
of an algorithm running in time

f(k) · no(k)

for any computable function f , where n is the number of vertices of the
input graph G [33, 34]. However, Clique can be solved faster than brute-
force, i.e., asymptotically faster than nk [105], while the same is not true for
DomSet, unless SETH is false [109].

1.1 Counting Problems

In this thesis, we consider so-called counting problems which, in contrast
to decision problems, require to count solutions (see Figure 1.2). In fact,
many decision problems canonically induce a counting problem. An example
is given by #k-SAT, which counts the satisfying assignments of a given
k-CNF formula. The counting versions #PerfMatch, #VC, #Clique
and #DomSet of the remaining problems are defined analogously.
Now, similar to the complexity of decision problems, we aim to find efficient
algorithms or prove that the existence of such algorithms would violate a
widely-believed conjecture.

To begin with, let us provide a motivation for the analysis of counting
problems. It turns out that, historically, the first researchers that studied
such problems were statistical physicists. A prominent example of a counting
problem that arises in statistical physics is the partition function of what is
called the dimer model (cf. [87, 125, 88]).

4 Chapter 1: Introduction

Figure 1.3: Illustration of an instance of the dimer problem. Included is a dimer
cover or, equivalently, a perfect matching depicted by solid lines.

Very roughly speaking an instance of the dimer problem is a set of particles
that are aligned in a grid-like structure such that every particle can only
interact with its vertical and horizontal neighbors. The partition function
of such an instance counts the number of dimer covers of these particles. A
dimer cover is a partition of the set of particles into sets of size two, such
that the particles of each pair can interact with each other. An illustration
is given in Figure 1.3. The reader might have noticed that the dimer covers
are precisely the perfect matchings if the input instance is viewed as a grid
graph such that the particles are associated with the vertices, two of which
are made adjacent if the corresponding particles can interact with each other.
As a consequence, computing the partition function of the dimer model is
equivalent to #PerfMatch if restricted to grid graphs as in Figure 1.3.
The number of perfect matchings in the latter example is precisely

185921 .

The fact that this number is efficiently computable, i.e., in polynomial time
in the size of the problem instance, is due to the famous FKT-Algorithm,
named after the statistical physicists Fisher, Kasteleyn and Temperley [87,
125, 88]. Their algorithm not only works for grid graphs as in Figure 1.3,
but more generally for all planar graphs, i.e., graphs that can be drawn
into the plane without crossing lines. This result was complemented by the
seminal paper of Valiant [128], in which it was proved that the unrestricted
version of #PerfMatch where arbitrary input graphs are allowed, cannot
be solved in polynomial time unless P = NP.2

2In fact, Valiant proved #PerfMatch to be hard for the class #P, which should be
seen as a counting equivalent of NP and which is likely to contain problems significantly
harder than any problem in NP. Evidence for the latter claim is due to Toda [126] who
proved that PH ⊆ P#P, where PH is the Polynomial-Time-Hierarchy (cf. [71, Chapter F.1]).

1.1. Counting Problems 5

The impact of Valiant’s work was significant as #PerfMatch became the
first (non-artificial) hard counting problem known to admit a polynomial-
time algorithm for its decision version. From then on, the field of counting
complexity evolved into a well-established branch of complexity theory.
Unfortunately, it soon turned out that counting problems which are both,
interesting and efficiently solvable, are rare. In particular, many efficiently
solvable combinatorial decision problems turned out to be hard in their
counting versions. Examples include counting of satisfying assignment of
monotone 2-CNFs [129], counting independent sets in bipartite graphs [110],
counting of s-t-paths [129] and counting of undirected Eulerian circuits [19].
Even worse, it has been shown that brute-force algorithms for hard counting
problems often cannot be significantly improved upon, unless ETH fails [40,
47, 16]. However, let us give some credit to the following, quite surprising
tractability results:

• The Holant-Framework yields polynomial-time algorithms for counting
problems that can be reduced to the FKT-Algorithm by what is called
holographic reductions [130, 22, 21, 20, 75, 23, 24, 7].

• Kirchhoff’s theorem for counting spanning trees and its generalization
to counting bases of regular matroids due to Maurer (cf. [99]).

• The “BEST”-Theorem3 [131] for counting Eulerian circuits in directed
graphs.

• The counting versions of Courcelle’s theorem [38] and the Frick-Grohe-
Theorem [66] for monadic second-order and first-order model counting
on graphs with bounded treewidth and local treewidth, respectively
(cf. [65, Theorem 14.8]).

Now, what can be done about counting problems that are known to
be hard? Especially those that do not allow significant improvements over
brute-force algorithms under ETH seem to enforce some kind of relaxation
if efficient algorithms are desired. One possible relaxation is to restrict the
problem input in some way and it turns out that we already encountered an
example where input restriction yields a polynomial-time algorithm: Recall
that #PerfMatch, while being hard in the general case, can be solved
efficiently by the FKT-Algorithm if the input graphs are planar. In contrast,
#PerfMatch stays hard if restricted to bipartite graphs [129]. Further
examples include the restriction to 3-regular graphs [140] and more generally
to regular or sparse graphs [127].

3De Bruijn, van Aardenne-Ehrenfest, Smith, Tutte

6 Chapter 1: Introduction

Another possible relaxation for hard counting problems is to require only an
approximation of the number of solutions. Indeed, the field of approximate
counting is a very active branch of counting complexity theory. We refer the
reader to [83] and [9] for a detailed overview and only present some of the
most striking results in what follows. A famous early result in the context
of approximate counting is the approximation algorithm for #PerfMatch
restricted to bipartite graphs due to Jerrum and Sinclair [82]. Furthermore,
the complexity of approximate counting the answers to boolean constraint
satisfaction problems has been classified by a trichotomy due to Dyer, Gold-
berg and Jerrum [59]. Very recently, Barvinok [9] introduced a new method
for approximating partition functions by Taylor expansions, which was later
refined by Patel and Regts [108] and then used by Guo et al. [72] to obtain
an approximation algorithm for all but one non-negative Holant problem
on cubic graphs. The missing case of the latter result is the problem of
approximating the number of perfect matchings in a graph. While admitting
an approximation algorithm if restricted to bipartite graphs, it is not known
to admit one in case of cubic graphs (cf. [72]).

A third relaxation is a multivariate analysis of hard counting problems,
which brings us to the field of parameterized counting complexity.

1.1.1 Parameterized Counting Complexity Theory

Let us assume we are given a counting problem that is intractable with
respect to classical counting complexity. All of the five problems introduced
in the beginning are examples of such. Let us take a closer look at #VC,
#Clique and #DomSet. All three problems have in common that the
input is a pair of a graph G and a positive integer k. Now let us think of k
as an additional input parameter and consider the following question:

Is it possible to obtain an efficient algorithm if k is promised to be small?

In other words, we wish to understand the complexity of those problems
not only in a single variable (the input size), but instead, we aim for a
multivariate analysis, considering the number k as well. This paradigm,
which is commonly referred to as parameterized complexity analysis, is due
to Downey and Fellows and originated in the early 90s [54] (see also [55,
56]). By now, parameterized complexity theory is a well-established subfield
of theoretical computer science. Excellent textbooks are [45, 65] and [57].
The first parameterized analysis of counting problems is due to Flum and
Grohe [64] and, independently, due to McCartin [100].

Now let us formulate the question above mathematically. To this end, we
assume that a counting problem comes with an additional parameterization
function κ that maps an input x to a parameter κ(x). In the previous
examples we had that κ(G, k) = k and hence it will be convenient to just
write k for the parameter.

1.1. Counting Problems 7

A parameterized counting problem is called fixed-parameter tractable, if it
can be solved in time

f(k) · poly(n) ,

where n is the input size4 and f is some computable function. Note that this
notion of tractability is weaker than the classical notion of polynomial-time
feasibility in the sense that, while being polynomial in the input size, the
running time may be arbitrarily bad in the parameter. Now, arguably, a
running time of a(k, k) ·poly(n), for a being the Ackermann function, should
not count as efficient. However, it turns out that many fixed-parameter
tractable (counting) problems admit a running time in which f is only single-
exponential, often with a basis smaller than 2; we refer the reader to the
introduction of Downey’s and Fellows’ textbook [57] for a detailed discussion.
Let us take a look at the problem #VC of counting vertex covers of size k
in a graph G with n vertices. A brute-force algorithm would iterate over
all k-tuples of vertices in G and then verify whether each tuple constitutes
a vertex cover, yielding a running time of Θ(nk+1). In contrast, Flum and
Grohe [64] proved that the problem can be solved in time O(2k ·n2), that is,
#VC is fixed-parameter tractable. In particular, O(2k · n2) is significantly
faster than Θ(nk+1); consult [57, Table 1] to get a feeling on how much faster
the former is.

For #Clique and #DomSet we can also obtain brute-force algorithms
running in time nΘ(k). However, as we have seen, these problems are
not fixed-parameter tractable, unless ETH fails. In fact, #Clique and
#DomSet characterize the parameterized complexity classes #W[1] and
#W[2]: A parameterized counting problem is contained in #W[1] if it is at
most as hard as #Clique and it is contained in #W[2] if it is at most as
hard as #DomSet. The hardest problems of #W[1] are not fixed-parameter
tractable unless ETH fails. For this reason, the reader should consider a
proof of hardness for #W[1] as evidence for (fixed-parameter) intractability
of a parameterized problem, at least if they believe ETH to be correct. It is
furthermore conjectured that #W[1] is a proper subset of #W[2]. However,
the evidence for the latter claim is much weaker and discussed in Chapter 2.

Let us summarize the prior discussion and outline the strategy for a
parameterized and exact complexity analysis: Given some parameterized
counting problem P , we first wish to find out whether P can be solved in
polynomial time. If not, we aim to find an algorithm that proves P to be
fixed-parameter tractable. In case we are not able to find such an algorithm
we try to prove that P is hard for #W[1] (or even #W[2]). Finally, we
investigate whether a brute-force algorithm can be (significantly) improved
without violating ETH or SETH.

4For graphs, we can equivalently choose n as the number of vertices.

8 Chapter 1: Introduction

A further goal in our complexity analysis is, if possible, the classification of
entire families of problems. Let us be more precise. Given some set P of
similar parameterized counting problems, we wish to establish a criterion
of problems in P that, if satisfied, induces fixed-parameter tractability and
yields a hardness result otherwise. By this, the set P is partitioned in feasible
and (most likely) infeasible problems. Such binary classifications into easy
and hard cases are also called “complexity dichotomies”. Unfortunately,
there are results like Ladner’s Theorem [92] which disprove the existence
of such dichotomies for all problems in NP. However, it turned out that
“Ladner-like” theorems do not apply to motif counting problems. Roughly
speaking, a motif counting problem is of the following form

Given a large structure and a small pattern called the motif, compute the
number of occurrences of the motif in the structure.

In the framework of parameterized counting, the size of the motif seems to
be the canonical parameterization. An example of a motif counting problem
is #Clique: Here, the large structure is the input graph and the small motif
is the complete graph of size k.

A further fundamental parameterized motif counting problem is the
problem of counting graph homomorphisms. Formally, the problem

#Hom(H)

asks, given a graph H ∈ H and an arbitrary graph G, to compute the number
of graph homomorphisms from H to G. Intuitively, a graph homomorphism
from H to G is an edge-preserving mapping from the vertices of H to the
vertices of G; the formal definition is given in Chapter 2. The problem
#Hom(H) is parameterized by the number of vertices of H, which should
be viewed as the size of the small motif. In particular, we point out that the
class of graphs H is not part of the input, but rather part of the problem
definition. Consequently, we can view #Hom as a family of motif counting
problems where each problem in the family is given by #Hom(H) for some
class of graphs H. The following complexity classification is due to Dalmau
and Jonsson [46]:

Theorem 1.1 (Section 3 in [46]). Let H be a class of graphs.5

1. If H has bounded treewidth, then #Hom(H) is fixed-parameter tractable.

2. Otherwise, #Hom(H) is hard for #W[1].

Here, treewidth is a structural graph parameter that captures resemblance
with a tree; the formal definition is given in Chapter 2.2.1.

5To be precise, H needs to be recursively enumerable to guarantee computability of
the reduction.

1.1. Counting Problems 9

In other words, assuming ETH holds, Theorem 1.1 establishes low treewidth
as a necessary and sufficient criterion for fixed-parameter tractability of
graph homomorphism counting and thus constitutes a complete complexity
dichotomy.

One of the central questions in parameterized counting complexity is
whether and in how far the dichotomy for counting homomorphisms can be
used to obtain similar classifications for other parameterized motif counting
problems. Curticapean, Dell and Marx gave a surprisingly clean answer in
their breakthrough result on the subgraph counting problem [41]:

Theorem 1.1 applies to all parameterized motif counting problems that can
be expressed as a linear combination of homomorphism numbers.

Their work made implicit use of objects called quantum graphs which had
been originally introduced by Lovász in the 60s (cf. [95]) and should not be
confused with the equally named objects in physics [90].

1.1.2 Quantum Graphs

A quantum graph Q is a formal linear combination of graphs with finite
support, i.e., with only finitely many non-zero coefficients. We write

Q =
∑
H

λH ·H ,

where the sum is over all simple and finite graphs. Graph parameters are
extended linearly to quantum graphs. Let, for example, #Hom(H → ?)
be the function mapping a graph G to the number of homomorphisms
#Hom(H → G) from H to G. Then

#Hom(Q→ G) :=
∑
H

λH ·#Hom(H → G) .

Given a class Q of quantum graphs, the problem #Hom(Q) is then defined
analogously to #Hom(H), that is, given a quantum graph Q ∈ Q and an
arbitrary graph G, the task is to compute #Hom(Q → G). The parameter
is given by the description length of Q.

In their work [41], Curticapean, Dell and Marx established what they
called complexity monotonicity of counting homomorphisms from quantum
graphs, informally stating the following:

Computing #Hom(Q→ ?) is precisely as hard as computing the numbers
#Hom(H → ?) for all H with λH 6= 0.

In particular, they proved that #Hom(Q) is fixed-parameter tractable if and
only if #Hom(H(Q)) is. Here, H(Q) is the set of all graphs H that occur
with a non-zero coefficient in some quantum graph in Q.

As the complexity of #Hom(H) is fully understood by Theorem 1.1,
complexity monotonicity induces the following strategy for the analysis of
parameterized motif counting problems.

10 Chapter 1: Introduction

Given a parameterized motif counting problem P ,

(1) find a family Q of quantum graphs such that P and #Hom(Q) are
identical, and

(2) understand the coefficients of quantum graphs in Q.

Perhaps surprisingly, it turned out that (2) seems to be much harder than (1).
In their paper [41], Curticapean, Dell and Marx applied the previously out-
lined strategy to the parameterized subgraph counting problem and by this
established both, an improved algorithm for the fixed-parameter tractable
cases and an easy hardness proof for the remaining cases, simplifying the
previous classification [43] significantly. We provide an in-depth treatment
of their work, using quantum graphs explicitly, in Chapter 3.

In this work, we further develop the method of counting homomorphisms
from quantum graphs and obtain complete complexity classifications, mostly
including explicit criteria for (fixed-parameter) tractability, for various motif
counting problems outlined in the next section. In particular, we discover
combinatorial, algebraic and even topological interpretations of coefficients
of quantum graphs that model our problems. As a consequence, we will be
able to rely on deep results from enumerative combinatorics to analyze the
complexity of parameterized (motif) counting problems.

1.2 Overview, Contributions and Techniques

Our work brings together questions and techniques from a wide variety of
areas, such as parameterized and fine-grained complexity, logics, database
theory, matroid theory, lattice theory, graph minor theory, and the theory
of transformation groups. The interested reader should not be alarmed,
however, as we put considerable effort into making the presentation as self-
contained as possible. We present a detailed exposition of all the required
background material in Chapter 2. In particular, we include a complete,
partially modified proof of Theorem 1.1 in Chapter 2.5. By this, we not only
avoid relying on the classification of #Hom(H) in a black-box manner, but
also, our proof illustrates most of the combinatorial and algebraic techniques
introduced in the previous sections of Chapter 2.

Chapter 3 provides an introduction to quantum graphs, including the
formal statement and a proof of the complexity monotonicity property.
In particular, we will first illustrate the latter principle for the concrete
example of counting matchings of size 3. More precisely, we show that the
motif counting problems of counting 3-matchings and triangles are not only
interreducible but essentially equal. As a further, more elaborate example,
we present a proof of the complexity classification of the parameterized sub-
graph counting problem due to Curticapean, Dell and Marx [41], using the
framework of quantum graphs explicitly.

1.2. Overview, Contributions and Techniques 11

Furthermore, we modify the original proof in such a way that it relies on
Rota’s NBC Theorem [118], the latter of which we will encounter as a crucial
proof ingredient multiple times in this thesis.

From Chapter 4 on, we present the novel contributions obtained in this
thesis. We begin with a parameterized complexity analysis of the problems
of counting partially injective and edge-injective homomorphisms. Both
notions are natural interpolations between homomorphisms and subgraph
embeddings. More precisely, given a graph H, a set of inequalities I over
the vertices of H, and a graph G, we write PartInj(H, I → G) for the set
of all homomorphisms h from H to G that satisfy all inequalities in I, i.e.,
h(u) 6= h(v) whenever “u 6= v” ∈ I. Furthermore, we write EdgeInj(H → G)
for the set of all homomorphisms h from H to G that are injective on the
edges of H, i.e., h(e) 6= h(ê) whenever e 6= ê are edges of H. It is then
shown that there are quantum graphs Q1[H, I] and Q2[H] such that for
every graph G we have

#PartInj(H, I → G) = #Hom(Q1[H, I]→ G) ,

and
#EdgeInj(H → G) = #Hom(Q2[H]→ G) .

The construction of Q1[H, I] is done in Chapter 4.1. Furthermore, we show
that the graphs with a non-zero coefficient in Q1[H, I], called constituents,
are precisely those graphs that are obtained from H by identifying vertices
along inequalities I without creating self-loops. More formally, our proof
relies on an application of the Möbius inversion formula over the lattice of
flats of the graphic matroid induced by the inequalities I. In particular, we
rely on Rota’s NBC Theorem [118] to show that Möbius inversion does not
induce non-trivial cancellations of constituents of Q1[H, I].

Having an explicit representation of the constituents of the quantum
graph, we then invoke complexity monotonicity and obtain a complete and
explicit parameterized complexity dichotomy for the problem of counting
partially injective homomorphisms. As an exemplary application, we invoke
the latter classification to completely classify the parameterized complexity
of counting locally injective homomorphisms.

The construction ofQ2[H] is done in Chapter 4.2. While the construction
itself is much easier, we will unfortunately be unable to provide an explicit
criterion for the full classification of counting edge-injective homomorphisms.
However, using a Ramsey argument, an explicit classification is obtained for
hereditary classes of graphs, as well as for the specific cases of counting
edge-disjoint cycles and paths, the latter of which are shown to be hard.

We turn to counting induced subgraphs in Chapter 5. More precisely,
we consider the problem #IndSub(Φ) of, given a graph G and a positive
integer k, computing the number of induced subgraphs with k vertices in G
that satisfy the graph property Φ.

12 Chapter 1: Introduction

Similar to #Hom(H), the property Φ is not part of the input, but part of the
problem definition and, when parameterized by k, we wish to understand
the parameterized complexity of #IndSub(Φ) with respect to Φ. By this we
build upon the work of Chen, Thurley and Weyer [35], as well as Jerrum and
Meeks [79, 80, 101, 81]. For a given pair of a graph property Φ and a positive
integer k, we construct a quantum graph Q[Φ, k] such that the number of
induced subgraphs of size k in a graph G that satisfy Φ is precisely

#Hom(Q[Φ, k]→ G) .

Chapter 5.1 establishes a connection between the coefficient of the complete
graph of size k in Q[Φ, k] and Karp’s evasiveness conjecture (cf. [102]). In
particular, we prove that this coefficient is, up to a factor of ±k!, equal
to what is called the reduced Euler characteristic of the simplicial graph
complex induced by Φ and k. Inspired by the “topological approach to
evasiveness” due to Kahn, Saks and Sturtevant [85], this allows us to rely on
fixed-point theorems for the topological interpretation of graph complexes.
Thus we obtain an almost exhaustive and explicit complexity classification
of #IndSub(Φ) for properties Φ that are closed under the removal of edges.

We strengthen the previous approach in Chapter 5.2 for properties Φ
that are non-trivial on edge-transitive graphs with a prime-power number
of edges. Using Sylow’s theorems, this allows us to drop the “almost” in
the classification of #IndSub(Φ) if the input graphs are restricted to be
bipartite. More precisely, we prove that, assuming ETH, #IndSub(Φ) is
not fixed-parameter tractable whenever Φ is a monotone property and non-
trivial on bipartite graphs.

Finally, Chapter 6 generalizes the notions of quantum graphs as well
as complexity monotonicity to existential and universal first-order formulas.
Building up on the work of Chen, Durand and Mengel [58, 31] we first
provide a full classification of the problem of counting answers to conjunctive
queries, the latter of which can also be expressed as partial homomorphisms
between logical structures. In particular, and in sharp contrast to previous
chapters, we will encounter instances that are at least as hard as #DomSet
and, most likely, even harder. This requires to consider the parameterized
complexity classes #W[2] and #A[2], which we define via first-order model
counting problems (cf. [65, Chapter 14]).

Thereafter, complexity monotonicity is established for counting partial
homomorphisms from quantum queries; they are linear combinations of
conjunctive queries and constitute the canonical generalization of quantum
graphs. This allows us to lift the classification for conjunctive queries to
more general classes of queries, namely existential and universal positive
queries that may contain inequalities and non-monotone constraints over
free variables.6

6A weaker version of the second step was established by Chen and Mengel [32].

Chapter 2

Preliminaries

2.1 Mathematical Notations

Given a finite set A, we write #A or |A| for its cardinality and given a
natural number k ∈ N, we write [k] for the set {0, . . . , k− 1}. Adopting this
notation, we write (xi)i∈[k] for the tuple (x0, . . . , xk−1) and {xi}i∈[k] for the
set {x0, . . . , xk−1}. Given sets A and B and a function f : A→ B, we write
supp(f) = f−1(B \ {0}) for the support of f . Furthermore, given a subset
S ⊆ A, we write f |S for the restriction of f to S. Let M be an s× t matrix
and let N be a u × v matrix. The Kronecker product (or Tensor product)
of M and N , denoted by M ⊗N , is the su× tv matrix given by

M ⊗N :=


M1,1N M1,2N . . . M1,tN
M2,1N M2,2N . . . M2,tN

...
... . . .

...
Ms,1N Ms,2N . . . Ms,tN

 .

If M and N are quadratic matrices then M ⊗ N is invertible if and only
if M and N are invertible.

2.2 Graphs

Graphs in this work are considered simple, undirected and without self-loops,
unless stated otherwise. More precisely, a graph G is a pair of a finite set
V (G) of vertices and a symmetric and irreflexive relation E(G) ⊆ V (G)2.
We might only write V and E for vertices and edges if the graph is clear
from the context. Furthermore we write {u, v} to denote edges, emphasizing
undirectedness. If u and v are vertices of G and e = {u, v} is an edge of G
we call u and v adjacent and say that u and v are incident to e. Given a
vertex v of G we write NG(v) for the subset of vertices of G that are adjacent
to v; if G is clear from the context, we just write N(v). Throughout the
thesis, we use n for the number of vertices and m for the number of edges.

14 Chapter 2: Preliminaries

Clique Biclique Path Cycle Matching

Kk Kt,t Pk Ck Mk

Figure 2.1: Five important classes of graphs we will encounter in this thesis.
Depicted are K4, K3,3, P2, C4 and M3. Note that cliques and bicliques are also
referred to as “complete graphs” and “complete bipartite graphs”.

Given a graph G with vertices v1, . . . , vn, its adjacency matrix A(G) is of
size n× n and defined as follows

A(G)i,j :=

{
1 if {vi, vj} ∈ E
0 if {vi, vj} /∈ E

.

We will assume that graphs are encoded by their adjacency matrices.

Given two graphs H and G, the Tensor product of H and G, denoted
by H × G, is the graph with vertices V (H) × V (G) satisfying that two
vertices (h1, g1) and (h2, g2) are adjacent if and only if {h1, h2} ∈ E(H)
and {g1, g2} ∈ E(G). Its name stems from the fact that the adjacency
matrix of H ×G is given by A(H)⊗ A(G), up to permutation of rows and
columns.

If a graph H is obtained from G by deleting a set of edges and a set of
vertices of G, including incident edges, then H is called a subgraph of G. In
case only edges are deleted, we speak of an edge-subgraph. Given a subset V̂
of V (G) we write G[V̂] for the graph with vertices V̂ and edges E ∩ V̂ 2.
The resulting graph is called an induced subgraph of G. Furthermore, given
a subset Ê of E(G) we write G[Ê] for the edge-subgraph (V (G), Ê) of G.
Note that, in particular, we do not delete isolated vertices in the latter
construction.

A path of a graph is a sequence of pairwise distinct vertices v1, . . . , vk
such that vi is adjacent to vi+1 for all i = 1, . . . , k − 1. It is called a cycle if
additionally k > 2 and vk is adjacent to v1. Figure 2.1 depicts some further
examples of important graph classes.

A graph is connected if for every pair of vertices u and v there is a path
starting at u and ending at v. If a graph does not contain any cycles we call
it acyclic; if it is both, acyclic and connected, we call it a tree.

2.2. Graphs 15

2.2.1 Treewidth and Graph Minors

The notion of treewidth is, arguably, one of the most heavily studied graph
parameters in the last 30 years with fundamental applications in computa-
tional complexity and structural graph theory. While the definition we are
about to see is due to Robertson and Seymour [113, 114], equivalent defini-
tions have been introduced before by Halin [73] and Bertelè and Brioschi [10].
We recommend Chapt. 7 of [45] for a comprehensive exposition of treewidth,
which we will follow hereinafter.

Intuitively, the treewidth of a graph measures how tree-like it is. In
particular, graphs with small treewidth allow a decomposition in small sep-
arators. These decompositions are the basis of many efficient dynamic pro-
gramming algorithms (DPs) for problems that are computationally infeasible
on graphs without the promise of having small treewidth. Roughly speaking,
those algorithms can be seen as generalizations of known and simple DPs
that solve the corresponding problems on trees. Although we will mainly
need the concept in a black-box manner, especially in form of consequences
for graph minor theory, we decided give the formal definition for reasons of
self-containment.

Definition 2.1 (See e.g. Chapt. 7.2 in [45]). Let G be a graph. A tree
decomposition of G consists of a tree T and a collection of subsets Bt ⊆ V (G)
for all t ∈ V (T) called bags such that

(1)
⋃
t∈V (T)Bt = V (G),

(2) for every edge {u, v} ∈ E(G) there exists a vertex t of T such that
{u, v} ⊆ Bt, and

(3) for every vertex v ∈ V (G) the graph

T
[
{t ∈ V (T) | v ∈ Bt}

]
is connected.

The width of a tree decomposition is maxt∈V (T) |Bt|−1 and the treewidth of
a graph G, denoted by tw(G), is the minimum width a tree decomposition
of G can have. We say that a class of graphs has bounded treewidth if there
exists a constant c such that the treewidth of every graph in the class is at
most c.

Example 2.2. Every tree has treewidth 1; a corresponding tree decomposi-
tion can be constructed as shown in Figure 2.2. Every cycle has treewidth 2:
Just delete an arbitrary vertex, construct a tree decomposition of width one
as in case of trees and then add the deleted vertex to every bag.

On the other hand, the clique on k vertices has treewidth k−1. It is not
hard to show that one cannot do better than taking as tree decomposition
a single bag containing all vertices.

16 Chapter 2: Preliminaries

1

2

3 4

5 6 7

1

12

2

23

3

35

5

24

4

46

6

47

7

Figure 2.2: A tree decomposition of width 1 of a tree.

As we have seen, small treewidth captures, in some sense, resemblance with
a tree. But what can be said about graphs with large treewidth such as the
clique? A fundamental theorem of Robertson and Seymour [115] states that
such graphs have a grid-like structure. Formalizing this result requires us to
introduce the notion of a graph minor.

Definition 2.3 (See e.g. Chapt. 13.2 in [65]). Let G and H be graphs.
A minor mapping from H to G is a function η that maps vertices v of H to
vertex subsets η(v) ⊆ V (G) such that the following constraints are satisfied:

(1) For every v ∈ V (H) the graph G[η(v)] is connected and nonempty.

(2) For all u, v ∈ V (H) with u 6= v the sets η(u) and η(v) are disjoint.

(3) For all edges {u, v} ∈ E(H) there exist û ∈ η(u) and v̂ ∈ η(v) such
that {û, v̂} ∈ E(G).

H is called a minor of G if there exists a minor mapping from H to G.

An equivalent way of defining minors of a graph is by vertex and edge
deletions and edge contractions. Given a graph G and an edge e = {u, v}
of G, the contraction of e yields the graph G/e which is obtained from G by
deleting e, u and v, and adding a new vertex uv that is made adjacent to
all vertices w ∈ V (G) \ {u, v} satisfying that {u,w} or {v, w} have been an
edge of G. The graphs obtained from G by deleting a vertex v or an edge e
are denoted by G− v and G− e, respectively.

Observation 2.4. A graph H is a minor of a graph G if and only if H can
be obtained from G by successively applying vertex and edge deletions and
edge contractions.

Characterizing large treewidth in terms of minors requires the notion of grid
graphs which are defined as follows; an illustration is given in Figure 2.3.

2.2. Graphs 17

Figure 2.3: Illustration of �5, that is, the grid graph of size 5× 5.

Definition 2.5. The (k × k)-grid , denoted by �k, contains vertices

V = {(i, j) | i, j ∈ [k]}

and an edge between every pair of vertices (i, j), (i′, j′) that satisfy

|i− i′|+ |j − j′| = 1 .

We might abuse notation and just write “k-grid” instead of “(k × k)-grid”.

Now we have everything we need to state the Excluded-Grid-Theorem.

Theorem 2.6 (Robertson and Seymour [115]). There is a computable
function f such that every graph with treewidth at least f(k) contains �k as
a minor.

In a line of research, Robertson, Seymour and Thomas [116], Reed [111],
Diestel et al. [51], Kawarabayashi and Kobayashi [89], Leaf and Seymour [94],
Chekuri and Chuzhoy [29], Chuzhoy [36] and Chuzhoy and Tan [37] improved
the upper bound on f from something worse than a tower of exponentials
to a polynomial, culminating in the following theorem.

Theorem 2.7 (Chuzhoy and Tan [37]). There is a computable function
f ∈ O(k9 · polylog(k)) such that every graph with treewidth at least f(k)
contains �k as a minor.

As the treewidth of a clique of size k is precisely k− 1 and as its largest
grid minor is �Ω(

√
k), it can easily be concluded that Ω(k2) is a lower bound

for the function f in the Excluded-Grid-Theorem. The best known lower
bound is Ω(k2 · log(k)) and due to Robertson, Seymour and Thomas [116].

2.2.2 Homomorphisms, Embeddings and Induced Subgraphs

A homomorphism from a graph H to a graph G is a mapping

h : V (H)→ V (G)

that preserves edges. In other words, for every edge {u, v} ∈ E(H) it holds
that {h(u), h(v)} ∈ E(G). If G = H then h is called an endomorphism.

18 Chapter 2: Preliminaries

An embedding is an injective homomorphism and a strong embedding from H
to G is an embedding h such that for all pairs u and v of vertices of H we
have that

{u, v} ∈ E(H)⇔ {h(u), h(v)} ∈ E(G) .

A bijective strong embedding is called an isomorphism and we say that two
graphs H and G are isomorphic, denoted by H ' G, if there exists an
isomorphism from H to G.1 An isomorphism from a graph to itself is called
an automorphism. The set of automorphisms of a graph, together with
functional composition constitutes a group, called the automorphism group
of a graph. Slightly abusing notation we will write Aut(H) for both, the set
of automorphisms of a graph H as well as for its automorphism group. We
will furthermore use the following notations for sets of homomorphisms and
its variants.

Definition 2.8. Let H and G be graphs.

• Hom(H → G) denotes the set of homomorphisms from H to G.

• Emb(H → G) denotes the set of embeddings from H to G.

• Sub(H → G) denotes the set of subgraphs of G isomorphic to H.

• StrEmb(H → G) denotes the set of strong embeddings from H to G.

• IndSub(H → G) denotes the set of induced subgraphs of G isomorphic
to H.

It will be very convenient to write #Hom(H → ?) for the function that maps
a graph G to the number #Hom(H → G). The functions

#Emb(H → ?),#Sub(H → ?),#StrEmb(H → ?) and #IndSub(H → ?)

are defined likewise.
Observe that the sets Emb(H → G) and StrEmb(H → G) can both

be partitioned by the images of their elements. Furthermore, all classes
of the induced equivalence relations have size #Aut(H). As the images of
the embeddings from H to G are precisely the subgraphs of G isomorphic
to H and, similarly, the images of strong embeddings correspond to induced
subgraphs, we obtain the following.

Fact 2.9. Let H be a graph. We have that

#Emb(H → ?) = #Aut(H) ·#Sub(H → ?) ,

and
#StrEmb(H → ?) = #Aut(H) ·#IndSub(H → ?) .

1The notion of isomorphic graphs has already been used implicitly when we spoke
about the complete graph on k vertices or the cycle of length three. Since we do not care
about the elements of the vertex set, but only about the structure of the graph as given
by its adjacency matrix, we will continue to distinguish graphs only by their isomorphism
classes.

2.3. Computational Counting 19

2.3 Computational Counting

We assume familiarity with the basics of computational complexity theory
as provided for example in the first two chapters of the standard textbook
of Goldreich [71]. A counting problem is a function P : Σ∗ → N. Here Σ
denotes a fixed finite alphabet which the reader can assume to be {0, 1} for
all purposes in this work.

2.3.1 Parameterized Counting Complexity

The field of parameterized counting was introduced by Flum and Grohe [64]
and by McCartin [100] with the goal of adapting the relaxation of param-
eterization for decision problems to the counting realm. A parameterized
counting problem is a pair (P, κ) of a counting problem and a computable
parameterization κ : Σ∗ → N. Let us take a look at some examples.

#Clique Input: A graph G and a positive integer k.
Parameter: κ(G, k) := k.
Output: The number of cliques of size k in G.

#VC Input: A graph G and a positive integer k.
Parameter: κ(G, k) := k.
Output: The number of vertex covers of size k in G, i.e., the
number of subsets S ⊆ V (G) with |S| = k such that every edge
of G is incident to a vertex in S.

#DomSet Input: A graph G and a positive integer k.
Parameter: κ(G, k) := k.
Output: The number of dominating sets of size k in G, i.e.,
the number of subsets D ⊆ V (G) with |D| = k such that every
vertex in V (G) \D is adjacent to a vertex in D.

#Hom(H) Input: A graph G and a graph H ∈ H.
Parameter: κ(G,H) := |V (H)|.
Output: #Hom(H → G), i.e., the number of homomorphisms
from H to G.

Note that in the last example, H is a fixed, possibly infinite set of graphs
that is not part of the input. If we choose H as the set of all complete
graphs, then #Hom(H) and #Clique are equivalent up to a factor of k!,
because the image of a homomorphism from a clique of size k is itself a clique
of size k. Let us furthermore remark that we will omit defining κ explicitly
from now on as it will be clear from the context.

While, classically, a problem is considered to be feasible if it can be
solved by a polynomial-time algorithm, parameterization allows to relax the
condition of tractability as follows.

20 Chapter 2: Preliminaries

Definition 2.10. A parameterized counting problem (P, κ) is called fixed-
parameter tractable (FPT) if there exists a deterministic algorithm A that,
on input x, computes P (x) in time f(κ(x)) · |x|O(1) for some computable
function f independent of x. In particular, A is called an FPT algorithm.

Consider for example the problem #VC, which is NP-hard2 [86] and
therefore deemed infeasible in the classical sense. However, it is known
that it can be solved in time O(2k · n) [64], which is not a polynomial but
should still be considered feasible if k is assumed to be much smaller than n.
On the other hand, the problems #Clique and #DomSet are most likely
not fixed-parameter tractable as shown in Section 2.3.2. First of all, we
start by introducing a notion of reducibility and two of the most important
complexity classes for parameterized counting problems.

Definition 2.11. Let (P, κ) and (P̂ , κ̂) be parameterized counting prob-
lems. A parameterized Turing reduction from (P, κ) to (P̂ , κ̂) is an FPT
algorithm A that solves (P, κ) and is given oracle access to (P̂ , κ̂). Further-
more, every oracle query y that is posed by A on input x must satisfy

κ̂(y) ≤ g(κ(x)) (2.1)

for some computable function g independent of x.
We write (P, κ) ≤T

fpt (P̂ , κ̂) if a parameterized Turing reduction from (P, κ)

to (P̂ , κ̂) exists.

While the first part of the definition of a parameterized Turing reduction
is most similar to the notion of a classical Turing or Cook reduction (see e.g.
Definition 2.9 in [71]), one might wonder about condition (2.1) regarding
the parameter of the oracle queries. However, this additional restriction is
crucial for the reduction to guarantee that the problem that is reduced from
is at least as hard as the problem that is reduced to with respect to fixed-
parameter tractability. This is formalized in the following lemma, the proof
of which is similar to the decision version as found in e.g. [65] as Exercise 2.9.
We include it for completeness.

Lemma 2.12. Let (P, κ) and (P̂ , κ̂) be parameterized counting problems
such that (P̂ , κ̂) is fixed-parameter tractable and (P, κ) ≤T

fpt (P̂ , κ̂). Then
(P, κ) is fixed-parameter tractable as well.

Proof. Let A be the parameterized Turing reduction from (P, κ) to (P̂ , κ̂)
and let Â be an FPT algorithm that solves (P̂ , κ̂). An FPT algorithm
for (P, κ) can be constructed by executing A and simulating every oracle
query y by Â. Now (2.1) guarantees that, on input x, the parameter of y is

2In fact, Karp [86] proved the decision version of #VC to be NP-hard. However, if the
number of solutions is known, it is certainly known whether a solution exists.

2.3. Computational Counting 21

bounded by g(κ(x)). As A and Â are FPT algorithms, we obtain an overall
running time bound of

f(κ(x)) · |x|c · f̂(g(κ(x))) · |y|c

for some constant c independent of x. In particular, the size of y is bounded
by the running time of A, i.e., by f(κ(x)) · |x|c. Hence the total running
time is bounded by

f(κ(x))c+1f̂(g(κ(x))) · |x|c+c2 ,

which proves fixed-parameter tractability. �

Having obtained a notion of parameterized reductions, we proceed with
the introduction of the parameterized complexity class #W[1], which should
be seen as a parameterized counting equivalent of NP. For historical reasons,
containment in #W[1] was defined using what is called weighted “weft one”
satisfiability — see for example [64, 100] and Chapt. 14 in [65]. In particular,
the definition requires the notion of parameterized parsimonious reductions,
which can informally be described as parameterized Turing reductions that
allow only a single oracle call at the very end of the computation. As it
will be crucial for most of our purposes to pose multiple oracle queries, we
decided to define #W[1] in terms of parameterized Turing reductions and
the problem #Clique, which is known to be #W[1]-complete [64].

Definition 2.13. A parameterized counting problem (P, κ) is called

• #W[1]-hard if #Clique ≤T
fpt (P, κ),

• #W[1]-easy if (P, κ) ≤T
fpt #Clique, and

• #W[1]-equivalent if it is both, #W[1]-hard and #W[1]-easy.

We emphasize the following two facts about #W[1], the former of which
is immediate and the latter of which is given by Lemma 2.12.

Fact 2.14. Every fixed-parameter tractable counting problem is #W[1]-easy.

Fact 2.15. If a parameterized counting problem is both, #W[1]-hard and
fixed-parameter tractable, then so are all #W[1]-easy problems, including
#Clique.

Now let us revisit the parameterized counting problems we have seen so
far. #Clique is #W[1]-equivalent by definition. #VC is fixed-parameter
tractable and therefore not #W[1]-hard, unless #Clique is fixed-parameter
tractable as well. Furthermore, the problem #Hom(H) is shown to be
#W[1]-easy for all (recursively enumerable) classes H in Section 2.5.

22 Chapter 2: Preliminaries

In particular, all of those problems allow a parameterized Turing reduction
to #Clique. This seems to be different for the problem #DomSet: While
it is known that #Clique ≤T

fpt #DomSet (implicitly in [64]), the backward
direction would imply that #W[1] coincides with the class #W[2]. Let us
remark that the original definition of #W[2], as well as the proof of #W[2]-
completeness of #DomSet was given by Flum and Grohe [64]. A more
detailed exposition of the classes #W[1] and #W[2] is out of the scope of
this thesis. However, we recommend the interested reader to make themself
familiar with what is called the W-hierarchy. Although this hierarchy con-
sists of classes of parameterized decision problems, most of the structural
insights transfer immediately to the counting versions. Excellent overviews
are given by Downey and Fellows [57, Part V], Cygan et al. [45, Chapt. 13]
and Flum and Grohe [65, Chapt. 7]. In particular, Flum and Grohe provide
a comprehensive treatment of the #W-hierarchy in [65, Chapt. 14], the first
two levels of which are #W[1] and #W[2]. For the purpose of this work, it
will again suffice to define #W[2] via the complete problem #DomSet.

Definition 2.16. A parameterized counting problem (P, κ) is called

• #W[2]-hard if #DomSet ≤T
fpt (P, κ),

• #W[2]-easy if (P, κ) ≤T
fpt #DomSet, and

• #W[2]-equivalent if it is both, #W[2]-hard and #W[2]-easy.

2.3.2 Fine-Grained Complexity Theory

In the previous section we defined the parameterized complexity classes
#W[1] and #W[2] by complete problems, that is, #Clique and #DomSet.
However, we did not provide any evidence for fixed-parameter intractabil-
ity of problems that are hard for #W[1] and #W[2]. This will be done
in the current section by introducing two popular conjectures from fine-
grained complexity theory: The Exponential Time Hypothesis (ETH) and
the Strong Exponential Time Hypothesis (SETH). Both conjectures arose
from the fact that the classical assumption P 6= NP usually does not yield
tight lower bounds on the complexity of (NP-)hard problems, but instead
only rules out polynomial time algorithms. Roughly speaking, ETH and
SETH are stronger assumptions in the sense that they are used to disprove
the existence of subexponential time algorithms [76, 77, 25, 47, 16]. More-
over, SETH rules out any non-trivial savings concerning the running time
of known algorithms for some well studied problems [26, 109, 44], even for
problems in P [134, 1, 2]. We will be particularly interested in the con-
sequences of ETH and SETH in parameterized (counting) complexity. A
detailed overview is given by Cygan et al. in Chapt. 14 of [45]. We proceed
with formally defining ETH and SETH.

2.3. Computational Counting 23

Definition 2.17 (Calabro, Impagliazzo and Paturi [76, 26]).

• The Exponential Time Hypothesis (ETH) asserts that 3-SAT cannot
be solved in time exp(o(m)), where m is the number of clauses of the
input formula.

• The Strong Exponential Time Hypothesis (SETH) asserts that for ev-
ery δ > 0 there exists a positive integer k such that k-SAT cannot be
solved in time O(2(1−δ)n), where n is the number of variables of the
input formula.

Chen et al. established the following conditional lower bound for (the
decision version of) #Clique under ETH. As promised, this result gives
evidence for the fixed-parameter intractability of #W[1]-hard problems.

Theorem 2.18 ([33, 34]). #Clique cannot be solved in time f(k) · no(k)

for any function f unless ETH fails.

Corollary 2.19. Any #W[1]-hard parameterized counting problem is not
fixed-parameter tractable unless ETH fails.

Since ETH is widely believed by the community and a refutation would
yield a significant speed-up for the satisfiability problem which generations
of theoretical computer scientists have tried to come up with, we argue that
Corollary 2.19 legitimizes the notion of #W[1]-hardness as strong evidence
for fixed-parameter intractability.

Now let us take a closer look at Theorem 2.18. While any algorithm
for #Clique running in time f(k) · no(k) is impossible under ETH, nothing
is said about an algorithm running in time say f(k) · n0.99k. Indeed, fast
matrix multiplication can be used to improve upon the brute force approach
for counting cliques of size k.

Theorem 2.20 (Nešetřil and Poljak [105]). Let ω be the matrix multi-
plication exponent. Then #Clique can be solved in time f(k) · nωk/3+O(1)

for some computable function f .

Since ω ≤ 2.3728639 [67], we obtain an algorithm for #Clique that
beats brute-force. However, Patrascu and Williams have shown that a sim-
ilar improvement for #DomSet seems to be unlikely.

Theorem 2.21 ([109]). #DomSet cannot be solved in time O(f(k)·nk−ε)
for any ε > 0 and function f unless SETH fails.

Indeed it seems that, empirically, #W[1]-easy problems do not allow strong
lower bounds under SETH while problems hard for #W[2] do. Chapt 6
will provide an infinite amount of examples for the latter. We consider this
phenomenon as weak evidence for the claim that #W[2]-hard problems are
not #W[1]-easy. Further evidence is given by Downey and Fellows in an
in-depth treatment of the W-hierarchy in Chapt. 23 of [57].

24 Chapter 2: Preliminaries

2.4 Combinatorial and Algebraic Methods

Throughout this thesis, we will encounter a large variety of tools, techniques
and methods from discrete mathematics such as group theory and combi-
natorics, the most important of which are presented in the current section.
We start by reviewing the notions of posets and lattices.

A partially ordered set (poset) is a pair (L,≤) of a finite universe L and
a reflexive, transitive and anti-symmetric relation ≤ ⊆ L2. We write σ ≤ ρ
if (σ, ρ) is contained in ≤ and we write σ ≥ ρ if ρ ≤ σ. A pair σ, ρ ∈ L has
a least upper bound σ ∨ ρ if

• σ ∨ ρ ≥ σ and σ ∨ ρ ≥ ρ, and

• for all δ ∈ L with δ ≥ σ and δ ≥ ρ it holds that δ ≥ σ ∨ ρ.

A pair σ, ρ ∈ L has a greatest lower bound σ ∧ ρ if

• σ ∧ ρ ≤ σ and σ ∧ ρ ≤ ρ, and

• for all δ ∈ L with δ ≤ σ and δ ≤ ρ it holds that δ ≤ σ ∨ ρ.

A poset (L,≤) is called a lattice if every pair σ, ρ ∈ L has a least upper
bound and a greatest lower bound.

2.4.1 Matroids

We will follow the notation of the first chapter of the standard textbook of
Oxley [107].

Definition 2.22. A matroid M is a pair (E, I) of a finite set E and a
non-empty subset I ⊆ P(E) such that for every pair A,B ⊆ E we have that

(1) if A ∈ I and B ⊆ A then B ∈ I, and

(2) if A,B ∈ I and |B| < |A| then there exists an element a ∈ A \B such
that B ∪ {a} ∈ I.

We call E the ground set of M . Furthermore, elements of I are referred to
as independent sets of M . In particular, a subset-maximal element of I is
called a basis of M and the rank of M , denoted by rk(M), is defined to be
the size of a basis.

We point out that rk(M) is well-defined as every basis has the same
cardinality due to (2). Now given a subset X ⊆ E we write rk(X) for the
rank of X which is defined to be the size of the largest independent set
A ⊆ X. Furthermore, we define the closure of X to be

cl(X) := {e ∈ E | rk(X ∪ {e}) = rk(X)} .

2.4. Combinatorial and Algebraic Methods 25

By definition we have that rk(X) = rk(cl(X)). Furthermore, we call X a flat
if cl(X) = X. Now given a matroid M = (E, I) we write L(M) for the set
of all flats of M and observe that subset inclusion over L(M) constitutes a
lattice, called the lattice of flats of M . The least upper bound of two flats X
and Y is given by cl(X ∪Y) and the greatest lower bound is given by X ∩Y .
We point out that the lattices of flats are precisely the geometric lattices and
refer the interested reader to e.g. Chapt. 3 of [133] and Chapt. 1.7 of [107]
for a treatment of the latter.

We will be particularly interested in graphic matroids and their lattices
of flats in this work.

Definition 2.23. Let G = (V,E) be a graph. The graphic matroid M(G)
has as ground set the edges E of G and a set of edges A ⊆ E is independent
if the graph G[A] does not contain a cycle.

If G is connected then the bases of M(G) are precisely the spanning
trees of G. If G consists of several connected components then every basis
of M(G) induces a spanning tree for each of the components and vice versa.
Now given a subset of edges X ⊆ E, it can easily be verified that

rk(X) = |V | − comp(G[X]) ,

where comp denotes the number of connected components. Note that, in
particular, every isolated vertex of G[X] is a connected component.

2.4.2 Möbius Inversion and Inclusion-Exclusion

The Möbius inversion theorem, along with the special case of the (weighted)
inclusion-exclusion principle yield powerful combinatorial “sieve methods”
that will be crucial ingredients of many reductions in this work. An excellent
and comprehensive treatment of this topic can be found in the standard
textbook of Stanley [124, Chapt. 1-3].

Definition 2.24. Let (L,≤) be a poset and let f : L → C be a function.
Then the zeta transformation ζf : L→ C is given by

ζf(σ) :=
∑
ρ≥σ

f(ρ) .

We provide the following example of a zeta transformation. Fix a graph
H = (V,E) and let (L,≤) be the partition lattice of V , that is, every element
δ ∈ L is a set of pairwise disjoint non-empty subsets of V such that⋃

S∈δ
S = V .

Furthermore, given two partitions ρ and σ of V , we have that ρ ≥ σ if σ can
be obtained from ρ by further partitioning ρ. More formally, ρ ≥ σ holds

26 Chapter 2: Preliminaries

1

2

3

4

5

6

7

8
47 68

1235

Figure 2.4: Left: A graph H with vertex set V (H) = {1, 2, 3, 4, 5, 6}. Right: The
quotient graph H/δ for the partition δ = {{1, 2, 3, 5}, {47}, {68}}.

whenever every set in σ is a subset of a set in ρ. We will see in Chapt. 4.1
that (L,≤) is not only a poset, but indeed the lattice of flats of the graphic
matroid M(V, V 2). Given δ ∈ L, we define the quotient graph H/δ to be the
graph that is obtained from H by contracting the vertices that are contained
in the same set of δ and deleting multiple edges, but keeping self-loops. An
illustration is given in Figure 2.4. Now fix a further graph G and define

f(ρ) := #Emb(H/ρ→ G) .

It is due to Lovász [95, Chapt. 5.2.3] that the zeta transformation ζf of f
computes, given an element σ ∈ L, the number of homomorphisms from
H/σ to G, i.e.,

#Hom(H/σ → G) =
∑
ρ≥σ

#Emb(H/ρ→ G) . (2.2)

In other words, zeta transformation allows us to express the number of ho-
momorphisms as a sum of numbers of embeddings. The principle of Möbius
inversion will allow us to invert this equation.

Theorem 2.25 (Möbius Inversion, cf. Proposition 3.7.2 in [124]).
Let (L,≤) be a poset. There exists a computable function µL : L × L → Z
such that for all f : L→ C and σ ∈ L we have that

f(σ) =
∑
ρ≥σ

µL(σ, ρ) · ζf(ρ) .

µL is called the Möbius function of L.

If the poset is clear from the context we will drop the L and only write µ.
Now the application of Möbius inversion to the preceding example yields

#Emb(H/σ → G) =
∑
ρ≥σ

µ(σ, ρ) ·#Hom(H/ρ→ G) . (2.3)

In particular, we can choose for σ the discrete partition ⊥ with |V (H)| many
singletons and obtain

#Emb(H → G) =
∑
ρ∈L

µ(⊥, ρ) ·#Hom(H/ρ→ G) . (2.4)

2.4. Combinatorial and Algebraic Methods 27

We will depend on the following corollary of Rota’s NBC Theorem which is
concerned with the sign of the Möbius function over a lattice of flats.

Theorem 2.26 (Theorem 4 in [118]). Let (L,≤) be the lattice of flats of
some matroid and let X ∈ L be a flat. Then we have that

sign(µL(∅, X)) = (−1)rk(X) .

Möbius inversion over the poset of subset inclusion yields the weighted
inclusion-exclusion principle, see Chapt. 3.7 in [124] for a discussion. As we
will only need the unweighted principle of inclusion and exclusion in a quite
restricted setting of sieving, we provide an explicit statement.

Theorem 2.27 (Inclusion-exclusion, cf. Chapter 2.1 in [124]).
Let A0, . . . , Ak−1 be subsets of a finite universe U . Then we have that

#

(
k−1⋂
i=0

Ai

)
=
∑
J⊆[k]

(−1)|J | · |AJ | ,

where AJ :=
⋂
j∈J Aj for J 6= ∅ and A∅ := U .

2.4.3 Multivariate Polynomial Interpolation

The method of polynomial interpolation yields a further, more implicit
method of sieving which will be crucial for some reductions in the later
chapters of this thesis. A concise statement of the principle for algorithmic
purposes is given by Curticapean [39]:

Theorem 2.28 (Grid interpolation, cf. Theorem 1.38 in [39]).
Let p ∈ Z[x0, . . . , xk−1] be a multivariate polynomial such that for all i ∈ [k]
the degree of xi is di. Furthermore, let

Υ = Υ0 × · · · ×Υk−1 ⊆ Qk

such that |Υi| = di + 1 for all i ∈ [k]. Then the coefficients of p can be
computed with O(|Υ|3) arithmetic operations when given as input the set

L := {(υ, p(υ)) | υ ∈ Υ} .

Let us expose the most important ideas of the proof. To this end, we define
D := [d0]× · · · × [dk−1] and, given some d ∈ D, we write υd for∏

i∈[k]

υdi

Now observe that every element (υ, p(υ)) of L yields a linear equation∑
d∈D

cd · υd = p(υ) ,

28 Chapter 2: Preliminaries

where cd is the coefficient of the monomial xd. In particular, the matrixM
corresponding to the system of linear equations given by L can be written
as a Kronecker product

M =
⊗
i∈[k]

Vi ,

where Vi is the Vandermonde matrix of Υi = {υi,0, . . . , υi,di}, that is,

Vi =


1 υi,0 υ2

i,0 . . . υ
di
i,0

1 υi,1 υ2
i,1 . . . υ

di
i,1

1 υi,2 υ2
i,2 . . . υ

di
i,2

...
...

... . . .
...

1 υi,di υ2
i,di

. . . υ
di
i,di

 .

It is well known that Vi is non-singular if υi,0, . . . , υi,di are pairwise different,
which is the case as |Υi| = di + 1. Consequently, the Kronecker product M
is non-singular as well and hence the coefficients cd are uniquely determined
an can be computed using Gaussian elimination.

2.4.4 Transformation Groups and Simplicial Complexes

Recall that a group is a pair of a set Γ and a function ◦ : Γ×Γ→ Γ satisfying
that

(1) for all α, β, γ ∈ Γ we have that α ◦ (β ◦ γ) = (α ◦ β) ◦ γ,

(2) there exists e ∈ Γ such that e ◦ γ = γ ◦ e = γ for all γ ∈ Γ, and

(3) for all γ ∈ Γ there exists γ−1 ∈ Γ such that γ ◦ γ−1 = γ−1 ◦ γ = e.

Examples of groups we have seen so far include Z and Q with addition,
as well as the automorphism group Aut(H) of a graph H. Furthermore, we
write Zk for the group with elements [k] and addition modulo k as operation.

Given a group (Γ, ◦) and a set Ω, we call a function . : Γ × Ω → Ω a
group action if it satisfies the following two constraints:

(1) For all s ∈ Ω we have that e . s = s.

(2) For all s ∈ Ω and α, β ∈ Γ we have that α . (β . s) = (α ◦ β) . s.

Consider for example a graph H = (V,E). Then Aut(H) acts on both, V
and E as given by a . v := a(v) for all v ∈ V and a . {u, v} := {a(u), a(v)}
for all {u, v} ∈ E.

Given a group (Γ, ◦) acting on a set Ω and an element s ∈ Ω, the orbit
of s is defined as

O(Γ, s) := {γ . s | γ ∈ Γ} .

2.4. Combinatorial and Algebraic Methods 29

Furthermore, the stabilizer of s is defined as

S(Γ, s) := {γ ∈ Γ | γ . s = s} .

If the group is clear from the context, we might only wright O(s) and S(s).
Note that Ω is partitioned by its orbits, that is, there exist s1, . . . , sk such
that

Ω = O(s1) ∪̇ . . . ∪̇ O(sk) .

A group action is called transitive if k = 1, i.e., if there exists only a single
orbit. Adopting this notion, we call a graph H = (V,E) vertex-transitive if
Aut(H) acts transitively on V and we call it edge-transitive if Aut(H) acts
transitively on E.

The following is a well-known result relating the cardinalities of Ω, O(s)
and S(s).

Theorem 2.29 (Orbit-Stabilizer-Theorem, cf. Chapt. 1.5 in [93]).
Let (Γ, ◦) be a finite group acting on a finite set Ω. Then the following holds
for all s ∈ Ω:

|Γ| = |O(s)| · |S(s)|

We will be particularly interested in orbits of group actions on what is
called simplicial complexes.

Definition 2.30. A simplicial complex ∆ is a pair (Ω, I) of a finite ground
set Ω and a subset I ⊆ P(Ω) such that

(1) {s} ∈ I for all s ∈ Ω,

(2) ∅ /∈ I, and

(3) if A ∈ I and ∅ (B ⊆ A then B ∈ I.

An element A ∈ I is called a simplex .

In the remainder of this thesis we abuse notation and write A ∈ ∆ for a
simplex A ∈ I.

The following observation points out that simplicial complexes generalize
matroids.

Observation 2.31. Let M = (E, I) be a matroid such that {e} ∈ I for all
elements of the ground set e ∈ E. Then (E, I \ {∅}) is a simplicial complex.

Given a simplex A of ∆ we define the dimension of A, denoted as dim(A),
to be #A−1. The Euler characteristic χ of a simplicial complex ∆ is defined
to be

χ(∆) :=
∑
i≥0

(−1)i ·#{A ∈ ∆ | dim(A) = i} .

30 Chapter 2: Preliminaries

The reduced Euler characteristic of ∆ is defined to be

χ̂(∆) := 1− χ(∆) .

It will be very convenient to rewrite the reduced Euler characteristic as
follows.

Fact 2.32. χ̂(∆) =
∑

i≥0(−1)i ·#{A ∈ ∆ ∪ {∅} | #A = i}.

Given a simplicial complex ∆ and a finite group Γ that acts on the ground
set Ω of ∆, we say that ∆ is a Γ-simplicial complex if the induced action
of Γ on subsets of Ω preserves ∆. More precisely, if A ∈ ∆ and g ∈ Γ then
the set g . A := {g . a | a ∈ A} is contained in ∆ as well. If this is the case
we can define the fixed-point complex ∆Γ as follows. Let O1, . . . ,Ok be the
orbits of Ω with respect to the action of Γ. Then

∆Γ :=

{
S ⊆ {1, . . . , k}

∣∣∣∣∣ S 6= ∅ ∧⋃
i∈S
Oi ∈ ∆

}

The following topological fixed-point theorem3 is due to Smith [123] (cf. [106]
and Chapt. 3 in [18]) and will be of crucial importance in Chapter 5.1.

Theorem 2.33. Let Γ a group of order ps for some prime p and natural
number s and let ∆ be a Γ-simplicial complex. Then χ(∆) ≡ χ(∆Γ) mod p
and hence χ̂(∆) ≡ χ̂(∆Γ) mod p.

2.5 A Classification for Counting Homomorphisms

The complexity dichotomy result of the homomorphism counting problem
#Hom(H) is a fundamental theorem in parameterized counting complexity
theory that will be the basis of most of the contributions in this thesis. The
original classification of #Hom(H) is due to Dalmau and Jonsson [46], and
was established for the even more general case of counting homomorphisms
between logical structures. We decided to give a self-contained proof of
the classification in the current section, the reasons for which are twofold.
First, the proof will invoke most of the machinery we have introduced in
the preceding sections — from treewidth and grid minors to parameterized
reductions relying on the inclusion-exclusion principle and polynomial inter-
polation — allowing us to provide a coherent set of examples. Second, we
will introduce color-prescribed graph homomorphisms which constitute an
important technical tool used in Chapter 5.2 and, in a more general form,
in Chapter 6.

3Indeed, simplicial complexes have a topological interpretation. A concise introduction
to the topic, including an explicit statement and proof of Theorem 2.33 can be found in
Edmond’s lecture notes on transformation groups [60] (cited February 2019).

https://www.semanticscholar.org/paper/INTRODUCTION-TO-TRANSFORMATION-GROUPS-Edmonds/95490cc913ea8f0220d80ea0f355d29a0deaac7b

2.5. A Classification for Counting Homomorphisms 31

Before we begin, let us be very clear that the current section does not contain
new contributions but rather provides an alternative presentation of the
proof of the following complexity classification.

Theorem 2.34 ([46]). Let H be a recursively enumerable class of graphs.

1. If H has bounded treewidth then #Hom(H) is polynomial-time solvable.

2. Otherwise #Hom(H) is #W[1]-equivalent.

We start with an algorithm based on dynamic programming over tree
decompositions that allows us to solve #Hom(H) in polynomial time, given
that the treewidth of H is bounded. In particular, we prove the following
theorem which is slightly weaker than the result of Dı́az et al. [50].

Theorem 2.35. There is a deterministic algorithm that, given graphs H
and G and a tree decomposition (T, {Bt}t∈V (T)) of width ` of H, computes
#Hom(H → G) in time

poly(s, k, `) · n`+O(1) ,

where s = |V (T)|, k = |V (H)| and n = |V (G)|.

Recall that the notion of treewidth was motivated by the existence of
small separators. This is made formal in the following lemma.

Lemma 2.36 (Lemma 7.3 in [45]). Let (T, {Bt}t∈V (T)) be a tree decom-
position of a graph H and let {a, b} be an edge of T . Furthermore, let Ta
and Tb be the two trees obtained from T by deleting {a, b} such that a ∈ V (Ta)
and b ∈ V (Tb). Define

A :=
⋃

t∈V (Ta)

Bt and B :=
⋃

t∈V (Tb)

Bt .

Then there exists no edge {u, v} of H such that u ∈ A \B and v ∈ B \A.

Furthermore, it will be very convenient to assume a nice tree decomposition
(see e.g. Chapt. 7.2 in [45]) in the proof of Theorem 2.35. To this end, we
say that a tree decomposition (T, {Bt}t∈V (T)) of a graph H is nice if T is
a rooted binary tree such that Br = ∅ for the root r and B` = ∅ for every
leaf l and all other vertices t of T are of one of the following types:

(1) Introduce: t has precisely one child t′ and Bt = Bt′ ∪ {v} for some
vertex v of H with v /∈ Bt′ .

(2) Forget : t has precisely one child t′ and Bt′ = Bt∪{v} for some vertex v
of H with v /∈ Bt.

(3) Join: t has precisely two children t1 and t2 such that Bt = Bt1 = Bt2 .

32 Chapter 2: Preliminaries

The next lemma guarantees that one can always assume that a given tree
decomposition is nice.

Lemma 2.37 (Lemma 7.3 in [45]). There is a deterministic algorithm
that, given a tree decomposition (T, {Bt}t∈V (T)) of width ` of a graph H,
computes in time O(`2 · max{|V (T)|, |V (H)|}) a nice tree decomposition
(T̂ , {Bt}t∈V (T̂)) of H of width at most ` such that |V (T̂)| ∈ O(`|V (H)|).

Now we have everything we need to proceed with the proof of Theorem 2.35.

Proof (of Theorem 2.35). Given graphs H and G and a tree decomposition
(T, {Bt}t∈V (T)) of width ` of H we first invoke Lemma 2.37 to obtain a

nice tree decomposition (T̂ , {Bt}t∈V (T̂)) of H of width at most `. Next we
introduce some further notation which is required for the algorithm: Given
t ∈ V (T̂), we write T̂t for the subtree of T̂ rooted at t. Furthermore, we
define

Ht := H
[⋃

t′∈V (T̂t)
Bt′
]
,

that is, Ht is the subgraph of H induced by the vertices contained in the bags
of t and its descendants. Now let DP be the function that, given t ∈ V (T̂)
and a function f : Bt → V (G), computes

DP[t, f] := #{h ∈ Hom(Ht → G) | h|Bt = f} .

We will compute DP for all t and f using dynamic programming. Note that
this requires us to initialize a table of size at most

|V (T̂)| · |V (G)|`+1
Lemma 2.37
≤ O(`|V (H)|) · |V (G)|`+1 . (2.5)

We initialize the table by setting DP[l, ∅] = 1 for every leaf l. In what
follows, it is shown how to fill the table from bottom up. More precisely, we
provide rules for each of the three types of vertices of T̂ ; consult Figure 2.5
for an illustration of each rule.

(1) Let t ∈ V (T̂) be a vertex of type introduce. Then t has precisely one
child t′ and Bt = Bt′ ∪̇ {v}. We establish the following claims.

Claim 2.38. NHt(v) ⊆ Bt′.

Proof. Assume for contradiction that there exists u ∈ V (Ht)\Bt′ which
is adjacent to v. Now invoke Lemma 2.36 with a = t′ and b = t and
set A and B accordingly. Then u ∈ A and v ∈ B. By the definition
of a tree decomposition, we have that u /∈ B, because otherwise the
subgraph T̂ [{t | u ∈ Bt}] of T̂ would not be connected as u /∈ Bt′ by
assumption. Similarly, v /∈ A as v /∈ Bt′ as well. Hence, u ∈ A \B and
v ∈ B \A which yields the desired contradiction. �

2.5. A Classification for Counting Homomorphisms 33

v

u

Ht

Bt′

G

Introduce: Bt = Bt′ ∪̇ {v}

v

Ht

Bt′

y

G

Forget: Bt′ = Bt ∪̇ {v}

Ht

Bt

G

Join: Bt = Bt1 = Bt2

Figure 2.5: Illustration of the three recursive steps of the dynamic programming
algorithm used in the proof of Theorem 2.35. The function f is depicted as dotted
arrows. Additionally, Claim 2.38 is highlighted in the first graphic with a crossed
out gray line from v to u.

Claim 2.39. We have that:

DP[t, f] =

{
0 f(NHt(v)) * NG(f(v))

DP[t′, f |Bt′] otherwise

Proof. Assume first that f(NHt(v)) * NG(f(v)). Then there exists a
vertex w of Ht that is adjacent to v, but f(w) is not adjacent to f(v).
In this case, f cannot be extended to a homomorphism h from Ht to G
and hence DP[t, f] = 0.

Otherwise, homomorphisms h ∈ Hom(Ht → G) s.t. h|Bt = f are in
one-to-one correspondence with homomorphisms h′ ∈ Hom(Ht′ → G)
s.t. h′|Bt′ = f |Bt′ , which is given by the bijection

h 7→ h′ := h|V (Ht′)
.

Note that this bijection is well-defined as by Claim 2.38 there are no
vertices u in V (Ht) \Bt′ that are adjacent to v (see Figure 2.5). �

(2) Let t ∈ V (T̂) be a vertex of type forget. Then t has precisely one
child t′ and Bt′ = Bt ∪̇ {v}. In particular, Ht = Ht′ . The rule for
recursion is given by the following claim.

Claim 2.40. We have that:

DP[t, f] =
∑

y∈V (G)

DP[t′, fy] ,

where fy(v) := y and fy(x) := f(x) for x 6= v.

Proof. Partition the homomorphisms h ∈ Hom(Ht → G) s.t. h|Bt = f
by the image of h on input v. This induces an equivalence relation for
which each equivalence class is uniquely identified by a vertex y of G.
The size of a class identified by y is hence precisely DP[t′, fy]. �

34 Chapter 2: Preliminaries

(3) Let t ∈ V (T̂) be a vertex of type join. Then t has precisely two
children t1 and t2 such that Bt = Bt1 = Bt2 . The rule for recursion is
given by the following claim.

Claim 2.41. We have that:

DP[t, f] = DP[t1, f] · DP[t2, f] .

Proof. We construct a bijection from pairs of homomorphisms (h1, h2),
where hi ∈ Hom(Hti → G) such that hi|Bti = f for i ∈ {1, 2} to
homomorphisms h ∈ Hom(Ht → G) such that h|Bt = f . The bijection
is given by

b(h1, h2)(v) :=


f(v) v ∈ Bt
h1(v) v ∈ V (Ht1) \Bt
h2(v) v ∈ V (Ht2) \Bt

Note that b is well-defined as Bt = Bt1 = Bt2 and furthermore there is
no edge {u,w} ∈ E(Ht) such that u ∈ V (Ht1)\Bt and w ∈ V (Ht2)\Bt,
the latter of which is proved similar to Claim 2.38. �

The algorithm for computing the table DP is given by Claim 2.39, Claim 2.40
and Claim 2.41. The final output is

DP[r, ∅] = #{h ∈ Hom(Hr → G) | h|∅ = ∅} = #Hom(H → G) .

For the running time, we observe that every update of the table DP takes
time poly(`, |V (G)|). Together with the bound on the size of the table given
by Equation (2.5), we obtain the following bound on the overall running
time; recall that s = |V (T)|, k = |V (H)| and n = |V (G)|.

O(`2 ·max{s, k}) +O(` · k) · n`+1 · poly(`, n) = poly(s, k, `) · n`+O(1)
�

Remark 2.42 ([50], see also the full version of [41]). Refining the al-
gorithm and its analysis in the above proof yields an enhanced running time
of poly(s, k, `) · n`+1.

Corollary 2.43. Let H be class of graphs of bounded treewidth. Then the
problem #Hom(H) is solvable in polynomial time.

Proof. The only catch in applying Theorem 2.35 is the fact that computing a
tree decomposition of minimum width is NP-hard [5]. However, Bodlaender’s
algorithm [14] allows us, given a graph H and c ∈ N, to compute a tree
decomposition of H of width at most c if tw(H) ≤ c or to correctly decide
that tw(H) > c. Furthermore, the algorithm runs in time

cO(c3) · |V (H)| .

2.5. A Classification for Counting Homomorphisms 35

Now let c be an upper bound on the treewidth of graphs in H. Then
#Hom(H) can be solved as follows. On input H and G, we first apply
Bodlaender’s algorithm to H and c. As tw(H) ≤ c by assumption, we ob-
tain in time O(|V (H)|) — note that c is a constant — a tree decomposition
(T, {Bt}t∈V (T)) of width at most c of H. In particular, |V (T)| ∈ O(|V (H)|)
because otherwise there would be not enough time to output T . By The-
orem 2.35 we can then perform dynamic programming over a nice tree de-
composition computed from (T, {Bt}t∈V (T)) and obtain a total running time
of

O(|V (H)|) + poly(|V (H)|, c) · |V (G)|c+O(1) ,

which clearly is a polynomial in the input size. �

It remains to prove #W[1]-equivalence of #Hom(H) in case H is of
unbounded treewidth. To this end, we will introduce the following color-
prescribed variant of graph homomorphisms (see also [95, Chapter 5.4.2]).

Definition 2.44. A graph G is H-colored if it comes with a homomor-
phism c from G to H. The value c(v) for a vertex v ∈ V (G) is called the
color of v and given a vertex u ∈ V (H) we write c−1(u) for the set of all
vertices in G that are mapped to u.

A homomorphism h ∈ Hom(H → G) is called color-prescribed if ev-
ery vertex u ∈ V (H) maps to a vertex h(u) whose color is u. We write
cp-Hom(H → G) for the set of all color-prescribed homomorphisms. Sim-
ilarly, we write #cp-Hom(H) for the problem of, given a graph H ∈ H
and an H-colored graph G, computing #cp-Hom(H → G); the problem is
parameterized by |V (H)|.

In what follows, we write � for the set of all grids �k for k ∈ N. The
next lemma will be the basis of our sequence of reductions.

Lemma 2.45. #Clique ≤T
fpt #cp-Hom(�).

Proof. First of all, we point out that #cp-Hom(�) is essentially equivalent
to the counting version of the grid tiling problem (see e.g. [45, Chapt. 14.4.1]
and [39, Problem 1.12]). For this reason, the following reduction is similar to
existing hardness proofs for variants of the grid tiling problem. We include
it for completeness.

Given an instance (G, k) of #Clique, we construct a �k-colored graph Ĝ
from G as follows. The vertex set of Ĝ is partitioned by

V (Ĝ) :=
⋃

i,j∈[k]

Vi,j ,

where

Vi,j :=

{
{(v, v) | v ∈ V (G)} i = j

E(G) i 6= j
.

36 Chapter 2: Preliminaries

There are only two kinds of edges of Ĝ.

• Horizontal edges connect vertices in Vi,j and Vi,j+1 for i ∈ [k] and
j ∈ [k − 1] as follows: Let u = (a, b) ∈ Vi,j and v = (a′, b′) ∈ Vi,j+1.
Then {u, v} ∈ E(Ĝ) if and only if a = a′.

• Vertical edges connect vertices in Vi,j and Vi+1,j for i ∈ [k − 1] and
j ∈ [k] as follows: Let u = (a, b) ∈ Vi,j and v = (a′, b′) ∈ Vi+1,j . Then
{u, v} ∈ E(Ĝ) if and only if b = b′.

The �k-coloring c ∈ Hom(G→ �k) of Ĝ is given by c(v) = (i, j) if and only
if v ∈ Vi,j .

Intuitively, the above construction yields a graph Ĝ whose vertices are
partitioned in k2 blocks Vi,j for i, j ∈ [k] where each block Vi,j corresponds
to the vertex (i, j) of the k-grid �k. The blocks on the diagonal contain
as vertices pairs (v, v) for v ∈ V (G) and the remaining blocks contain as
vertices pairs (u, v) where {u, v} ∈ E(G) — recall that {u, v} ∈ E(G) is
only notation for (u, v) ∈ E(G) and (v, u) ∈ E(G).

Claim 2.46. The number of cliques of size k in G equals

(k!)−1 ·#cp-Hom(�k → Ĝ) .

Proof. The factor of (k!)−1 is due to the fact that there are k! possibilities
to order the vertices of a clique of size k. For this reason, we will consider
k-cliques to be ordered tuples instead of sets in this proof and construct a
bijection to cp-Hom(�k → Ĝ) in what follows.

Let (vi)i∈[k] be a clique of size k in G. We define a color-prescribed

homomorphism h ∈ cp-Hom(�k → Ĝ) by h(i, j) := (vi, vj) ∈ Vi,j . While
color-prescribedness follows immediately from the definition, it is a priori
not clear that h is well-defined in the sense that there exists a vertex (vi, vj)
in Vi,j for every i, j ∈ [k]. We hence consider two cases. If i = j then
(vi, vj) is included in Vi,j by definition of Ĝ. Otherwise, we observe that
{vi, vj} ∈ E(G) as (vi)i∈[k] is a clique. Therefore, by construction, the
vertex (vi, vj) is contained in Vi,j . Now let {(i, j), (i′, j′)} ∈ E(�k). By the
definition of the grid we have that either i′ = i and j′ = j + 1 for i ∈ [k]
and j ∈ [k − 1], or i′ = i + 1 and j′ = j for i ∈ [k − 1] and j ∈ [k]. As
h(i, j) = (vi, vj) ∈ Vi,j and h(i′, j′) = (vi′ , vj′) ∈ Vi′,j′ we conclude that in the
first case the adjacency is preserved by a horizontal edge and in the second
case the adjacency if preserved by a vertical edge.

For the other direction let h ∈ cp-Hom(�k → Ĝ). As h is color-prescribed
we have that for every i, j ∈ [k] the vertex (i, j) ∈ V (�k) is mapped to a
vertex in Vi,j by h. For every i ∈ [k] let (vi, vi) be the vertex of Ĝ which is
the image of h(i, i). We claim that (vi)i∈[k] is a clique in G. To this end we
show that for each pair i < j the edge (vi, vj) is contained in E(G).

2.5. A Classification for Counting Homomorphisms 37

u v u v

H − uv H

G G′

Edge deletion

uv u v

H/uv H

G G′

Edge contraction

z
H − z H

G G′

Vertex deletion

Figure 2.6: Illustration of the reduction for each operation as demonstrated in
Lemma 2.47. Edges that are added in the reduction are dashed.

As h is a homomorphism, the following edges must be contained in Ĝ:

h(i, i) — h(i, i+ 1) — . . . h(i, j)

...
|

h(j − 1, j)
|

h(j, j)

Now recall that h(i, i) = (vi, vi) and h(j, j) = (vj , vj) and let h(i, j) = (a, b).
Inductively applying the definition of horizontal edges yields that a = vi.
Similarly, using vertical edges, we obtain that b = vj . Hence (vi, vj) ∈ Vi,j
and consequently {vi, vj} ∈ E(G). This concludes the proof. �

Using Claim 2.46, the algorithm of the reduction hence first computes Ĝ,
including its �k-coloring, and then queries the oracle for #cp-Hom(�) to
obtain the number #cp-Hom(�k → G), which is then divided by k! and
returned as output. �

Next we show that the complexity of #cp-Hom(H) cannot increase by
taking minors.

Lemma 2.47. Let H be a graph and let Ĥ be a minor of H. Given an Ĥ-
colored graph G, we can in polynomial time compute an H-colored graph G′

with |V (G′)| ≤ |V (H)| · |V (G)| that satisfies

#cp-Hom(Ĥ → G) = #cp-Hom(H → G′) .

Proof. The claim is trivial if Ĥ and H are equal. We prove the claim in
case Ĥ is obtained from H by a single deletion or contraction operation,
the full result then follows by induction. Figure 2.6 illustrates the proof for
each of the three operations. In what follows, we abuse notation and write
only uv for an edge {u, v}.

38 Chapter 2: Preliminaries

Edge deletions. Let e ∈ E(H) be an edge with e = uv and suppose that
Ĥ = H − e. Let G be a Ĥ-colored graph given as input, together with the
coloring c : V (G)→ V (Ĥ). To construct G′, we start from G and simply
add all possible edges between the color classes c−1(u) and c−1(v); clearly
this construction takes polynomial time, G′ has the same number of vertices
as G, and c is a homomorphism from G′ to H. To verify the correctness,
we show that cp-Hom(Ĥ → G) = cp-Hom(H → G′) holds. Indeed, let h :
V (H)→ V (G) be a color-prescribed mapping. Since h(e) ∈ E(G′) holds by
construction and e is the only edge where H and Ĥ differ, the addition of
the edge e does not matter. Hence h is an element of cp-Hom(Ĥ → G) if
and only if it is an element of cp-Hom(H → G′).

Vertex deletions. Let z ∈ V (H) be a vertex and suppose Ĥ = H − z.
We can w.l.o.g. assume that z is isolated, because otherwise we could have
performed edge deletions as above before. Let G be a Ĥ-colored graph given
as input, together with the coloring c : V (G)→ V (Ĥ). To construct G′, we
start from G and simply add an isolated vertex z′ to it, whose color c(z′) we
define as z; clearly c is now a homomorphism from G′ to H. To verify the cor-
rectness, observe that #cp-Hom(Ĥ → G) = #cp-Hom(H → G′) holds: Any
color-prescribed homomorphism h from H to G′ remains a color-prescribed
homomorphism from Ĥ to G by restricting h to V (Ĥ). Conversely, any h
from Ĥ to G can be extended in exactly one color-prescribed way by set-
ting h(z) = z′. Thus the number of color-prescribed homomorphisms stays
the same.

Edge contractions. Let e ∈ E(H) be an edge with e = uv, and sup-
pose Ĥ = H/e. Contracting the edge e in H identifies the vertices u and v;
let us call the new vertex w ∈ V (Ĥ). Let G be a Ĥ-colored graph given as
input, together with the coloring c : V (G)→ V (Ĥ). We want to use G′ to en-
sure that any color-prescribed homomorphism h fromH toG′ assigns u and v
to the same value, that is, satisfies the equality constraint h(u) = h(v). To
do this, we simply put an induced perfect matching in G′ between the color
class of u and the color class of v. More formally, we start from G and split
every vertex x ∈ c−1(w) into an edge xuxv in G′, but we leave their neighbor-
hoods intact, that is, we have NG′(xu) ∩ V (G) = NG′(xv) ∩ V (G) = NG(x).
Clearly G′ is now H-colored, and it has exactly |c−1(w)| vertices more
than G. To verify correctness, again observe that #cp-Hom(Ĥ → G) =
#cp-Hom(H → G′) holds: Our construction forces any color-prescribed ho-
momorphism h from H to G′ to satisfy h(u) = h(v) and thus gives rise to
a color-prescribed homomorphism ĥ from Ĥ to G by setting ĥ(w) = h(u);
this mapping h 7→ ĥ is a bijection. �

Corollary 2.48. Let Ĥ and H be recursively enumerable classes of graphs
such that for every Ĥ ∈ Ĥ there exists a graph H ∈ H such that Ĥ is a
minor of H. Then #cp-Hom(Ĥ) ≤T

fpt #cp-Hom(H).

2.5. A Classification for Counting Homomorphisms 39

Proof. Let (Ĥ,G) be an instance of #cp-Hom(Ĥ), that is, Ĥ ∈ Ĥ and G is
an Ĥ-colored graph for which we want to compute #cp-Hom(Ĥ → G). As H
is recursively enumerable, there exists a computable function f independent
of the graph Ĥ such that a graph H ∈ H which contains Ĥ as a minor can be
found in time f(|V (Ĥ)|). We can then invoke the algorithm of Lemma 2.47
to conclude the reduction — note that this yields indeed a parameterized
Turing reduction as the size of the graph H and hence the parameter of the
oracle query is bounded by f(|V (Ĥ)|) as well. �

It remains to show that #Hom(H) and #cp-Hom(H) are interreducible.
We start with the slightly more involved direction.

Lemma 2.49. #cp-Hom(H) ≤T
fpt #Hom(H).

The proof of the above lemma will be presented in two steps via the following
intermediate problem.

Definition 2.50. Given an H-colored graph G with coloring c, we say that
a homomorphism h ∈ Hom(H → G) is colorful if c(h(V (H))) = V (H),
that is, the image of h must contain vertices of all colors of G. We write
cf-Hom(H → G) for the set of all colorful homomorphisms from H to G.
Furthermore, we define #cf-Hom(H) as the problem of, given a graph H
and an H-colored graph G, computing #cf-Hom(H → G); the problem is
parameterized by |V (H)|.

Lemma 2.51. #cp-Hom(H) ≤T
fpt #cf-Hom(H).

Proof. Let (H,G) be an instance of #cp-Hom(H), that is, H ∈ H and G is
an H-colored graph. Let furthermore c be the H-coloring of G. We claim
the following, which immediately induces the reduction.

#cf-Hom(H → G) = #Aut(H) ·#cp-Hom(H → G) .

Intuitively, this holds as the set cf-Hom(H → G) can be partitioned by the
images of the colorful homomorphisms and the induced equivalence classes
are each of size #Aut(H) and represented by a color-prescribed homomor-
phism. What follows is a formal proof of this statement using a rather simple
application of the Orbit-Stabilizer-Theorem.

If the coloring c is not surjective, then there are neither color-prescribed
nor colorful homomorphisms from H to G, so both sides of the equation are
zero. Otherwise we define the following group action of Aut(H) on the set
cf-Hom(H → G):

a . h := a ◦ h
Now consider the function b which maps color-prescribed homomorphisms
to orbits of the above group action given by

b(h) := O(h)
(

= {a . h | a ∈ Aut(H)}
)
.

40 Chapter 2: Preliminaries

It is easy to see that b is injective, as two different color-prescribed homo-
morphisms must have different images, and so they cannot be in the same
orbit since composing an automorphism with a homomorphism does not
change the image.

For surjectivity, let O = O(h′) be the orbit of some colorful homomor-
phism h′ ∈ cf-Hom(H → G). Now observe that h′ ◦ c is a surjective homo-
morphism from H to H as h′ is colorful and c is surjective. Furthermore,
every surjective homomorphism from H to H is an automorphism. Since
Aut(H) is a group, there exists hence an inverse a ∈ Aut(H) of (h′ ◦ c) such
that

a ◦ (h′ ◦ c) = id ,

where id is the neutral element of Aut(H), that is, the identity. By associa-
tivity of functional composition we obtain that

(a ◦ h′) ◦ c = id .

In other words, (a ◦ h′) is a color-prescribed homomorphism from H to G
and furthermore b(a ◦ h′) = O(h′). Finally, we observe that for every
h ∈ cf-Hom(H → G) the stabilizer S(h) is trivial in the sense that it only
contains id. By the Orbit-Stabilizer-Theorem (Theorem 2.29) we hence have
that |O(h)| = #Aut(H). As cf-Hom(H → G) is partitioned by its orbits we
conclude that

#cf-Hom(H → G) =
∑

h∈cp-Hom(H→G)

|O(h)| = #Aut(H) ·#cp-Hom(H → G) .

�

Lemma 2.52. #cf-Hom(H) ≤T
fpt #Hom(H).

We decided to give two proofs of the above lemma. One uses the inclusion-
exclusion principle, and the other relies on multivariate polynomial interpo-
lation.

Proof (by inclusion-exclusion). Let (H,G) be an instance of #cf-Hom(H),
that is, H ∈ H and G is H-colored by a coloring c. In what follows, given a
subset J ⊆ V (H) we set

AJ := {h ∈ Hom(H → G) | ∀j ∈ J : j /∈ c(h(V (H)))} ,

that is, AJ is the set of all homomorphisms from H to G whose images do
not contain vertices colored with some j ∈ J . Slightly abusing notation, we
write Aj instead of A{j} for single colors j ∈ V (H). Now observe that

|AJ | = #Hom(H → G− J) ,

where G − J is the graph obtained from G by deleting all vertices that
are colored with some j ∈ J . Furthermore, it holds that for every pair
I, J ⊆ V (H)

AI ∩AJ = AI∪J .

2.5. A Classification for Counting Homomorphisms 41

Finally, we apply the principle of inclusion and exclusion (Theorem 2.27)
and obtain the following; note that the complement Aj is taken over the
universe Hom(H → G).

#cf-Hom(H → G) = #

 ⋂
j∈V (H)

Aj


=

∑
J⊆V (H)

(−1)|J | · |AJ |

=
∑

J⊆V (H)

(−1)|J | ·#Hom(H → G− J) .

In particular, the latter sum can be computed in time 2k · |V (G)|, provided
oracle access to #Hom(H). �

Proof (by polynomial interpolation). Let (H,G) and c as in the previous
proof and let V (H) = [k]. Now, given some x ∈ [k]k, we define G[x] to
be the graph obtained from G by cloning each vertex of color i ∈ [k] pre-
cisely xi times. Here, “cloning” a vertex v is the operation of adding a new
vertex v′ and edges {v′, u} for every vertex u that is adjacent to the primal
vertex v. In particular, we extend the coloring c by setting c(v′) = c(v)
for each clone v′ of v. Note that G[0] = G. Now given a (not necessarily
colorful) homomorphism h ∈ Hom(H → G[x]) for some x ∈ [k]k, we define
its color vector d(h) ∈ [k]k by

d(h)i := #{v ∈ V (H) | c(h(v)) = i} ,

that is, d(h)i is the number of vertices of H that are mapped to a (clone of
some) vertex of color i in G. Next we partition the set Hom(H → G[x]) by
its color vectors and obtain

#Hom(H → G[x]) =
∑

d∈[k]k

#{h ∈ Hom(H → G[x]) | d(h) = d} .

Now observe that

#{h ∈ Hom(H → G[x]) | d(h) = d} = xd·#{h ∈ Hom(H → G) | d(h) = d} ,

where xd is the product
∏k
i=1 xdi

i . Hence #Hom(H → G[x]) is a polynomial
given by

#Hom(H → G[x]) =
∑

d∈[k]k

#{h ∈ Hom(H → G) | d(h) = d} · xd

and can be interpolated in time kO(k) ·|V (G)| using Grid-Interpolation (The-
orem 2.28), provided oracle access to #Hom(H). Finally, we point out that
the coefficient of x1 satisfies

#{h ∈ Hom(H → G) | d(h) = 1} = #cf-Hom(H → G) . �

42 Chapter 2: Preliminaries

Proof (of Lemma 2.49). Follows by Lemma 2.51 and Lemma 2.52. �

We proceed with the backward direction of the interreducibility result.

Lemma 2.53. #Hom(H) ≤T
fpt #cp-Hom(H).

Proof. Let (H,G) be an instance of #Hom(H), that is H ∈ H and G is an
arbitrary graph. It will be convenient to assume that V (H) = [k]. Given G,
we construct a graph Ĝ as follows. The vertex set of Ĝ is defined to be

V (Ĝ) =
k−1⋃
i=0

Vi ,

where Vi = {vi | v ∈ V (G)} is a copy of V (G) identified by vertex i ∈ V (H).
We add an edge {ui, vj} to Ĝ if and only if {i, j} ∈ E(H) and {u, v} ∈ E(G).
Now it can easily be verified that the function c : V (Ĝ) → V (H) given by
c(vi) := i is an H-coloring of Ĝ. Furthermore it is easy to see that

#cp-Hom(H → Ĝ) = #Hom(H → G) ,

which concludes the reduction. �

We are finally able to prove the second case of the classification for
counting homomorphisms.

Theorem 2.54. Let H be a recursively enumerable class of graphs. If the
treewidth of H is unbounded, then #Hom(H) is #W[1]-equivalent.

Proof. Hardness for #W[1] is given by the following sequence of reductions.

#Clique
Lemma 2.45

≤T
fpt #cp-Hom(�)

Corollary 2.48

≤T
fpt #cp-Hom(H)

Lemma 2.49

≤T
fpt #Hom(H)

Note that the precondition of Corollary 2.48 states that every grid �k is a
minor of some graph H ∈ H. However, this follows by the Excluded-Grid-
Theorem (see Theorem 2.6 and Theorem 2.7) and the fact that �k′ is a
minor of �k whenever k′ ≤ k.
For #W[1]-equivalence it remains to show that #Hom(H) ≤T

fpt #Clique.
To this end, we let K be the set of all cliques and observe that #Clique and
#Hom(K) are equivalent as the number of k-cliques in a graph G (without
self-loops) is equal to (k!)−1 ·#Hom(Kk → G). Hence we have that

#Hom(H)
Lemma 2.53

≤T
fpt #cp-Hom(H)

Corollary 2.48

≤T
fpt #cp-Hom(K)

Lemma 2.49

≤T
fpt #Hom(K) ,

where Corollary 2.48 is applicable as every graph H is the minor of some
complete graph. �

We conclude this section by combining the #W[1]-equivalence result
above with the dynamic programming algorithm for the case of bounded
treewidth.

Proof (of Theorem 2.34). Holds by Theorem 2.54 and Corollary 2.43. �

2.6. First-Order Logic 43

2.6 First-Order Logic

In the last section of this chapter we will introduce logical generalizations
of graphs and their related notions. To this end, we will consider logical
structures and first-order formulas which constitute the mathematical foun-
dations of relational databases and queries. This will allow us to lift existing
and novel complexity classifications obtained in this thesis from graphs to
the more general setting of (relational) model counting problems. In partic-
ular, building upon the work of Chen, Durand and Mengel [58, 31, 32] we
will provide an exhaustive classification for the problem of counting answers
to conjunctive queries and linear combinations thereof in Chapt. 6. We will
mainly follow the notation of [65, Chapt. 4.2] in the subsequent definitions.

Definition 2.55. A signature τ is a finite tuple of relation symbols (Ei)i∈[`]

with arities (ai)i∈[`]. We set a(τ) = max{ai | i ∈ [`]} to be the arity of τ .
A structure H with signature τ consists of a finite set of vertices V (H)

and sets of (hyper-)edges Ei(H) ⊆ V (H)ai for every i ∈ [`].
The complementary structure H of H has vertices V (H) and for every

i ∈ [`] and every ~e ∈ V (H)ai it holds that ~e ∈ Ei(H) if and only ~e /∈ Ei(H).
Given structures H and F over the same signature τ , we say that F is a
substructure of H if V (F) ⊆ V (H) and Ei(F) ⊆ Ei(H) for every i ∈ [`].

Given two structures H and F with signature τ , a homomorphism from H
to F is a function h : V (H)→ V (F) such that the following holds

∀i ∈ [`] : ∀~e ∈ Ei(H) : h(~e) ∈ Ei(F) ,

where h(~e) = (h(~ei))i∈[`]. We denote Hom(H → F) as the set of all homo-
morphisms from H to F. Now the notions of isomorphisms, endomorphisms
and automorphisms, as well as color-prescribed and colorful homomorphisms
(see Definitions 2.44 and 2.50) are defined similarly as in case of graphs.

Example 2.56. Let τ = (E) such that a(E) = 2. Then the set of struc-
tures with signature τ is precisely the set of directed graphs. If we consider
the subset of structures H such that additionally E(H) is symmetric and
irreflexive, then this set is precisely the set of undirected graphs without
self-loops. In this case the notions of homomorphisms coincide.

We will be particularly interested in connectivity measures of what is
called the Gaifman graph of a structure, which is defined as follows.

Definition 2.57 (Gaifman graph). Given a structure H over some sig-
nature τ = (Ei)i∈[`], the Gaifman graph G(H) of H has vertices V (H) and
contains an edge {u, v} if and only if u 6= v and u and v contained in a
common edge of H, i.e., there exists i ∈ [`] and ~e ∈ Ei(H) such that u = ~ej
and v = ~ek for some j, k ∈ [ai].

44 Chapter 2: Preliminaries

α = Ei(zj)j∈[ai] (β(zj))j∈[ai] ∈ Ei(H)

H �β α

H 2β ϕ
H �β ¬ϕ

H �β|free(ϕ)
ϕ H �β|free(ψ)

ψ

H �β ϕ ∧ ψ
H �β|free(ϕ)

ϕ

H �β ϕ ∨ ψ
H �β|free(ψ)

ψ

H �β ϕ ∨ ψ

∃v ∈ V (H) : H �β∪{z 7→v} ϕ

H �β ∃z : ϕ

∀v ∈ V (H) : H �β∪{z 7→v} ϕ

H �β ∀z : ϕ

Figure 2.7: Inductive definition of the semantics of first-order formulas. Note that
the term H 2β ϕ in the top right rule is syntactic sugar for “H �β ϕ is false”.

Now let τ = (Ei)i∈[`] be a fixed signature and let V be a countably infinite
set of variables. An atom of τ is of the form

Ei(zj)j∈[ai],

where i ∈ [`] and zj ∈ V for all j ∈ [ai]. The set of first-order formulas
over τ is defined inductively as follows

ϕ,ψ ::= α | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | ∃z : ϕ | ∀z : ϕ ,

where α is an atom and z ∈ V. We may assume w.l.o.g. that a variable z
is used at most once in a quantification ∃z : ϕ or ∀z : ϕ — otherwise
we rename consistently. Now let ϕ be a first-order formula and let z be
a variable contained in an atom of ϕ. We say that z is free if it was not
introduced by a quantification ∃z or ∀z before. We write free(ϕ) for the set
of all free variables of ϕ. Otherwise z is called quantified. Furthermore, we
call ϕ closed if it contains no free variables and we call it quantifier-free if
it contains no quantifications.

Now let H be a structure and let ϕ be a first-order formula, both over
the same signature. Furthermore, let β be a function mapping free variables
of ϕ to vertices in V (H). Then the predicate H �β ϕ is defined inductively
as given by the inference rules in Figure 2.7. Given a formula ϕ we define

ϕ(H) := {β : free(ϕ)→ V (H) | H �β ϕ} .

For notational convenience, we will only write the last colon if multiple
quantifications occur successively, that is, we write

∃z1∃z2 . . . ∃z` : ϕ

instead of

∃z1 : ∃z2 : . . . ∃z` : ϕ .

2.6. First-Order Logic 45

A formula is in negation normal form if every occurrence of ¬ is in front of
an atom. Furthermore, a first-oder formula ϕ is in prenex normal form if

ϕ = Q1y1Q2y2 . . . Q`y` : ψ ,

where Qi ∈ {∃, ∀} and ψ is quantifier-free. It will be very convenient to
emphasize the set free(ϕ) by writing

ϕ = x1x2 . . . xkQ1y1Q2y2 . . . Q`y` : ψ ,

where the xi are the free variables of ϕ. From now on we will assume w.l.o.g.
that all first-order formulas are both, in prenex and negation normal form,
the former assumption of which allows us to define the following hierarchy.

Definition 2.58. The set of all quantifier-free first-order formulas is de-
noted by both, Π0 and Σ0. A formula ϕ is contained in Σt+1 if

ϕ = x1x2 . . . xk∃y1∃y2 . . . ∃y` : ψ , where ψ ∈ Πt ,

and a formula ϕ is contained in Πt+1 if

ϕ = x1x2 . . . xk∀y1∀y2 . . . ∀y` : ψ , where ψ ∈ Σt .

First-order formulas contained in Π1 and Σ1 are called universal and exis-
tential formulas, respectively. A formula is called positive if it contains no
negations. We will be particularly interested in conjunctive queries, also
known as primitive positive formulas, which are existential formulas of the
form

ϕ = x1x2 . . . xk∃y1∃y2 . . . ∃y` : α1 ∧ α2 ∧ · · · ∧ αm ,

where the αi are atoms.
Now let Φ be a set of first-order formulas. Following the notation of [65],

we define #p-MC(Φ) as the problem of, given ϕ ∈ Φ and a structure H over
the same signature, computing #ϕ(H); the problem is parameterized by the
length of ϕ. What follows is an alternative criterion for #W[1]-equivalence
that will be very useful in Chapt. 6.

Theorem 2.59 ([64]). #p-MC(Π0) is #W[1]-equivalent.

In particular, a stronger version of the above theorem states that the class
#W[1] is actually equal to a class called #A[1] (see Theorem 14.17 in [65]).
The latter is the first level of the #A-Hierarchy, which should be considered
as a parameterized counting equivalent of the polynomial-time hierarchy PH.
We will encounter, and define, the #A-classes in Chapter 6 when we discuss
the complexity of counting answers to existential first-order formulas.

46 Chapter 2: Preliminaries

Chapter 3

Quantum Graphs

Unarguably, the most important objects of study in this thesis are so-called
quantum graphs. Despite the name though, those objects have no immedi-
ate connections to quantum computing, at least to the best of the author’s
knowledge. In particular, we avoid confusion and point out that the term
“quantum graph” refers to both, physical networks equipped with what is
called a pseudo-differential operator [90] as well as to formal linear combi-
nations of ordinary graphs as coined by Lovász [95, Chapter 6.1]. In this
work, we consider the latter and provide a formal introduction in the
subsequent sections.

3.1 Basic Definitions

We follow the notation of the textbook of Lovász — see Chapt. 6 in [95].

Definition 3.1 (Quantum graphs). A quantum graph is a formal linear
combination of simple graphs without self-loops with finite support and ra-
tional coefficients. We write

Q =
∑

λH ·H ,

where the sum is over all (isomorphism types of) graphs and λH ∈ Q is zero
for all but finitely many H. We write supp(Q) for the support of Q, that is,
the set containing all graphs with a non-zero coefficient in Q. Furthermore,
we call graphs in supp(Q) constituents of Q.

The functions we have seen in the preceding section extend to quantum
graphs linearly. We make it explicit for the case of homomorphisms:

#Hom(Q→ G) :=
∑

λH ·#Hom(H → G) .

The study of homomorphism numbers of quantum graphs has far-reaching
consequences for the complexity classification of counting problems that re-
quire to count small structures in large graphs. They were first used in this

48 Chapter 3: Quantum Graphs

context by Curticapean, Dell and Marx in a breakthrough result regarding
the exact complexity of the subgraph counting problem [41]. Roughly speak-
ing, they showed how to compute a quantum graph Q[H], given a graph H,
such that

#Hom(Q[H]→ ?) = #Sub(H → ?) .

After that, they established that computing the number of homomor-
phisms from a quantum graph is precisely as hard as counting homomor-
phisms from the hardest constituent. This property, which seems to be
unique for homomorphisms numbers from quantum graphs, is referred to as
complexity monotonicity and allows to obtain exhaustive complexity clas-
sifications for counting problems that can be expressed as homomorphisms
numbers from quantum graphs by ultimately relying on the fact that the
problem of counting homomorphisms is well understood (see Theorem 2.34).

The remainder of this chapter is dedicated to a careful exposition of
the strategy outlined above. We give an explicit example of the problem
of counting matchings of size 3, which is shown to be precisely as hard as
counting triangles of size 3 using the framework of quantum graphs. Af-
ter that, we will provide a formal statement and a proof of the complexity
monotonicity property, which is then invoked to present a self-contained
proof of the result in [41]. We emphasize that, except for the example of
counting matchings, the current chapter does not present new contributions
but rather illustrates the most important techniques necessary for our treat-
ment of quantum graphs in the subsequent chapters. From Chapt. 4 on,
we then invoke and significantly refine those principles to obtain exhaustive
complexity classification for counting problems that considerably generalize
counting of subgraphs and induced subgraphs.

3.2 Linear Combinations of Homomorphisms

Recall that we wish to express the number of subgraphs as a linear com-
bination of homomorphism numbers, that is, as a quantum graph. To this
end, given a graph H, we define the quantum graph Q[H] =

∑
λĤĤ by

λĤ := #Aut(H)−1 ·
∑
ρ∈L

H/ρ ' Ĥ

µL(⊥, ρ) , (3.1)

where L is the lattice of partitions of V (H). Indeed, we already introduced
all machinery we need to prove the following lemma.

Lemma 3.2. #Hom(Q[H]→ ?) = #Sub(H → ?).

3.2. Linear Combinations of Homomorphisms 49

Proof. Recall Equation (2.4) which was shown by Möbius inversion. For
every graph G we have that

#Sub(H → G)
Fact 2.9

= #Aut(H)−1 ·#Emb(H → G)
(2.4)
= #Aut(H)−1 ·

∑
ρ∈L µL(⊥, ρ) ·#Hom(H/ρ→ G) .

The claim then follows by collecting for isomorphic quotient graphs and
deleting terms #Hom(H/ρ → G) for which H/ρ contains a self-loop. Note
that the latter is valid as G does not have self-loops and there are no homo-
morphisms from a graph with self-loops to a graph without self-loops. �

The next step is to decide which graphs Ĥ occur as constituents in Q[H],
that is, for which graphs Ĥ the coefficient λĤ is non-zero. It will turn out
that this step is usually the much more involved one. In the current case
however, one can rely on the explicit formula of the Möbius function over the
partition lattice as done by Curticapean, Dell and Marx [41, Section 3.1].
We will give an alternative proof using Rota’s NBC Theorem (Theorem 2.26)
and matroid lattices, which is motivated by the fact that our proof can be
generalized to partially injective homomorphisms (see Chapt. 4.1).

Lemma 3.3. λĤ 6= 0 whenever Ĥ ' H/ρ for some partition ρ of V (H).

Proof. We rely on the fact that the partition lattice of V (H) is equivalent
to the lattice of flats of the graphic matroid of the complete graph with
vertices V (H). Recall that a flat of a graphic matroid of a graph F is a
subset of edges A such that for every edge e ∈ E(F) \A we have that

rk(A ∪ {e}) = rk(A) + 1 .

In other words, as rk(A) = |V (F)|− comp(F [ρ]) (see Chapt. 2.4.1), adding e
to A must decrease the number of connected components by one; recall that
every isolated vertex constitutes a single connected component. For the
complete graph with vertices V (H) we hence have that the flats correspond
one-to-one to partitions of the graph in vertex-disjoint cliques; again, isolated
vertices constitute cliques of size one. In particular those partitions in cliques
are precisely the partitions of V (H). This induces a natural bijection b
between flats and partitions of V (H). In particular, the bijection satisfies
that

b(A) ≤ b(B)⇔ A ⊆ B ,
where “≤” is the partial ordering of the partition lattice and “⊆” is subset
inclusion, that is, the partial ordering of the lattice of flats. Therefore, the
two lattices are indeed the same up to renaming the elements. If this is the
case, then the Möbius functions coincide and we have that

λĤ = #Aut(H)−1 ·
∑
A∈L′

H/b(A) ' Ĥ

µL′(∅, A) , (3.2)

50 Chapter 3: Quantum Graphs

where L′ is the lattice of flats of the complete graph with vertices V (H). Now
observe that H/b(A) ' H/b(B) implies that rk(A) = rk(B), as otherwise the
number of vertices would not coincide. Finally, we can apply Theorem 2.26
and obtain that every term µL′(∅, A) in (3.2) has the same sign. Hence λĤ is
non-zero if there is at least one partition of ρ of V (H) for which the quotient
graph H/ρ becomes isomorphic to Ĥ. �

We remark that, in the above proof, we were only required to formally rely
on the bijection b as λĤ was defined as a sum over Möbius functions over the
partition lattice. It is of course possible to define the quantum graph Q[H]
and its coefficients immediately over the lattice of flats. However, this would
require us to prove Lemma 3.2 by Möbius inversion over the lattice of flats
as well. We will generalize Lemma 3.2 to the more general case of partially
injective homomorphisms in Chapt. 4.1 and in proving the generalization we
will indeed rely on the lattice of flats.

Expressing a counting problem as #Hom(Q → ?) for some quantum
graph Q immediately yields a naive algorithm: On input G, just compute
#Hom(H → G) using Theorem 2.35 for every constituent H of Q and then
compute the linear combination as given by Q. Let us provide an example
in case of subgraph counting.

Theorem 3.4 (Corollary 1.2 in [41]). Given a graph H with k edges and
a graph G with n vertices, we can compute #Sub(H → G) in time

f(|V (H)|) · n0.174·k+o(k) ,

where f is a computable function independent of G.

Proof. We compute by brute-force the quantum graph Q[H] including the
coefficients λĤ (3.1) for all Ĥ that are isomorphic to H/ρ for some partition ρ

of V (H). Now observe that every constituent Ĥ of Q[H] has at most k
edges. Scott and Sorkin [121, Corollary 21] established that the treewidth
of a graph with k edges is bounded by 0.174 · k + o(k). Hence we can apply
Bodlaender’s algorithm [14] to obtain a tree decomposition of width at most
0.174 · k + o(k) in time kO(k3) · |V (H)|. In particular, the number of nodes
of this tree decomposition is bounded by kO(k3) · |V (H)| as well. Next we
invoke Theorem 2.35 to obtain #Hom(Ĥ → G) for every constituent Ĥ in
time

poly(|V (H)|, k) · n0.174·k+o(k)+O(1) = poly(|V (H)|) · n0.174·k+o(k) .

Finally, given those numbers, we compute the linear combination induced
by Q[H] which, by Lemma 3.2, equals #Sub(H → G). Clearly, the overall
running time is bounded by

f(|V (H)|) · n0.174·k+o(k) . �

3.2. Linear Combinations of Homomorphisms 51

Furthermore, we emphasize a fixed-parameter tractability result for the
parameterized subgraph counting problem. To this end, given a class of
graphs H, we define #Sub(H) as the problem of, given a graph H ∈ H and
an arbitrary graph G, computing #Sub(H → G), that is, the number of
subgraphs of G that are isomorphic to H. The problem is parameterized
by |V (H)|. Moreover, recall that a vertex cover of a graph H is a set
S ⊆ V (H) such that every edge of H is incident to at least one vertex in S.
The vertex cover number of H is the size of the smallest vertex cover of H
and we say that a class of graphs H has bounded vertex cover number if
there is a constant d such that the vertex cover number of every graph in H
is at most d.

Lemma 3.5. Let H be a class of graphs of bounded vertex cover number.
Then #Sub(H) is fixed-parameter tractable.

Proof. First of all, note that the treewidth of a graph H with vertex cover
number d is at most d: Let S be a vertex cover of size d of H. We make S a
bag of the tree decomposition and further add bags S ∪ {v} for all vertices
v ∈ V (H) \ S. Finally we connect the vertices of the tree corresponding
to S and S ∪ {v} for every v ∈ V (H) \ S. It can easily be verified that this
construction yields a tree decomposition of width |S|; recall the “−1” in the
definition of treewidth.

Next we observe that the vertex cover number of H/ρ cannot be larger
than the vertex cover number of H for every partition ρ of H. Hence, given
an instance (H,G) of #Sub(H) we have that the treewidth of all graphs
H/ρ is bounded by the constant upper bound d on the vertex cover num-
bers of graphs in H. Similarly to the proof of Theorem 3.4 we apply dy-
namic programming over the tree decompositions of the constituents of Q[H]
using Theorem 2.35 which allows us to compute the linear combination of
homomorphisms and hence the number #Sub(H → G) in time

f(|V (H)|) · |V (G)|d+O(1) . �

Remark 3.6 ([91, 138, 43]). #Sub(H) is even solvable in polynomial time
if the vertex cover number of H is bounded.

We have seen that the parameterized problem of counting subgraphs is
fixed-parameter tractable if there exists a constant upper bound on the ver-
tex cover number of the subgraphs we which to count. We obtained this
result by a quite naive algorithm using the framework of quantum graphs:
Just rely on the known treewidth-based DP algorithm to compute the ho-
momorphism numbers of all constituents. The obvious next question is
whether the constant bound on the vertex cover number is also necessary
for the problem to be fixed-parameter tractable. It turns out that this holds

52 Chapter 3: Quantum Graphs

true and, in particular, the proof shows the full power of the framework of
quantum graphs. More precisely, we will show that the complexity of com-
puting #Hom(Q→ ?) for some quantum graph Q is not only upper bounded
but also lower bounded by the complexity of counting homomorphisms from
its hardest constituent; the property which was previously advertised as
complexity monotonicity. The principle is first illustrated in case of the
3-matching.

3.2.1 Matchings and Triangles

In the current section, we write ≡≡≡ for the matching of size 3 and CCC for the
clique of size 3. We will establish that counting subgraphs isomorphic to ≡≡≡
is precisely as hard as counting triangles.

Theorem 3.7. Let c ∈ R be a fixed real. Then the following statements are
equivalent:

(1) #Sub(≡≡≡ → ?) can be computed in time O(nc).

(2) #Hom(CCC→ ?) can be computed in time O(nc).

Here n denotes the number of vertices of the input graph. In particular, the
equivalence holds true for combinatorial algorithms.1

Let us first discuss some consequences of the above result. As the deci-
sion version of #Hom(CCC → ?) is equivalent to the problem of triangle-
detection in a graph,2 we obtain that any algorithm computing #Sub(≡≡≡→ ?)
in time O(nc) can be used to find a triangle in time O(nc). In particular, if
#Sub(≡≡≡→ ?) can be computed by a combinatorial algorithm in timeO(n3−ε)
for some ε > 0, then there exists a δ > 0 and a combinatorial algorithm that
can perform boolean matrix multiplication of n× n matrices in time

O(n3−δ · poly(log(M))) ,

where M is the absolute value of the largest entry [139, Theorem 1.3].
Furthermore, we can use fast matrix multiplication to obtain a subcubic

(non-combinatorial) algorithm for counting matchings of size 3.

Corollary 3.8. #Sub(≡≡≡ → ?) can be computed in time O(nω), where ω is
the matrix multiplication exponent.

Proof. Follows by Theorem 3.7 and the fact that #Hom(CCC → ?) can be
computed in time O(nω) (see e.g. [105]). �

1A formal definition of combinatorial algorithms seems to be elusive. Roughly speaking,
those algorithms do not rely on fast matrix multiplication and are hence more relevant for
practical applications (see [8, Section 1] for a discussion).

2Every homomorphism from CCC to a graph without self-loops must be injective.

3.2. Linear Combinations of Homomorphisms 53

M1 P2 K3 M2 P3 K1,3 P2 ∪ P1 M3

Figure 3.1: The constituents of the quantum graph Q[≡≡≡].

Both directions of the proof of Theorem 3.7 will use the quantum graph Q[≡≡≡]
as defined in (3.1). By Lemma 3.2 we have that

#Sub(≡≡≡ → ?) = #Hom(Q[≡≡≡]→ ?) .

Now using Lemma 3.3, we can give the support of Q[≡≡≡] explicitly as depicted
in Figure 3.1; recall that quotient graphs with self-loops can be deleted. Note
that all coefficients of Q[≡≡≡] are known constants given by (3.1) for H = ≡≡≡.

Observation 3.9. Every constituent in supp(Q[≡≡≡]) has treewidth 1, except
for CCC, which is of treewidth 2.

Lemma 3.10. Let c ≥ 2 be a fixed real such that #Hom(CCC→ ?) can be com-
puted in time O(nc). Then #Sub(≡≡≡ → ?) can be computed in time O(nc) as
well. Here n denotes the number of vertices of the input graph. In particular,
this holds true for combinatorial algorithms.

Proof. Given a graph G with n vertices, we compute #Hom(Q[≡≡≡]→ G) by
applying the treewidth-based DP for all constituents of treewidth 1 and
use the assumed algorithm for #Hom(CCC → ?). By Theorem 2.35 and
Remark 2.42 the former can be done in time O(n2). Furthermore, the
latter takes time O(nc). After that, we compute the linear combination,
which takes time O(log(n)). The total running time is hence bounded by
O(n2 + nc + log(n)) = O(nc). In particular, the algorithm is combinatorial
if and only if the algorithm for computing #Hom(CCC→ G) is. �

Having established the easy direction, it remains to show that #Sub(≡≡≡ → ?)
is at least as hard as #Hom(CCC → ?). To this end we will, at last, use a
concrete application of complexity monotonicity. Recall that G×F denotes
the tensor product of G and F , that is, the graph whose adjacency matrix
is given by the Kronecker product of the adjacency matrices of G and F . It
turns out that the function #Hom(H → ?) is linear on the operation ×.

Fact 3.11 (Equation (5.30) in [95]). Let H,F and G be graphs. Then

#Hom(H → G× F) = #Hom(H → G) ·#Hom(H → F) .

54 Chapter 3: Quantum Graphs

−−− <<< CCC === @@@ ⊥⊥⊥ ≤≤≤ ≡≡≡



−−− 2 4 6 4 6 6 6 6
<<< 2 6 12 4 10 12 8 6
CCC 0 0 6 0 0 0 0 0
=== 4 16 36 16 36 36 36 36
@@@ 2 8 24 4 16 18 10 6
⊥⊥⊥ 2 10 24 4 18 30 12 6
≤≤≤ 4 24 72 16 60 72 48 36
≡≡≡ 8 64 216 64 216 216 216 216

Figure 3.2: The matrix M#Hom for the constituents of Q[≡≡≡]. In particular, the
entry corresponding to row F and column F ′ is precisely #Hom(F → F ′).

Lemma 3.12. Let c ≥ 2 be a fixed real such that #Sub(≡≡≡ → ?) can be com-
puted in time O(nc). Then #Hom(CCC → ?) can be computed in time O(nc)
as well. Here n denotes the number of vertices of the input graph. In par-
ticular, this holds true for combinatorial algorithms.

Proof. Given a graph G with n vertices for which we want to compute
#Hom(CCC → G), the idea is to query #Sub(≡≡≡ → ?) = #Hom(Q[≡≡≡] → ?)
multiple times on graphs G× F . By Fact 3.11 we have that

#Hom(Q[≡≡≡]→ G× F) = λ−−− ·#Hom(−−− → G) · #Hom(−−− → F)
+ λ<<< ·#Hom(<<< → G) · #Hom(<<< → F)
+ λCCC ·#Hom(CCC→ G) · #Hom(CCC→ F)
+ λ=== ·#Hom(=== → G) · #Hom(=== → F)
+ λ@@@ ·#Hom(@@@ → G) · #Hom(@@@ → F)
+ λ⊥⊥⊥ ·#Hom(⊥⊥⊥ → G) · #Hom(⊥⊥⊥ → F)
+ λ≤≤≤ ·#Hom(≤≤≤ → G) · #Hom(≤≤≤ → F)
+ λ≡≡≡ ·#Hom(≡≡≡ → G) · #Hom(≡≡≡ → F) ,

which yields a system of linear equations. In particular, we choose for F
the 8 graphs in supp(Q[≡≡≡]). The induced matrix is of size 8 × 8 and given
by

M#Hom(F, F ′) := #Hom(F → F ′) ,

where F, F ′ ∈ supp(Q[≡≡≡]); consult Figure 3.2 for an explicit representation.
Since M#Hom is non-singular, we can solve the system of linear equations
in time O(log n). In particular, we obtain the coefficient of #Hom(CCC→ F)
which, divided by λCCC, yields #Hom(CCC → G). As every graph G × F for
F ∈ supp(Q[≡≡≡]) has O(n) vertices, the overall running time is bounded by

8 ·O(nc) +O(log n) = O(nc) . �

Proof (of Theorem 3.7). Follows by Lemma 3.10 and Lemma 3.12 and the
fact that neither of #Sub(≡≡≡→ ?) and #Hom(CCC→ ?) can be solved in time
O(nc) for c < 2 as this would be sublinear in the input size — note that a
graph on n vertices might have Ω(n2) edges. �

3.2. Linear Combinations of Homomorphisms 55

3.2.2 Complexity Monotonicity

We will now provide a general version of complexity monotonicity. To this
end, the proof of Lemma 3.12 is lifted to arbitrary quantum graphs. The
statement is presented in a form that is suitable for both, parameterized
and fine-grained complexity lower bounds. We point out that the following
theorem holds for arbitrary quantum graphs, not only for those defined in
Equation (3.1).

Theorem 3.13 (Complexity monotonicity, cf. Lemma 3.6 in [41]).
Let Q =

∑
i∈[k] λi ·Hi be a quantum graph with constituents {Hi}i∈[k]. There

exists an algorithm A that is given a graph G with n > 0 vertices as input
and has oracle access to

#Hom(Q→ ?) ,

and computes #Hom(Hi → G) for all i ∈ [k] in time f(Q) · n. Additionally,
every graph Ĝ that is posed as oracle query has at most f(Q) · n vertices.
Here f is a computable function independent of G.

Proof. We will query the oracle for k tensor products G× Fj where j ∈ [k].
Using Fact 3.11 we have that

#Hom(Q→ G× Fj) =
∑
i∈[k]

λi ·#Hom(Hi → G)︸ ︷︷ ︸
=:ci

· #Hom(Hi → Fj) .

Similar to the proof of Lemma 3.12, this induces a system of linear equations.
Unfortunately, the corresponding matrix might be singular for Fj = Hj in
the general case. However, it is known that we can find graphs for which
non-singularity can be guaranteed.

Fact 3.14 (cf. Proposition 5.44 (b) in [95]). For every positive k ∈ N
and pairwise non-isomorphic graphs {Hi}i∈[k] there exist graphs {Fj}j∈[k]

such that the k × k-matrix given by

M#Hom(Hi, Fj) := #Hom(Hi → Fj)

is non-singular.

In particular, the proof yields an algorithm,3 which allows us to compute Fj
and hence G × Fj for every j ∈ [k] in time f(Q) · n. Observe further,
that the number of vertices of G × Fj is bounded by f(Q) · n as well. The
coefficients ci can therefore be computed using Gaussian elimination and we
may output ci/λi for every i ∈ [k]. �

3Roughly speaking, the graph Fj can be obtained from Hj by cloning its vertices in an
appropriate way. Details can be found in [95, Chapt. 5.5].

56 Chapter 3: Quantum Graphs

Complexity monotonicity is a powerful tool for proving lower bounds on the
complexity of (parameterized) counting problems. More precisely, whenever
a counting problem can be expressed as counting homomorphisms from a
quantum graph, the problem is at least as hard as counting homomorphisms
from its hardest constituent. We provide a formal application in the proof
of the following exhaustive classification of the subgraph counting problem,
which is originally due to Curticapean and Marx.

Theorem 3.15 ([43]). Let H be a recursively enumerable class of graphs.

(1) If H has bounded vertex cover number then #Sub(H) is solvable in
polynomial time.

(2) Otherwise #Sub(H) is #W[1]-equivalent.

Proof. The first item is Remark 3.6. Hence assume that H has unbounded
vertex cover number. We define

Q := {F ∈ supp(Q[H]) | H ∈ H} ,

where Q[H] is the quantum graph given by Equation (3.1). We claim that
#Sub(H) and #Hom(Q) are interreducible with respect to parameterized
Turing reductions.

Claim 3.16. #Sub(H) ≤T
fpt #Hom(Q).

Proof. Given H ∈ H and a graph G, we construct Q[H] and use the oracle
for #Hom(Q) to compute∑

F∈supp(Q[H])

λF ·#Hom(F → G) = #Hom(Q[H]→ G) ,

which is equal to #Sub(H → G) by Lemma 3.2.. �

Claim 3.17. #Hom(Q) ≤T
fpt #Sub(H).

Proof. Given F ∈ Q and a graph G, we search for a graph H ∈ H for
which F is a constituent of Q[H]. This can be done by brute-force and is
guaranteed to terminate as H is recursively enumerable. In particular, the
running time and the number of vertices of H are bounded by f(|V (F)|) for
some computable function f independent of G. By Lemma 3.2 we have that

#Sub(H → ?) = #Hom(Q[H]→ ?) .

Hence we can use the oracle access to #Sub(H → ?) to invoke Theorem 3.13
and obtain #Hom(F → G). �

3.2. Linear Combinations of Homomorphisms 57

It remains to show that Q has unbounded treewidth. If this is the
case, we can invoke the classification for counting homomorphisms to ob-
tain #W[1]-equivalence (see Theorem 2.34). By Lemma 3.3 we have that Q
contains all loopless graphs H/ρ where H ∈ H and ρ is a partition of V (H).
Now observe that for every k > 0 there exists a graph in H that contains
the matching Mk of size k as a subgraph, because otherwise the vertex cover
number of H would be bounded. Furthermore, given a graph H containing a
matching of size k it is easy to see that every graph with at most k edges (and
no isolated vertices) is a minor of a loopless quotient graph of H: Endpoints
of two edges of the matching are identified using the contraction operation
if they are adjacent and they are identified using the quotient construction
if they are not adjacent, which does hence not create a self-loop. A detailed
construction is given by Curticapean, Dell and Marx [41, Fact 3.4.3].

Consequently, the set of minors ofQ contains all complete graphs. As the
treewidth cannot increase by taking a minor we conclude that the treewidth
of Q is unbounded. �

58 Chapter 3: Quantum Graphs

Chapter 4

Constrained
Homomorphisms

As we have seen, the complexity of counting homomorphisms and subgraphs
is fully resolved, at least from a parameterized perspective (see Theorem 2.34
and Theorem 3.15). Subgraph counting is equivalent to counting injective
homomorphisms. More precisely, we recall that for every pair of graphs H
and G the following holds true.

#Emb(H → G) = #Aut(H) ·#Sub(H → G) .

In other words, the task of counting subgraphs adds injectivity as a con-
straint to the problem of counting homomorphisms. In the current chapter,
we will interpolate between the problems of counting homomorphisms and
counting injective homomorphisms.

One possible relaxation is partial injectivity. Roughly speaking, we will
be interested in counting homomorphisms from a graph H to a graph G
that additionally satisfy a set of partial injectivity constraints, also called
“inequalities”, that are part of the input. Those partial injective homomor-
phisms do not only generalize subgraph embeddings, but also locally injec-
tive homomorphisms. We will give a formal introduction in Chapter 4.1 and
furthermore provide an explicit classification that allows to pinpoint the pa-
rameterized complexity for every possible class of allowed inequalities and
graphs.

A further relaxation of full injectivity is the restriction to edge-injectivity
only. More precisely, we will consider the problem of, given a graph H
and a graph G, computing the number of homomorphisms from H to G
that are injective on the edges of H. By this, we generalize problems like
counting of edge-disjoint cycles and paths as well as matchings in line graphs.
Chapter 4.2 provides a complete classification for this problem, depending
on the class of allowed graphs for H. Unfortunately, we do not obtain an
explicit criterion as in case of counting partially injective homomorphisms.

60 Chapter 4: Constrained Homomorphisms

The reason for this is the fact that the support of the quantum graphs we
use to express the number of edge-injective homomorphisms cannot be given
explicitly. However, we are able to provide an explicit criterion in case the
class of allowed graphs for H is closed under taking induced subgraphs.

The results of Chapter 4.1 have been published in [119]. The results
of Chapter 4.2 have been obtained in collaboration with Radu Curticapean
and Holger Dell at the Simons Institute for the Theory of Computing. They
have been published in [42].

4.1 Partially Injective Homomorphisms

A graph with inequalities is a pair (H, I) where H is a graph and I is an
irreflexive and symmetric relation I ⊆ V (H)2. We say that I is a set of
inequalities. Intuitively, given a graph G and a graph with inequalities
(H, I), a homomorphism h ∈ Hom(H → G) satisfies I if for every inequality
{u, v} ∈ I, it holds that h(u) 6= h(v). Formally, we define the set of homo-
morphisms that satisfy I in terms of partially injective homomorphisms

PartInj(H, I → G) := {h ∈ Hom(H → G) | ∀{u, v} ∈ I : h(u) 6= h(v)} .

Given a class H of graphs with inequalities, we write #PartInj(H) for the
problem of, given (H, I) ∈ H and a graph G, computing #PartInj(H, I → G);
the parameter is |V (H)|.

Now let (H, I) be graph with inequalities. It will be very convenient to
assume that I does not contain an edge of H and, indeed, we can make
this assumption without loosing generality. To see this, observe that when-
ever {u, v} is an edge of H, no homomorphism in Hom(H → G) can map u
and v to the same vertex in G, because otherwise the image of u and v would
have a self-loop. As we do not allow input graphs G with self-loops, every
homomorphism h satisfies h(u) 6= h(v), regardless of whether {u, v} ∈ I.

Our classification theorem requires us to generalize quotient graphs to
sets of inequalities as follows. Let (H, I) be a graph with inequalities and
let ρ be a subset of I. Now consider the graph with vertices V (H) and
edges ρ. The connected components of this graph induce a partition Part(ρ)
of V (H). In particular, every isolated vertex constitutes a singleton in
the partition. We abuse notation and write H/ρ for the quotient graph
H/Part(ρ) in what follows; consult Figure 4.1 for an illustration.

Graphs H/ρ for ρ ⊆ I will turn out to be constituents of the quantum
graph for (H, I) if they do not contain self-loops. For this reason, we adopt
the notation of [41] and call a graph F a spasm of (H, I) if F does not
contain self-loops and is isomorphic to a graph H/ρ for ρ ⊆ I. In other
words, F is a spasm of (H, I) if it can be obtained from H by successively
identifying vertices of H along inequalities in I without creating self-loops.

4.1. Partially Injective Homomorphisms 61

1

4

7

5

6

2

3

8
7 8

6

145 23

Figure 4.1: Left: A graph H (solid lines) with inequalities I (dotted lines).
Right: The graph H/ρ for the subset ρ = {{1, 4}, {1, 5}, {2, 3}} of I. Note that the
connected components of the graph with vertices V (H) and edges ρ are precisely
{1, 4, 5}, {2, 3}, {6}, {7} and {8}, which constitutes a partition of V (H). As H/ρ
does not contain a self-loop, it is a spasm of (H, I) and hence a constituent of the
quantum graph Q[H, I] by Theorem 4.1.

We write Spasm(H, I) for the set of all spasms of (H, I) and given a class H
of graphs with inequalities, we define Spasm(H) to be the set containing
every graph F that is the spasm of some (H, I) ∈ H.

The following is the main result of the current section.

Theorem 4.1. Let (H, I) be a graph with inequalities. Then there exists a
quantum graph Q[H, I] which satisfies

#PartInj(H, I → ?) = #Hom(Q[H, I]→ ?) .

In particular, the mapping (H, I) 7→ Q[H, I] is computable and

supp(Q[H, I]) = Spasm(H, I) .

Let us first emphasize the following consequence of Theorem 4.1 for the
parameterized complexity of #PartInj(H).

Corollary 4.2. Let H be a recursively enumerable class of graphs with in-
equalities.

(1) If the treewidth of Spasm(H) is bounded, then #PartInj(H) is fixed-
parameter tractable.

(2) Otherwise #PartInj(H) is #W[1]-equivalent.

Proof. We show that the problems #PartInj(H) and #Hom(Spasm(H))
are interreducible with respect to parameterized Turing reductions.

Claim 4.3. #PartInj(H) ≤T
fpt #Hom(Spasm(H)).

Proof. We observe that by Theorem 4.1

#PartInj(H, I → ?) = #Hom(Q[H, I]→ ?)

=
∑

F∈Spasm(H,I)

λF ·#Hom(F → ?) ,

for computable coefficients λF . �

62 Chapter 4: Constrained Homomorphisms

Claim 4.4. #Hom(Spasm(H)) ≤T
fpt #PartInj(H).

Proof. Let F ∈ Spasm(H) and G be an instance of #Hom(Spasm(H)). AsH
is recursively enumerable, we can find (H, I) ∈ H with F ∈ Spasm(H, I) in
time only depending on F . By complexity monotonicity (Theorem 3.13) we
can use the oracle for

#PartInj(H, I → ?) = #Hom(Q[H, I]→ ?)

to compute #Hom(F → G). �

The corollary then follows by Theorem 2.34. �

The proof of Theorem 4.1 consists of two steps. In the first one, we
will invoke Möbius inversion over the lattice of flats of the graphic matroic
induced by the inequalities. This will allow us to construct the quantum
graph Q[H, I]. In the second step, we will then use Rota’s NBC Theorem
(Theorem 2.26) to prove that the constituents of Q[H, I] are precisely the
spasms of (H, I). We emphasize that those two steps are equal to the proofs
of Lemma 3.2 and Lemma 3.3 in case I contains every pair of different
vertices, that is, in case of the full injectivity constraint.

Starting with the first step, we consider the inequality graph I(H, I) of a
given graph with inequalities (H, I). The vertices of I(H, I) are V (H) and
the edges are I. We write M(H, I) for the graphic matroid of I(H, I) and we
write L(H, I) for the lattice of flats of M(H, I). Recall from Chapter 2.4.1
that a flat of M(H, I) is a subset of I satisfying that adding any element
i ∈ I \ ρ to ρ will decrease the number of connected components by 1.
Now observe that, given ρ ∈ I, we can define I(H, I)/ρ similar to H/ρ, as
both, I(H, I)/ρ and H have the same vertex set V (H). In particular, we
write I/ρ for the edges of I(H, I)/ρ and obtain that (H/ρ, I/ρ) is a graph
with inequalities as well. This allows us to prove correctness of the following
zeta transformation.

Lemma 4.5. Let (H, I) be a graph with inequalities and let σ be a flat
of M(H, I). Then

#Hom(H/σ → ?) =
∑
ρ≥σ

#PartInj(H/ρ, I/ρ→ ?) ,

where the sum is over flats ρ of M(H, I).

Proof. Let G be a graph. We define

Hom(H → G)[σ] := {h ∈ Hom(H → G) | ∀{u, v} ∈ σ : h(u) = h(v)} .

4.1. Partially Injective Homomorphisms 63

Observe that #Hom(H/σ → G) = #Hom(H → G)[σ]. We will now just
partition the set Hom(H → G)[σ] by the inequalities that are satisfied. To
this end, given some h ∈ Hom(H → G)[σ], we set

ρ(h) := {{u, v} ∈ I | h(u) = h(v)} (4.1)

and claim that ρ(h) is a flat of M(H, I) which is greater than, i.e., a superset
of σ. Assume for contradiction that ρ(h) is not a flat. Then there exists
{a, b} ∈ I \ ρ(h) such that ρ(h) and ρ(h)∪ {a, b} induce the same connected
components of I(H, I). Consequently, there is a path from a to b in I(H, I)
only consisting of edges in ρ(h). Inductively applying (4.1) yields h(a) = h(b)
and hence {a, b} ∈ ρ(h) which contradicts the assumption.

This allows us to define an equivalence relation on Hom(H → G)[σ] by
setting h ∼ ĥ if ρ(h) = ρ(ĥ). In particular, the equivalence classes are
uniquely identified by flats greater or equal to σ. Furthermore, the elements
of a class JρK for ρ ≥ σ are precisely those homomorphisms h ∈ Hom(H → G)
satisfying

∀{u, v} ∈ I : h(u) = h(v)⇔ {u, v} ∈ ρ ,

and consequently

#JρK = #PartInj(H/ρ, I/ρ→ G) .

It follows that

#Hom(H/σ → G) = #Hom(H → G)[σ] =
∑
ρ≥σ

#JρK

=
∑
ρ≥σ

#PartInj(H/ρ, I/ρ→ G) ,

which concludes the proof. �

We are now ready to define the quantum graph for Theorem 4.1. To this
end, let (H, I) be a graph with inequalities and let L = L(H, I). We set

Q[H, I] :=
∑

F∈Spasm(H,I)

λF · F ,

where
λF :=

∑
ρ∈L

F'H/ρ

µL(∅, ρ) . (4.2)

Corollary 4.6. #Hom(Q[H, I]→ ?) = #PartInj(H, I → ?).

Proof. Invoking Möbius inversion (Theorem 2.25) on the zeta transformation
given by Lemma 4.5 yields

#PartInj(H, I → ?) =
∑
ρ≥∅

µL(∅, ρ) ·#Hom(H/ρ→ ?) .

64 Chapter 4: Constrained Homomorphisms

(H, I)

10 11 12 13

1 2 3

4 5 6
7

8 9

14 15 16 17

I(H, I) F ∈ Spasm(H, I)

Figure 4.2: Illustration of Lemma 4.7. Despite the fact that there is more than
one flat ρ in M(H, I) for which H/ρ ' F , the lemma guarantees that λF 6= 0.
Examples are given by ρ1 := {{11, 12}, {1, 4}, {3, 6}, {6, 7}, {7, 3}, {8, 15}, {9, 16}},
as well as ρ2 := {{9, 16}, {15, 16}, {8, 15}, {1, 2}, {1, 4}, {2, 4}, {2, 5}, {4, 5}}. Now
both, ρ1 and ρ2 have rank 6, which equals |V (H)| − |V (F)| = 17 − 11. Hence
sign(λF) = 1. In particular, the number of vertices of F ' H/ρ1 ' Hρ2 equals the
number of connected components induced by ρ1 and ρ2 in the inequality graph.

The claim then follows by deleting terms for which H/ρ contains a self-loop
and collecting for isomorphic graphs afterwards. In particular, there exists
a flat ρ for every spasm F such that F ' H/ρ: Recall that spasms of (H, I)
are defined in such a way that they are isomorphic to H/ρ̂ for some subset ρ̂
of I that is not necessarily a flat. However, we can take the closure ρ := cl(ρ̂)
of ρ̂ (see Chapter 2.4.1), that is, we add elements of I to ρ̂ as long as the
induced connected components in I(H, I) do not change. We conclude by
the fact that the closure ρ = cl(ρ̂) is a flat by definition and H/ρ = H/ρ̂. �

The following lemma is the main structural insight of this section. We
show that all spasms of (H, I) are constituents of Q[H, I]. Note that this is
far from obvious as there might be many flats ρ for which H/ρ is isomorphic
to the same spasm F . Hence λF is the sum of different values of the Möbius
function that might, a priori, differ in sign and cancel out to zero. In fact,
we rely on a corollary (Theorem 2.26) of a deep result of Rota, known as
the NBC Theorem [118], to prove that such cancellations are impossible.

Lemma 4.7. Let F be a spasm of (H, I) and let λF be as in (4.2). Then

sign(λF) = (−1)|V (H)|−|V (F)| .

We provide an illustration of the above lemma in Figure 4.2. Recall from
Chapter 2.4.1 that the rank of a subset of edgesX of a graphic matroidM(G)
is precisely |V (G)| − comp(G[X]), where comp denotes the number of con-
nected components.

Proof. Let L = L(H, I) and let ρ ∈ L be a flat such that F is isomorphic
to H/ρ. It suffices to prove that

sign(µL(∅, ρ)) = (−1)|V (H)|−|V (F)| .

4.1. Partially Injective Homomorphisms 65

First, we observe that |V (H/ρ)| = |V (F)| as otherwise H/ρ and F would
not be isomorphic. Now recall that the graph H/ρ is obtained from H by
identifying every pair of vertices u and v for which {u, v} ∈ ρ. Consequently,
the number of connected components of the induced subgraph of I(H, I)
with edges ρ is equal to |V (H/ρ)|. As furthermore I(H, I) is by definition
the underlying graph of the graphic matroid M(H, I), we have that

rk(ρ) = |V (I(H, I))| − |V (H/ρ)| = |V (H)| − |V (F)| .

Now we can invoke the corollary of Rota’s NBC Theorem (Theorem 2.26)
and obtain that

sign(µL(∅, ρ)) = (−1)rk(ρ) = (−1)|V (H)|−|V (F)| . �

Proof (of Theorem 4.1). Let Q[H, I] be as in (4.2). The claim follows then
by Corollary 4.6 and Lemma 4.7. �

One might wonder, whether the tractable cases in Theorem 4.1 are not
only fixed-parameter tractable, but also polynomial-time solvable. We have
seen that this is the case if we count homomorphisms without inequalities
(Theorem 2.34) or homomorphisms with all inequalities, that is, subgraph
embeddings (Remark 3.6). However, we will show that for partial injec-
tivity constraints, there are fixed-parameter tractable cases that are not
polynomial-time solvable unless P = NP. We will encounter an example
for this phenomenon in the subsequent section, in which we consider the
problem of counting locally injective homomorphisms.

4.1.1 Locally Injective Homomorphisms

A homomorphism h from H to G is locally injective if for every v ∈ V (H)
it holds that h|N(v) is injective. We denote Li-Hom(H → G) as the set of all
locally injective homomorphisms from H to G and given a class of graphs H,
we define #Li-Hom(H) as the problem of, given graphs H ∈ H and G,
computing #Li-Hom(H → G); the parameter is |V (H)|. Locally injective
homomorphisms have been studied by Nešetřil [104] and were applied in the
context of distance constrained labelings of graphs (see [62] for an overview).

It is immediate to express local injectivity as partial injectivity.

Fact 4.8. Let H be a graph and I := {{u, v} | ∃w ∈ V (H) : u, v ∈ N(w)}.
Then the following holds true for every graph G:

Li-Hom(H → G) = PartInj(H, I → G) .

Consequently, Theorem 4.1 completely resolves the complexity of counting
locally injective homomorphisms. We provide an example using windmill
graphs. To this end, given n ∈ N, we define Wn as the graph obtained from
the matching Mn of size n by adding a new vertex a and connecting it to
all vertices of the matching.

66 Chapter 4: Constrained Homomorphisms

a a

Figure 4.3: Illustration of the windmill graph W6 and a spasm of (W6, I) that
contains the clique of size 4 as a minor: The dotted lines in the right picture
constitute a flat of the inequality graph w.r.t. I as every pair of vertices of the
matching has the common neighbor a. If the graph is contracted along this flat and
afterwards a is removed, we obtain the desired K4.

Corollary 4.9. LetW be the set of all windmill graphs Wn for n ∈ N. Then
#Li-Hom(W) is #W[1]-equivalent.

Proof. Let F be a graph with k edges and let F̂ be the graph obtained from F
by adding a new vertex a that is made adjacent to all vertices of F . We
claim that F̂ is a spasm of (Wk, I) where I is defined as in Fact 4.8. To see
this, we observe that the edges of Mk in Wk can be arranged according to F
and then be identified according to the inequalities between every pair of
vertices of the matching; consult Figure 4.3 for an illustration. Therefore F
is the minor of some spasm of (Wk, I) and consequently, the set of spasms
of (Wk, I) for all k ∈ N contains all graphs as minors and is therefore of
unbounded treewidth. The corollary follows hence by Theorem 4.1. �

On the other hand, we obtain the following tractability result.

Corollary 4.10. Let T be the set of all trees. Then #Li-Hom(T) is fixed-
parameter tractable.

Proof. Let T be a tree and let I as in Fact 4.8. Then every spasm of (T, I)
is a tree as well and has hence treewidth 1. Fixed-parameter tractability
follows by Theorem 4.1. �

However, #Li-Hom(T) is an example for an instance of counting locally
injective homomorphisms that is most likely not solvable in polynomial time.

Lemma 4.11. #Li-Hom(T) is #P-hard.

The class #P is the classical counting analogue of NP. A formal definition,
including a rough introduction to classical counting, as well as the proof of
the above lemma can be found in Appendix A. Roughly speaking, the idea
is to reduce from subgraph isomorphism on trees, which is shown to be hard
in Appendix A as well.

4.1. Partially Injective Homomorphisms 67

4.1.2 Quantum Graphs with Inequalities

We will now go one step further and consider linear combinations of par-
tially injective homomorphisms. In particular, this allows for generalizing
subgraph counting in the sense, that we do not only wish to count subgraphs
isomorphic to a single graph H, but rather to count subgraphs that are iso-
morphic to some graph in a given set of graphs. An example for the latter
is the problem of counting acyclic subgraphs of size k. We emphasize that
the subsequent results for subgraphs have already been observed by Curt-
icapean, Dell and Marx [41]. We extend their results to partial injectivity
constraints.

It will be convenient to express the problems in this section by quantum
graphs with inequalities, which are defined to be formal linear combinations
of graphs with inequalities of finite support. We write

I =
∑
(H,I)

λ(H,I) · (H, I) ,

where the sum is over all (isomorphism types of) graphs and inequality con-
straints. In particular, I might contain the constituents (H, I) and (H, I ′)
for I 6= I ′. Now counting partially injective homomorphisms extends to I
linearly.

#PartInj(I → ?) :=
∑
(H,I)

λ(H,I) ·#PartInj(H, I → ?) .

If all constituents (H, I) of I satisfy that I is the full injectivity con-
straint, then #PartInj(I → ?) computes a linear combination of subgraph
embeddings, given by

#PartInj(I → ?) =
∑
H

λH ·#Emb(H → ?) .

where the sum is over all graphs and λH = λ(H,I) if (H, I) is a constituent
of I and λH = 0 otherwise.

We point out that #PartInj(I → ?) does not allow for complexity mono-
tonicity in general, even if there are no negative coefficients. To see this,
recall that counting homomorphisms is the zeta transformation of counting
subgraphs (see Equation 2.2). In particular, we have that

#Hom(Mk → ?) =
∑
ρ

#Emb(Mk/ρ→ ?) ,

where the sum is over the partition lattice of V (Mk). Consequently,
assuming that k =

(
r
2

)
, this constitutes a linear combination of subgraph

embeddings, such that the r-clique is contained with a non-zero coefficient.

68 Chapter 4: Constrained Homomorphisms

However, as matchings have treewidth 1, #Hom(Mk → ?) can be computed
in time poly(k) · nO(1) by Theorem 2.35, whereas cliques of size r cannot be
counted in time

poly(r) · nO(1) = poly(k) · nO(1) ,

unless ETH fails (Theorem 2.18).
Now observe that quantum graphs with inequalities yield linear combi-

nations of partially injective homomorphisms and the latter are again linear
combinations of homomorphisms. Consequently, it is possible to express
the number of partially injective homomorphisms from a quantum graph
with inequalities as the number of homomorphisms from a quantum graph
without inequalities; recall the definition of Q[H, I] in (4.2):

#PartInj(I → ?) (4.3)

=
∑
(H,I)

λ(H,I) ·#PartInj(H, I → ?) (4.4)

=
∑
(H,I)

λ(H,I) ·#Hom(Q[H, I]→ ?) (4.5)

=
∑
(H,I)

λ(H,I) ·
∑

F∈Spasm(H,I)

 ∑
ρ∈L(H,I)
F'H/ρ

µL(H,I)(∅, ρ)

#Hom(F → ?) , (4.6)

where (4.4) is the definition of #PartInj(I → ?), (4.5) is Corollary 4.6
and (4.6) is the definition of Q[H, I]. This induces the following quantum
graph Q[I] (without inequalities) given by

Q[I] :=
∑
F

νF · F ,

where

νF :=
∑
(H,I)

F∈Spasm(H,I)

λ(H,I)

 ∑
ρ∈L(H,I)
F'H/ρ

µL(H,I)(∅, ρ)

 .

We will now provide a criterion that, if satisfied, allows us to give the
support of Q[I] explicitly.

Theorem 4.12. Let I be a quantum graph with inequalities. Then

#PartInj(I → ?) = #Hom(Q[I]→ ?) .

If, additionally, no coefficient of I is negative and every pair (H, I), (H ′, I ′)
of constituents of I satisfies |V (H)| = |V (H ′)|, then

supp(Q[I]) =
⋃

(H,I)∈supp(I)

Spasm(H, I) .

4.1. Partially Injective Homomorphisms 69

Proof. #PartInj(I → ?) = #Hom(Q[I] → ?) holds by (4.6) and collecting
for isomorphic terms. For the second claim, we first observe that

supp(Q[I]) ⊆
⋃

(H,I)∈supp(I)

Spasm(H, I)

by the definition of the coefficients νF . Now let F ∈ Spasm(H, I) for some
constituent (H, I) of I and let k = |V (H)|. Then we have that

sign

 ∑
ρ∈L(H,I)
F'H/ρ

µL(H,I)(∅, ρ)

 = (−1)k−|V (F)|

by Lemma 4.7. Consequently

sign

λ(H,I)

∑
ρ∈L(H,I)
F'H/ρ

µL(H,I)(∅, ρ)

 = (−1)k−|V (F)|

as λ(H,I) ≥ 0 by assumption and λ(H,I) 6= 0 since (H, I) is a constituent of I.

It follows that sign(νF) = (−1)k−|V (F)| as well and hence νF 6= 0. �

Note that it was crucial in the above proof that all graphs H for which (H, I)
is a constituent of I have the same number of vertices. If this is not the
case, then we cannot guarantee that the terms

sign

λ(H,I)

∑
ρ∈L(H,I)
F'H/ρ

µL(H,I)(∅, ρ)

 = (−1)|V (H)−|V (F)|

are equal for different constituents and hence there might be cancellations.
Going back to the example of computing #Hom(Mk → ?), we observe that
the expression as a linear combination of subgraph embeddings does indeed
contain constituents with different numbers of vertices.

We furthermore point out that the proof of Theorem 4.12 actually shows
the following, more general statement.

Remark 4.13. The second claim of Theorem 4.12 holds true even if we
only require that all non-zero coefficients have the same sign and that the
number of vertices of constituents of I have the same parity.

Now, arguably, Theorem 4.12 might seem artificial at first glance. Let
us hence provide a concrete application which shows its utility. We define

70 Chapter 4: Constrained Homomorphisms

#VertexForests as the problem of, given a graph G and a positive in-
teger k, computing the number of acyclic subgraphs with k vertices1 in G.
The problem is parameterized by k. The following hardness result follows
implicitly from [41]. We include a proof only for illustrating an application
of Theorem 4.12.

Lemma 4.14. #VertexForests is #W[1]-equivalent.

Proof. Let Fk be the set of all acyclic graphs with k vertices. Furthermore,
given some graph F , we write full(F) for the set of all possible inequalities
between vertices of H. Now the number of acyclic subgraphs of size k of a
graph G equals∑

F∈Fk

#Sub(F → G) =
∑
F∈Fk

#Aut(F)−1 ·#Emb(F → G)

=
∑
F∈Fk

#Aut(F)−1 ·#PartInj(F, full(F)→ G)

= #PartInj(I → G) ,

where
I =

∑
(F,full(F))
F∈Fk

#Aut(F)−1 · (F, full(F))

is a quantum graph with inequalities. As, by definition, all graphs in Fk
have k vertices and the terms #Aut(F)−1 are all greater than zero, we
can invoke Theorem 4.12 and obtain the quantum graph Q[I] such that∑

F∈Fk #Sub(F → G) = #Hom(Q[I]→ G) and

supp(Q[I]) =
⋃
F∈Fk

Spasm(F, full(F)) .

Now similarly to the proof of Corollary 4.2, we invoke complexity monotonic-
ity and obtain that #VertexForests is interreducible with #Hom(Q)
with respect to parameterized Turing reductions, where

Q =

{
H ∈ Spasm(F, full(F))

∣∣∣∣∣ F ∈ ⋃
k∈N
Fk

}
.

As for every k ∈ N, F2k contains the matching Mk, we conclude that Q
contains for every k all (connected) graphs with k edges and is therefore of
unbounded treewidth. The lemma hence holds by Theorem 2.34. �

Remark 4.15. The problem #Trees of counting connected acyclic sub-
graphs with k vertices can be proved #W[1]-equivalent similarly [17, 41].

1We emphasize in the name of the problem, that we are interested in subgraphs with k
vertices, not with k edges. The latter is also known to be hard, but the proof is more
involved and does not use quantum graphs [17].

4.2. Edge-Injective Homomorphisms 71

4.2 Edge-Injective Homomorphisms

Having completely classified the complexity of counting homomorphisms
with binary inequality constraints, we will now turn to a further notion
that constitutes an intermediate step between homomorphisms and sub-
graph embeddings: A homomorphism h from a graph H to a graph G is
called edge-injective if, for any distinct (but not necessarily disjoint) edges
{u, v} and {û, v̂} of H, the edges {h(u), h(v)} and {h(û), h(v̂)} of G are
distinct (but not necessarily disjoint). We write EdgeInj(H → G) for the
set of all edge-injective homomorphisms from H to G. Similarly to prior
notions of homomorphism counting problems, we will study the complexity
of counting edge-injective homomorphisms from general patterns. To this
end, let H be a class of graphs and define #EdgeInj(H) as the problem
of, given a graph H ∈ H and a graph G, computing #EdgeInj(H → G);
the parameter is |V (H)|. For example, we can set C to be the class of all
cycles. Then #EdgeInj(C) is equivalent to the problem of, given a positive
integer k and a graph G, computing the number of edge-disjoint cycles of
length k in G.

It will turn out that edge-injective homomorphisms show the limits of the
framework of quantum graphs when it comes to explicit criteria for (fixed-
parameter) tractability: While it is not hard to prove the existence of a
quantum graph QEI[H] such that

#Hom(QEI[H]→ ?) = #EdgeInj(H → ?) ,

we cannot hope to obtain an explicit representation of the support of QEI[H]
for general graphs H, at least not without a new major insight. The reason
for this is, roughly speaking, that the coefficients of the constituents of QEI

cannot be given nicely as a sum of Möbius functions over some lattice for
which Rota’s NBC Theorem is applicable (see Theorem 2.26). Recall that in
case of partially injective homomorphisms, we were able to use the matroid
induced by the inequalities for the application of the NBC Theorem, which
allowed us to prove that no cancellations occur when collecting for the co-
efficients of terms in the quantum graph. However, edge-injectivity cannot
be expressed by binary inequality constraints, which seems to be the reason
why a similar attempt fails.

On the positive side, the existence of QEI[H] yields at least the following
implicit criterion.

Theorem 4.16. Let H be a recursively enumerable class of graphs. Then
#EdgeInj(H) is either fixed-parameter tractable or #W[1]-equivalent.

Furthermore, we will be able to provide an explicit criterion for the
case of hereditary classes of graphs. Here we say that H is hereditary if it
is closed under taking induced subgraphs, that is, whenever a graph H is

72 Chapter 4: Constrained Homomorphisms

contained in H and Ĥ is an induced subgraph of H, then Ĥ ∈ H as well.
For the statement of the explicit criterion, we recall that a vertex cover of a
graph H is a set of vertices S ⊆ V (H) such that every edge of H is incident
to at least one vertex in S. Now, given a graph H, we define the weak vertex
cover number of H to be the minimum size of a vertex cover of the graph
obtained from H by deleting isolated edges. Moreover, we say that a class of
graphs H has bounded weak vertex cover number if there exists a constant d
such that the weak vertex cover number of every graph H ∈ H is at most d.

Theorem 4.17. Let H be a recursively enumerable class of graphs. If the
weak vertex cover number of H is bounded, then #EdgeInj(H) is fixed-
parameter tractable. Otherwise, if additionally the class H is hereditary,
then #EdgeInj(H) is #W[1]-equivalent.

As Theorem 4.17 leaves open an explicit criterion for non-hereditary
classes H we will prove a separate hardness result for the particular non-
hereditary classes of paths and cycles.

Theorem 4.18. #EdgeInj(H) is #W[1]-equivalent if H is the class of all
cycles or the class of all paths.

The proofs of Theorem 4.16 are self-contained and can be found in Chap-
ter 4.2.1 and Chapter 4.2.3, respectively. For the proof of Theorem 4.17,
which constitutes the majority of this chapter, we will rely on a #W[1]-
hardness result of counting k-matchings in bipartite graphs of high girth
due to Curticapean [39, 42] as well as on a Ramsey argument for graphs of
unbounded vertex cover number due to Curticapean and Marx [43]. The
proof can be found in Chapter 4.2.2.

4.2.1 An Implicit Exhaustive Classification

We start by expressing edge-injective homomorphisms as a linear combi-
nation of subgraph embeddings. To this end, given a graph H, we call a
partition ρ of V (H) edge-injective if for every set S ∈ ρ, there is no edge
between two vertices in S and, for every pair of sets S, S′ ∈ ρ, there is at
most one edge between S and S′ in H. We write EI-Part(H) for the set of
all edge-injective partitions of V (H).

Lemma 4.19. Let H and G be graphs. We have that

#EdgeInj(H → ?) =
∑

ρ∈EI-Part(H)

#Emb(H/ρ→ ?) .

Proof. There exists a bijection between edge-injective homomorphisms h
from H to G and pairs (ρ, g) where ρ ∈ EI-Part(H) and g is an injective
homomorphism from H/ρ to G. To define (ρ, g) from h, put vertices of H

4.2. Edge-Injective Homomorphisms 73

into the same set S of ρ if and only if they map to the same vertex v ∈ V (G)
under h; then g maps that set S, which is a vertex in H/ρ, to v. Conversely,
if (ρ, g) is a given pair, the canonical homomorphism f that maps H to H/ρ
is edge-injective, and we set h = f ◦ g. It is easy to check that this is indeed
the required bijection. �

Now let QEI[H] :=
∑

F λF · F be the quantum graph defined by

λF :=
∑

ρ∈EI-Part(H)

∑
σ∈L(H/ρ)
F'H/ρ/σ

µL(H/ρ)(⊥, σ) , (4.7)

where H/ρ/σ := (H/ρ)/σ, L(H/ρ) is the partition lattice of V (H/ρ) and ⊥
is the discrete partition.

Lemma 4.20. #EdgeInj(H → ?) = #Hom(QEI[H]→ ?).

Proof. We have that

#EdgeInj(H → ?)

=
∑

ρ∈EI-Part(H)

#Emb(H/ρ→ ?)

=
∑

ρ∈EI-Part(H)

∑
σ∈L(H/ρ)

µL(H/ρ)(⊥, σ) ·#Hom(H/ρ/σ → ?) ,

where the first equality is Lemma 4.19 and the second equality holds by
Möbius inversion over L(H/ρ) (see Equation (2.4)). Consequently, the
lemma follows by collecting for isomorphic H/ρ/σ and deleting those with
self-loops — recall again that #Hom(F → G) is zero whenever F contains
a self-loop, as input graphs G are not permitted to have self-loops. �

Proof (of Theorem 4.16). By Lemma 4.20 and the complexity monotonicity
property (Theorem 3.13), the problems #EdgeInj(H) and #Hom(Q[H])
are interreducible w.r.t. parameterized Turing reductions, where

Q[H] =
⋃
H∈H

supp(QEI[H]) .

In particular, Q[H] is recursively enumerable as H is. By Theorem 2.34
#Hom(Q[H]) is either polynomial-time solvable (and hence fixed-parameter
tractable) or #W[1]-equivalent. �

We remark that we do not obtain a polynomial-time algorithm for all fixed-
parameter tractable cases, as the reduction H 7→ QEI[H] might, a priori, take
time f(|V (H)|) for some function f which is not a polynomial. However, it
can be shown that polynomial-time tractability is possible if H has bounded
weak vertex cover number.

Theorem 4.21 ([42]). Let H be a class of graphs with bounded weak vertex
cover number. Then #EdgeInj(H) is solvable in polynomial time.

74 Chapter 4: Constrained Homomorphisms

4.2.2 Hereditary Graph Classes

While the proof of Theorem 4.21 relies on an involved dynamic programming
algorithm that uses quantum graphs only implicitly, we will provide a short
proof of the following weaker version for the sake of completeness.

Lemma 4.22. Let H be a class of graphs with bounded weak vertex cover
number. Then #EdgeInj(H) is fixed-parameter tractable.

Proof. Let d be the bound on the weak vertex cover number of H and let
H ∈ H and G be the input of #EdgeInj(H). We start with the following
preprocessing.

Claim 4.23.

• If v is an isolated vertex in H and H−v is obtained by deleting v from H,
then

#EdgeInj(H → G) = |V (G)| ·#EdgeInj(H − v → G) .

• If e = {u, v} is an isolated edge in H, then

#EdgeInj(H → G) = 2 (|E(G)| − |E(H)|+ 1) ·#EdgeInj(H−u− v → G) .

Proof. The first item is trivial. To prove the second item, first note that
every edge-injective homomorphism h from H−e to G has exactly |E(H)|−1
edges of G in its image. To extend h to an edge-injective homomorphism
from H to G, we have to map e to an edge that is distinct (but not necessarily
disjoint) from the edges in the image of h. There are |E(G)| − |E(H)| + 1
candidates for the image of e, and once an image e′ of e has been determined,
we can independently choose one of the two orientations to map u and v to
the endpoints of e′. Since every edge-injective homomorphism from H to G
is obtained in this way exactly once, the claim follows. �

It follows that we can assume H to contain neither isolated vertices, nor
isolated edges. In particular, the vertex cover number of H is bounded by d.
By Lemma 4.20, we can obtain the number #EdgeInj(H → G) by computing
#Hom(QEI[H]→ G). Now all constituents of QEI[H] are of the form H/ρ/σ
for some ρ ∈ EI-Part(H) and σ ∈ L(H/ρ). Consequently, the vertex cover
number of all constituents is also bounded by d, as it cannot increase by tak-
ing a quotient graph. As hence the treewidth of all constituents is bounded
by d as well, we can perform treewidth-based dynamic programming (see
Chapter 2.5) to compute #Hom(H/ρ/σ → G) in time

poly(|V (H)|) · |V (G)|d+O(1) .

Finally, we compute the linear combination induced by (4.7) and obtain an
overall running time of

f(|V (H)|) · |V (G)|d+O(1) = f(|V (H)|) · |V (G)|O(1) ,

for some computable function f . �

4.2. Edge-Injective Homomorphisms 75

K6 K3,3 W3 4 ·K3 S55 · P2

Figure 4.4: Example graphs from each of the six minimal graph classes that do
not have bounded weak vertex-cover number according to Lemma 4.24.

The remainder of this section is devoted to prove that, in caseH is hereditary
and of unbounded weak vertex cover number, the problem #EdgeInj(H) is
#W[1]-hard. To this end, we first show that every graph class of unbounded
weak vertex cover number contains one of the six basic graph classes depicted
in Figure 4.4 as induced subgraphs.

Recall that a graph is a windmill Wk of size k if it is a matching of size k
with an additional center vertex adjacent to every other vertex. Moreover,
the subdivided star Sk is a k-matching with a center vertex that is adjacent
to exactly one vertex of each edge in the matching. A triangle packing k ·K3

is the disjoint union of k triangles, a wedge is a path P2 that consists of two
edges, and a wedge packing k · P2 is the disjoint union of k wedges.

In what follows, we say that a classH contains another class C as induced
subgraphs if, for every C ∈ C, there is some H ∈ H such that H contains C
as induced subgraph.

Lemma 4.24. If H is a class of graphs with unbounded weak vertex-cover
number, then H contains at least one of the following classes as induced
subgraphs:

(1) the class of all cliques,

(2) the class of all bicliques,

(3) the class of all subdivided stars,

(4) the class of all windmills,

(5) the class of all triangle packings, or

(6) the class of all wedge packings.

Proof. Let H be a graph class of unbounded weak vertex-cover number,
and let C ∈ N be a constant such that all cliques, bicliques, subdivided
stars, windmills, and triangle packings that occur as induced subgraphs
in H have size at most C. To prove the lemma, we argue that H contains in-
duced P2-packings of unbounded size. To simplify the argument, we assume
without loss of generality that H is closed under taking induced subgraphs.

76 Chapter 4: Constrained Homomorphisms

Let H′ ⊆ H be the class of all graphs H ∈ H that do not contain isolated
edges. Since H has unbounded weak vertex-cover number, the vertex-cover
number of H′ is unbounded. Curticapean and Marx [43, Lemma 5.2] prove
that, in this situation,H′ contains arbitrarily large cliques, induced bicliques,
or induced matchings. By our assumption, the size of every clique and bi-
clique is at most C. Thus for every k, there is a graph Hk ∈ H′ such that Hk

contains a k-matching Mk ⊆ E(Hk) as an induced subgraph.
For every k and every e ∈ Mk, we choose an arbitrary vertex ve in

V (Hk) \ V (Mk) that is adjacent in Hk to one or both endpoints of e. These
vertices exist since e is not an isolated edge in Hk and Mk is an induced
matching in Hk. Let Nk = {ve | e ∈ Mk} and note that ve and ve′ may
coincide for distinct e, e′ ∈ Mk. Let Av ⊆ Mk be the set of all e ∈ Mk such
that exactly one endpoint of e is adjacent to v, and let Bv ⊆Mk be the set
of all e ∈ Mk that have both their endpoints adjacent to v. If Av 6= ∅, the
graph Hk[V (Av)∪{v}] is an induced subdivided star of size |Av|. Similarly,
if Bv 6= ∅, the graph Hk[V (Bv) ∪ {v}] is an induced windmill of size |Bv|.
By our assumption on H, the sets Av and Bv have size at most C for all
v ∈ Nk and all k.

Before we argue that arbitrarily large P2-packings exist as induced sub-
graphs, we apply Ramsey’s theorem to obtain more structure. Since

Mk =
⋃
v∈Nk

(Av ∪Bv) ,

the set Nk has size at least k/(2C). Thus the graph class {Hk[Nk] | k ∈ N}
is infinite, and since we assumed that every clique in H has bounded size,
Ramsey’s theorem guarantees the existence of independent sets Ik ⊆ Nk

whose sizes are unbounded as k grows.
Finally, we construct a large induced packing of triangles and paths

of length 2 using the following greedy procedure: For each v ∈ Ik with
Bv 6= ∅, we select an arbitrary edge e ∈ Bv to contribute one triangle
with v, and we remove Av ∪ Bv from Mk. Similarly, each v ∈ Ik with
Bv = ∅ and Av 6= ∅ contributes one copy of P2 and we delete Av ∪ Bv
from Mk. By definition of Av and Bv, the vertex v is not adjacent to any
edge in Mk \ (Av∪Bv); moreover, it is not adjacent to any vertex in Ik \{v}.
Hence the constructed disjoint union of triangles and paths of length 2 is
indeed an induced subgraph of Hk. Since all sets Av and Bv are of size
at most C, the number of components we constructed is at least |Ik|/(2C),
which is unbounded as k grows. By our assumption on H, at most C of the
components are triangles, and at least |Ik|/(2C)−C components are copies
of P2. We conclude that H contains arbitrarily large induced P2-packings.�

As hereditary classesH are closed under induced subgraphs, Lemma 4.24
guarantees that any hereditary class H with unbounded weak vertex cover
number contains at least one of the six graph families defined above as an
actual subset of H. We need to prove hardness for each of these six families.

4.2. Edge-Injective Homomorphisms 77

Let us start with the following five:

Lemma 4.25. If H is the class of all cliques, the class of all bicliques, the
class of all subdivided stars, the class of all windmills, or the class of all
triangle packings, then #EdgeInj(H) is #W[1]-hard.

As we show in the following, every edge-injective homomorphism from
a clique, a biclique, or a windmill into a graph is, in fact, an embedding.
For these three graph families, counting edge-injective homomorphisms is
thus equivalent to the corresponding subgraph counting problem. Since the
families have unbounded vertex-cover number, Theorem 3.15 implies that
the subgraph counting problem for these three graph families is #W[1]-hard.

Lemma 4.26. Let G be a graph and let H be a clique, biclique, or windmill.
Then every edge-injective homomorphism h from H to G is an embedding.

Proof. Let h be an edge-injective homomorphism from H to G. For two
distinct vertices x and y of H, we have h(x) 6= h(y) if x and y are joined by
an edge of H or if they have a common neighbor z in H. If H is a clique,
then all x, y ∈ V (H) with x 6= y are adjacent in H. If H is a biclique or a
windmill, then any two distinct vertices x and y are either adjacent or have
a common neighbor. In either case, h is an embedding. �

Proposition 4.27. The problem #EdgeInj(H) is #W[1]-hard if H is the
class of all cliques, the class of all bicliques, or the class of all windmills.

Proof. By Lemma 4.26, the problems #EdgeInj(H) and #Emb(H) are
equivalent. Thus, since H has unbounded vertex-cover number, the problem
is #W[1]-hard by Theorem 3.15. �

For the class of triangle packings, we devise a straightforward reduction
from the problem of counting k-matchings in bipartite graphs, which was
shown to be #W[1]-hard by Curticapean and Marx [43]. Recall that a
graph G is bipartite if its vertices can be partitioned in two disjoint sets U
and V such that every edge of G has one endpoint in U and one endpoint
in V . We write G = (U ∪ V,E). Essentially, we will add an additional
vertex that is adjacent to all other vertices, and since the original graph was
bipartite, every triangle of the triangle packing must use the new vertex.

Proposition 4.28. The problem #EdgeInj(H) is #W[1]-hard if H is the
class of all triangle packings.

Proof. We reduce from the problem of counting k-matchings in a bipartite
graph. Given a bipartite graph G = (U∪V,E) and a number k, we construct
a graph G′ from G by adding a single apex a, that is, a new vertex a and
the edges {a, v} for all v ∈ U ∪ V . Since G is bipartite, every triangle in G′

78 Chapter 4: Constrained Homomorphisms

consists of a and some vertices u ∈ U and v ∈ V . Such a triangle is denoted
by av,u. We query the oracle for the instance (H,G′), where H is the graph
k · K3. In either case, the edges of H partition into k triangles; let us fix
this partition and an arbitrary order on the triangles.

Since G′ is a graph without self-loops, the homomorphic image of a
triangle is a triangle, and exactly one vertex of each of the k triangles is
mapped to a. Let h be an edge-injective homomorphism from k ·K3 to G′.
Let the image of the i-th triangle be {a, ui, vi}. Since h is edge-injective and
a is an apex, all ui and vi are mutually distinct. Moreover, the edges {ui, vi}
form a matching Mh of size k in G.

Finally, we claim that the number mk of k-matchings of G can be derived
from the number of edge-injective homomorphisms. The homomorphism h
can first arbitrarily choose one vertex of each triangle to be mapped to a,
which gives it 3k choices. For the remaining matching of size k, the homo-
morphism h must map it to a matching in G by edge-injectivity. Thus it
can choose one of the 2k · k! automorphisms of the k-matching. Overall, we
get 6k · k! edge-injective homomorphisms h with Mh = M . Thus we have
that the number of k-matchings in G equals

#EdgeInj(k ·K3 → G′)

6k · k!
.

The reduction takes polynomial time, increases the parameter from k to
|V (H)| = O(k), and requires only one query to the oracle. �

For the next reduction, we rely on the following #W[1]-hardness result.

Theorem 4.29 ([39, 42]). The problem of counting matchings of size k in
bipartite graphs is #W[1]-hard when parameterized by k, even if restricted
to bipartite graphs whose right-side vertices have degree at most two and any
two distinct left-side vertices have at most one common neighbor.

Proposition 4.30. The problem #EdgeInj(H) is #W[1]-hard if H is the
class of all subdivided stars.

Proof. We reduce from the problem of counting k-matchings in restricted
bipartite graphs as defined above. Let (G, k) be an instance of this prob-
lem, and let L(G) and R(G) be the left and right vertex sets, respectively.
Starting from G, we construct a new graph G′ (see Figure 4.5):

1. Insert a vertex 0 that is adjacent to all vertices of L(G).

2. For every vertex v ∈ R(G) with deg(v) = 2, remove v from the graph
and add the set N(v) as an edge to G′.

3. Add two special vertices 1 and 2, as well as the edges {0, 1} and {1, 2}.

4.2. Edge-Injective Homomorphisms 79

⇒

G G′

0
1

2

Figure 4.5: The construction of G′ in the proof of Proposition 4.30, including
the image of a homomorphism from the subdivided star S4 such that vertex 2 is
contained in the image: One ray of the subdivided star is mapped to the edges
{0, 1}, {1, 2} and functions as an anchor. The other three rays (dashed, dotted, and
dash-dotted) correspond to a 3-matching in G.

Since G is has neither multi-edges nor self-loops and any two distinct vertices
u, v ∈ L(G) have at most one common neighbor in G, the graph G′ is also
without multi-edges and self-loops.

Let mk be the number of k-matchings in G, let H be the subdivided star
of size k + 1, and let s(G) = #EdgeInj(H → G). We claim that

(k + 1)! ·mk = s(G′)− s(G′ − {2}).

Clearly s(G′) − s(G′ − {2}) is exactly the number of edge-injective homo-
morphisms h from H to G′ such that 2 is in the image of h. The claim
is that there is a correspondence between such homomorphisms and the
k-matchings in G.
Let h be an edge-injective homomorphism with 2 = h(z) for some z ∈ V (H).
Then z must be a degree-1 vertex in H since 2 has exactly one neighbor
in G′ and H does not contain isolated vertices. Let y be the neighbor of z
and let x be the center vertex of the subdivided star. Then h(y) = 1 and
h(x) = 0 holds. Next, let y1, . . . , yk be the other degree-2 vertices of H,
and let z1, . . . , zk be the corresponding degree-1 vertices. Since h is an edge-
injective homomorphism, the vertices ai := h(yi) are mutually distinct and
satisfy ai ∈ L(G).

Note that h(zi) 6∈ {0, 1, 2}. Now let Mh = {{a1b1}, . . . , {akbk}} be the
matching defined as follows. If h(zi) ∈ R(G), then it is a degree-1 ver-
tex of R(G), and we set bi = h(zi). Otherwise, h(zi) ∈ L(G) and the
edge h({yi, zi}) exists in G′; we let bi be the unique vertex satisfying that
NG(bi) = {ai, h(zi)} and that caused this edge to be added to G′ in the con-
struction. The bi are mutually distinct due to the edge-injectivity. Hence Mh

is indeed a matching.
For every k-matching M of G, there are (k + 1)! distinct edge-injective

homomorphisms h with M = Mh since h can choose an arbitrary order for
the k + 1 rays of the subdivided star. This proves the claim. Overall, the
reduction runs in polynomial time and queries the oracle exactly two times
with parameter |V (H)| = O(k). �

80 Chapter 4: Constrained Homomorphisms

Proof (of Lemma 4.25). Follows by Propositions 4.27, 4.28 and 4.30. �

The reader might wonder, why we did not consider the class of wedge
packings so far. The reason for this is, that our #W[1]-hardness proof of
counting edge-injective homomorphisms from wedge packings requires sig-
nificantly more work than the previous five cases combined. Let us start
with the formal statement.

Lemma 4.31. The problem #EdgeInj(H) is #W[1]-hard if H is the set of
all wedge packings.

Let us emphasize the following consequence of this lemma before going
into the details of the proof. Recall that the line graph L(G) of a graph G
has as vertices the edges of G and two different vertices are made adjacent
if the corresponding edges share a common vertex in G.

Corollary 4.32. The problem of counting matchings of size k in line graphs
is #W[1]-hard when parameterized by k.

Proof. The images of edge-injective homomorphisms from the wedge packing
k · P2 to a graph G are precisely the k-matchings in L(G). Consequently

#Sub(Mk → L(G)) = #Aut(k · P2)−1 ·#EdgeInj(k · P2 → G) .

As L(G) can be computed from G in polynomial time, the above equation
yields a parameterized Turing reduction from counting edge-injective homo-
morphisms from wedge packings of size k to counting k-matchings in line
graphs. The claim follows as the former is #W[1]-hard by Lemma 4.31. �

Lemma 4.31 relies on the following delicate interpolation argument. We
wish to point out that the proof is due to Johannes Schmitt and we are
very grateful to Johannes for allowing us to include it for reasons of self-
containment. In what follows, given t ∈ N, we let (x)t denote the falling
factorial, where

(x)t = (x) · (x− 1) · · · (x− t+ 1) .

Lemma 4.33. For all g, b ∈ N, let ag,b ∈ Q be unknowns, and for all r ∈ N,
let Pr(y) be the univariate polynomial such that

Pr(y) =
r∑

k=0

k∑
t=0

at,k−t ·
(
r

k

)
· (y − t)2(r−k) .

There is a polynomial-time algorithm that, given a number k and the coef-
ficients of Pr(y) for all r ∈ N with r ≤ O(k),2 computes the numbers at,k−t
for all t ∈ {0, . . . , k}.

2That is, r is bounded by dk for some overall constant d.

4.2. Edge-Injective Homomorphisms 81

Proof. Let t ∈ {0, . . . , k}. For all k, i ∈ N, let Ik,i be defined as

Ik,i =

k∑
t=0

at,k−t · ti .

As an intermediate step, we construct a polynomial-time algorithm that
allows us, given the coefficients of Pr(y) and a numberm ∈ N, to compute Ik,i
for all k, i ∈ N with 2k + i ≤ m.

If m = 0, then I0,0 is the only number we need to compute. We obtain it
by observing that P0(y) = I0,0 = a0,0. Now suppose that m > 0 and that we
inductively already computed the values Ik,i for all k, i ∈ N with 2k+ i ≤ m.
We will compute the values Ik,i with 2k + i = m+ 1.

Let r be an integer that satisfies 2r − (m+ 1) ≥ 0. Furthermore, let Cr

denote the coefficient of y2r−(m+1) in Pr(y), which is given as input. We
want to describe Cr as an expression in terms of the unknowns ag,b. To this
end, we investigate which of the summands

at,k−t ·
(
r

k

)
· (y − t)2(r−k)

contribute to Cr.

Claim 4.34. If k > bm+1
2 c then 2(r − k) < 2r − (m+ 1).

Proof. We have 2(r− k) = 2r− 2k < 2r− 2bm+1
2 c. If m+ 1 is even, we get

2(r − k) < 2r − (m + 1) as claimed. Otherwise m + 1 is odd, and we only
get 2(r − k) < 2r −m. However, since m and 2(r − k) are both even, we
actually get 2(r − k) < 2r − (m+ 1) as claimed. �

It follows that the summands with k > bm+1
2 c do not contribute to Cr.

Let us view (y−t)2(r−k) as a bivariate polynomial in y and t for a moment.
Then, by expanding this polynomial in powers of y, there exist univariate
polynomials σi(t) for all i ∈ N with i ≤ 2(r − k) such that

(y − t)2(r−k) =

2(r−k)∑
i=0

σi(t) · y2(r−k)−i .

Using bivariate interpolation (Theorem 2.28), we can easily compute all
coefficients of σi(t) for all i ≤ 2(r − k). Note that the coefficient of tm+1−2k

in σm+1−2k is

(−1)m+1 ·
(

2(r − k)

m+ 1− 2k

)
.

82 Chapter 4: Constrained Homomorphisms

Let c0, . . . , cm+1−2k−1 be the remaining coefficients. Since only terms that
satisfy k ≤ b(m+ 1)/2c contribute to Cr, we obtain that Cr equals

bm+1
2
c∑

k=0

k∑
t=0

at,k−t

(r
k

)
σm+1−2k(t)

=

bm+1
2
c∑

k=0

k∑
t=0

at,k−t

(r
k

)(−1)m+1
(2(r − k)

m+ 1− 2k

)
tm+1−2k +

m+1−2k−1∑
j=0

cjt
j


=

bm+1
2
c∑

k=0

[
(−1)m+1

k∑
t=0

at,k−t

(r
k

)(2(r − k)

m+ 1− 2k

)
tm+1−2k +

k∑
t=0

at,k−t

(r
k

)m−2k∑
j=0

cjt
j

]

= (−1)m+1

b
m+1

2
c∑

k=0

(2(r − k)

m+ 1− 2k

)(r
k

) k∑
t=0

at,k−t · tm+1−2k

+

bm+1
2
c∑

k=0

m−2k∑
j=0

cj

(r
k

) k∑
t=0

at,k−tt
j

= (−1)m+1

b
m+1

2
c∑

k=0

(2(r − k)

m+ 1− 2k

)(r
k

)
Ik,m+1−2k

+

bm+1
2
c∑

k=0

m−2k∑
j=0

cj

(r
k

)
Ik,j .

Now consider the Ik,j from the last sum. Since 2k + j ≤ 2k +m− 2k = m,
we have already computed these Ik,j recursively. We also know all of the cj ,
so we can compute the number C ′r for any r ≥ m+1

2 , where

C ′r =

bm+1
2
c∑

k=0

(
2(r − k)

m+ 1− 2k

)
·
(
r

k

)
· Ik,m+1−2k .

Finally, consider the matrix A corresponding to the above system of equa-
tions such that

Aj,i =

(
2(rj − i)
m+ 1− 2i

)
·
(
rj
i

)

for i = 0, . . . , bm+1
2 c and pairwise distinct and r0, . . . , rbm+1

2
c large enough

such that the binomial coefficient does not become zero. Column i is an
evaluation vector of the polynomial

Qi(r) =

(
2(r − i)

m+ 1− 2i

)
·
(
r

i

)
.

Each Qi has degree m + 1 − 2i + i = m + 1 − i; in particular, the degree
of Qi is different for different i. This implies that the set {Qi | i ∈ N} is a
set of linearly independent polynomials, and thus the column vectors of A
are linearly independent and A is invertible. This allows us to compute the
unique solution for the Ik,m+1−2k for all k ∈ N with k ≤ m/2.

4.2. Edge-Injective Homomorphisms 83

Finally, we argue how to compute the at,k−t from the Ik,i. By definition, we
have the following set of linear equations:

k∑
t=0

t0 · at,k−t = Ik,0

k∑
t=0

t1 · at,k−t = Ik,1

· · ·
k∑
t=0

tk · at,k−t = Ik,k

The corresponding matrixB where (B)i,j = ji for i, j ∈ [k] is a Vandermonde
matrix and thus invertible. Therefore we can compute the unique solution
for the at,k−t. �

We are now able to prove #W[1]-hardness of counting edge-injective
homomorphisms from wedge packings. The proof uses the same idea as the
hardness proof for subdivided stars. However, in case of wedge packings we
cannot use a particular wedge as an anchor to enforce the image of the edge
injective homomorphisms to have a specified structure. Instead, we rely on
Lemma 4.33.

Proof (of Lemma 4.31). We reduce from the problem of counting matchings
of size k in bipartite graphs whose right-side vertices have degree ≤ 2 and
where any two distinct left-side vertices have at most one common neighbor.
Note that this problem is #W[1]-hard by Theorem 4.29. Let (G, k) be
an instance of this problem, and let L(G) and R(G) be the left and right
vertex sets, respectively. For r ∈ N, we construct a graph Gr as follows (see
Figure 4.6):

1. Insert a vertex 0 that is adjacent to all vertices of L(G).

2. Add r special vertices 1, . . . , r as well as the edges {0, 1}, . . . , {0, r}.

3. For every vertex v ∈ R(G) with deg(v) = 2, remove v and add the
set N(v) as an edge to Gr. Note that |N(v)| = 2, so N(v) can indeed
be considered as an edge.

Since G does neither contain multi-edges nor self-loops and any two distinct
vertices u, v ∈ L(G) have at most one common neighbor in G, the graph Gr

does also neither contain multi-edges nor self-loops. Now let

H = H1 ∪̇ . . . ∪̇ Hk

be a wedge packing consisting of k vertex-disjoint copies of P2.

84 Chapter 4: Constrained Homomorphisms

r⇒
Construction of Gr

r⇔

Image of 3 good wedges

r

Image of a test wedge

r

Image of a bad wedge

Figure 4.6: Example of the construction of Gr as used in the proof of Lemma 4.31.
The second row illustrates the correspondence between a 3-matching in G and the
image of an edge-injective homomorphism from a wedge packing of size 3 such that
all wedges are good. Furthermore we give examples for the image of a test wedge
and a bad wedge.

For an edge-injective homomorphism h ∈ EdgeInj(H → G0), we say that a
wedge Hi is

• test if h(Hi) contains two edges incident to 0,

• good if h(Hi) contains exactly one edge incident to 0, and

• bad if h(Hi) uses no edge incident to 0.

Let αg,b be the number of edge-injective homomorphisms

h ∈ EdgeInj(H → G0)

for which there are 0 test wedges, g good wedges, and b bad wedges.

Claim 4.35. The number of k-matchings in G is equal to αk,0 ·
(
2k · k!

)−1
.

Proof. The integer αk,0 is the number of all h ∈ EdgeInj(H → G0) such that
the image of every Hi consists of a wedge that uses exactly one edge incident
to 0.

Given any such h, we construct a k-matching Mh of G as follows. For
each i, consider the wedge h(Hi): It uses an edge {0, v} for v ∈ L(G) and
an edge {v, w} with w 6= 0. If w ∈ R(G), then NG(w) = {v}, and we add
the edge ei with ei = {v, w} ∈ E(G) to the matching. Otherwise, we have
w ∈ L(G), and so the edge {v, w} ∈ E(G0) corresponds to a vertex u ∈ R(G)
with NG(u) = {v, w}, from which it was constructed. In this case, we add
the edge ei with ei = {v, u} ∈ E(G) to the matching. Note that ei and ej
for i and j with i 6= j are disjoint; for if they shared a vertex v ∈ L(G),

4.2. Edge-Injective Homomorphisms 85

the edge {0, v} would be used by both h(Hi) and h(Hj), and if they shared
a vertex v ∈ R(G), then either NG(v) or NG(v) ∪ {v} would be an edge
in G0, which would be used by both h(Hi) and h(Hj). Thus the constructed
set Mh is indeed a k-matching.

On the other hand, for each k-matching M , we have that there are
exactly 2k · k! edge-injective homomorphisms h ∈ EdgeInj(H → G0) with
M = Mh since the automorphism group of H has this size. �

We aim at determining the number αk,0 by using the provided oracle
for #EdgeInj(H). Since we cannot directly ask the oracle to only count
homomorphisms with a given number of bad and good wedges, we query the
oracle multiple times and recover these numbers via the very specific form
of interpolation fueled by Lemma 4.33. To apply the lemma, we observe the
following identity.

Claim 4.36. Let k, r ∈ N. Then βk(G
r) := #EdgeInj(H → Gr) satisfies

βk(G
r) =

∑
t,g,b∈N
t+g+b=k

αg,b ·
(

k

g + b

)
· (n+ r − g)2t .

Proof. We construct an element h of EdgeInj(H1 ∪̇ . . . ∪̇ Hk → Gr) whose
image consists of g good wedges, b bad wedges, and t test wedges, where
g+ b+ t = k. There are

(
k
g+b

)
possibilities to select the set of Hi that will be

mapped to a good or a bad wedge. Once this selection has been done, there
are αg,b edge-injective homomorphisms that map the selected Hi to g good
and b bad wedges; to see this, note that G0 and Gr have exactly the same
good and bad wedges. Finally, the test wedges can only be mapped to the
edges incident to 0, for which reason only the star with center 0 is relevant
for the test wedges. Each good wedge that has already been placed blocks
one edge of the star. Hence the t wedges map into a star with n + r − g
leaves. The number of edge-injective homomorphisms that map t wedges
into a star with ` leaves is (`)2t. �

Note that βk(G
r) is a polynomial in r of degree at most 2k. Setting y = n+r,

Claim 4.36 yields a polynomial identity that is exactly of the form required
by Lemma 4.33, and thus we can compute the unknowns αg,b for all g, b ∈ N
with g + b ≤ k from the polynomials β0, . . . , βO(k). Overall, the reduction
runs in polynomial time, makes at most O(k2) queries to the oracle, and the
parameter of each query is at most O(k). This proves #W[1]-hardness. �

We are now able to prove the explicit classification for counting edge-
injective homomorphisms from hereditary graph classes.

86 Chapter 4: Constrained Homomorphisms

Proof (of Theorem 4.17). If H has bounded weak vertex cover number, then
#EdgeInj(H) is fixed-parameter tractable by Lemma 4.22. Otherwise, if H
is hereditary, then by Lemma 4.24 at least one of the six classes of cliques,
bicliques, windmills, subdivided stars, triangle packings, or wedge packings
is a subset of H. For the first five, #W[1]-hardness holds by Lemma 4.25
and for the latter, #W[1]-hardness is given by Lemma 4.31. Finally, #W[1]-
equivalence follows by Theorem 4.16. �

4.2.3 Edge-Disjoint Paths and Cycles

The classification for #EdgeInj(H) with hereditary graph classes H leaves
open some non-hereditary graph classes of interest. In this final part of the
paper, we investigate #EdgeInj(H) for the class of cycles and that of paths
and prove Theorem 4.18, that is, #W[1]-hardness for these problems.

We point out that the problems of counting edge-injective homomor-
phisms from Ck and Pk are equivalent to the problems of counting edge-
disjoint k-cycles and edge-disjoint k-paths, respectively. In particular, for
any graph G, we have that #EdgeInj(Ck → G) equals 2k times the number
of edge-disjoint k-cycles in G, while #EdgeInj(Pk → G) equals twice the
number of edge-disjoint k-paths in G.

We will first show that #EdgeInj(C) is #W[1]-hard, where C is the
class of all cycles. To this end, we consider the edge-weighted version of
counting edge-injective homomorphisms in an intermediate step. Let H
and G be graphs and let w : E(G) → N a weight-function. The number of
edge-weighted edge-injective homomorphisms is defined as follows

#EdgeInj(H → G,w) :=
∑

h∈EdgeInj(H→G)

∏
e∈E(H)

w(h(e)) .

Then the problem #WeightedEdgeInj(H) asks, given a graph H ∈ H
and an arbitrary graph G with weight-function w, to compute this quantity.
The parameter is

|V (H)|+ max{w(e) | e ∈ E(G)} ,

that is, the edge-weights of G must be bounded by some function in the size
of the pattern graph H.

Lemma 4.37. #WeightedEdgeInj(C) is #W[1]-hard.

Proof. First we observe that, for all k ∈ N, we have

#EdgeInj(Ck → G,w) = 2k ·
∑

c∈ECk(G)

∏
e∈c

w(e) (4.8)

where ECk(G) denotes the set of all edge-disjoint cycles of length k in G.

4.2. Edge-Injective Homomorphisms 87

s1
v

s2
v

sdvv

...

t1v

t2v

tdvv

...

x

Figure 4.7: Gadget Hv for v of degree dv as used in the proof of Lemma 4.37.

We show #W[1]-hardness by constructing a parameterized Turing reduction
from #Sub(C) of counting simple cycles of length k, which is #W[1]-hard
by Theorem 3.15 as C has unbounded vertex cover number.

On input a graph G and k ∈ N, our reduction proceeds as follows:
If k < 3, then return 0. Else consider the graph Gx obtained from G by
substituting each node v ∈ V , of some degree dv, by the gadget graph Hv

constructed as follows: We start with a path of length 3 whose intermediate
edge has weight x.3 Next we add vertices s1

v, . . . , s
dv
v and connect each of

them with an edge to one endpoint of the path. After that we add vertices
t1v, . . . , t

dv
v and connect each of them with an edge to the other endpoint.

Furthermore add edges {siv, t
j
u} and {sju, tiv} for every edge {u, v} that is

the i-th edge of v and the j-th edge of u. The resulting graph is shown in
Figure 4.7. Consider Gx as a weighted graph were every edge has weight 1
except for the edges labeled with x as above. Now, querying the oracle for
#WeightedEdgeInj(C) with input C6k and Gx, and dividing by 12k yields
a polynomial p ∈ Z[x].

Claim 4.38. The degree of p is bounded by k. Furthermore the coefficient
of xk equals twice the number of simple k-cycles in G.

Proof. The shortest edge-disjoint path between any pair of two different
edges with weight x is at least 5 (excluding the two edges with weight x from
the length). As we search for edge-disjoint cycles of length 6k, the weight x
can occur at most 6k

5+1 = k times in one cycle. Therefore the degree of p is
bounded by k. Furthermore the distance is equal to 5 if and only if the two
edges belong to gadgets Hv and Hu such that {v, u} ∈ E(G). In particular,
this path either leaves Hv through siv and enters Hu through tju for some i

and j or it leaves Hv through ti
′
v and enters Hu through sj

′
u for some i′ and

j′. Now consider an edge-disjoint cycle c of length 6k that includes k edges
with weight x. It follows that

c = (e1, P1, . . . , ek, Pk, e1) ,

where each ei has weight x and each Pi is a path of 5 edges with weight 1.

3Here, x is an indeterminate, so the quantity (4.8) is a polynomial in x.

88 Chapter 4: Constrained Homomorphisms

Next let Hvi be the gadget containing ei and consider Hv1 . It holds that P1

either passes through siv1
and tjv2 for some i and j or through ti

′
v1

and sj
′
v2 for

some i′ and j′. However, if we fix one of these two options, only one possi-
bility remains for all other P2, . . . , Pk as we cannot turn around in a gadget
if we consider edge-disjoint cycles. Therefore there are exactly two edge-
disjoint cycles c1 = (e1, P1, . . . , ek, Pk, e1) and c2 = (e1, P

′
1, . . . , ek, P

′
k, e1)

that correspond to the cycle c = (v1, . . . , vk, v1) in G and vice versa. Fur-
thermore c is simple as c1, c2 are edge-disjoint, that is, the ei’s and therefore
the vi’s are pairwise different. �

To conclude the proof of Lemma 4.37, we compute the coefficient of xk

in the degree-k polynomial p by means of polynomial interpolation from
the evaluations p(0), . . . , p(k) (see Theorem 2.28). These evaluations are
obtained by oracle calls to #WeightedEdgeInj(C) with input C6k and Gb
for b = 0, . . . , k (and dividing by 12k). As the edge-weights of every graph Gb
are bounded by k, the overall parameter |V (C6k)| + max{w(e) | e ∈ Gb} is
bounded by 7k, proving that this reduction is indeed a parameterized Turing
reduction. �

We show hardness of the unweighted version by reduction from the
weighted version; this requires us to devise a strategy for removing weights.

Lemma 4.39. #WeightedEdgeInj(C) ≤T
fpt #EdgeInj(C).

Proof. The input for the reduction is a number k ∈ N and an edge-weighted
graph G whose edge weights are bounded by k. We assume k ≥ 4, as we
can otherwise solve the problem in polynomial time by brute-force. The
following gadgets will be used in the reduction:

• G1 is simply one undirected edge e1 := {a1, b1}

• Gi+1 is constructed from Gi as follows: We add vertices ai+1 and bi+1

and edges {ai+1, ai} and {bi+1, bi}. Furthermore we add a path of
length 2i + 1 between ai+1 and bi+1 and denote the i + 1-th edge of
this path ei+1. Gi+1 is depicted in Figure 4.8.

It is easy to see that |V (Gk)| ≤ O(k2).

Claim 4.40. For every k ≥ 1, there are exactly k possibilities to construct
an edge-disjoint walk from ak to bk in Gk, each of which has length 2k − 1.
Furthermore, for every j = 1, . . . , k, the edge ej is contained in exactly one
of this walks.

Proof. We prove the claim by induction on k; it is obvious for k = 1.
For the induction step, consider Gk+1: An edge-disjoint walk from ak+1

to bk+1 either takes the “left” way and therefore contains ek+1 or takes a
way through Gk.

4.2. Edge-Injective Homomorphisms 89

a1

b1

a1

b1

a2

b2

a1

b1

b3

a3

a2

b2

ai

Gi

bi

bi+1

ai+1

i edges

i edges

ei+1

Figure 4.8: Graphs G1, G2 and G3, as well as the inductive construction of the
graph Gi+1 as used in the proof of Lemma 4.39.

Now the “left” way has length exactly 2k + 1 = 2(k + 1) − 1. Further,
every way through Gk corresponds one-to-one to a closed walk from ak to bk
in Gk. Applying the induction hypothesis we obtain that there are exactly k
edge-disjoint walks from ak to bk in Gk, one for every ej for j = 1, . . . , k.
Furthermore each of this walks has length 2k − 1. It follows that there are
exactly k edge-disjoint walks from ak+1 to bk+1, each of length

2 + 2k − 1 = 2(k + 1)− 1 .

The edge ej is contained in exactly one of this walks for every j = 1, . . . , k.
We conclude that the claim is fulfilled for Gk+1. �

It follows that the longest edge-disjoint cycle in Gk has length

2 · (2k + 1) = 4k + 2 .

Let W be the maximum weight of an edge, where W ≤ k. Now let Hi

be the gadget constructed from GW by removing edges eW , · · · , ei+1. We
have HW = GW . Applying Claim 4.40, we obtain that there are exactly i
edge-disjoint walks from aW to bW in Hi. Furthermore each of this walks
has length 2W − 1. Finally, we construct G′ from G by substituting each
edge e = {a, b} with Hw(e) and edges {a, aW } and {b, bW }.

Claim 4.41. The number of edge-disjoint cycles of length (2Wk+ k) in G′

equals ∑
c∈ECk(G)

∏
e∈c

w(e) .

90 Chapter 4: Constrained Homomorphisms

Proof. Consider an edge-disjoint cycle c of length (2Wk + k) in G′ and as-
sume c does contain an edge {a, aW }, that is, it is not entirely contained
in one gadget. It then follows that c can cross every aW and bW at most
once. To see this, observe that every time when such a node is reached
we can consider the cycle coming from “outside the gadget”, e.g. by choos-
ing a fitting orientation of c. Since c is an edge-disjoint cycle, we have
to continue by an edge-disjoint walk through the end of the gadget. This
walk has length 2W − 1 by Claim 4.40. Now we cannot turn around in-
side the gadget again and complete the cycle afterwards since otherwise we
would have constructed a longer edge-disjoint walk from one endpoint of
the gadget to the other, which contradicts Claim 4.40. It follows that each
edge-disjoint cycle of length (2Wk+ k) that is not entirely contained in one
gadget consists of 2W − 1 walks through gadgets. Now, taking an edge
e = {a, b} with weight w(e) in G corresponds to taking one of the w(e)
edge-disjoint walks (a, aW , · · · , bW , b) of length 2W − 1 + 2 through Hw(e)

in G′. As k · (2W − 1 + 2) = (2Wk+ k) it follows that an edge-disjoint cycle
of length k in G corresponds to the edge-disjoint cycles of length (2Wk+ k)
in G′ that cross the gadgets corresponding to the weighted edges in G, but
only if no edge-disjoint cycle of length (2Wk+k) entirely fits in one gadget.
However, the latter cannot be the case since the longest edge-disjoint cycle
in GW has length 4W + 2 and for every k > 2 it holds that

4W + 2 < 4W ≤ 2Wk < 2Wk + k . �

Using Claim 4.41, Equation 4.8 and the fact that for every graph G and
k ∈ N, we have that #EdgeInj(Ck → G) equals 2k times the number of
edge-disjoint k-cycles in G, we obtain that

#EdgeInj(C2Wk+k → G′) = 2(2Wk + k)
∑

c∈ECk(G)

∏
e∈c

w(e)

=
2(2Wk + k)

2k
·#EdgeInj(Ck → G,w)

= (2W + 1) ·#EdgeInj(Ck → G,w) .

The above reduction is indeed a parameterized Turing reduction, as G′ can
be constructed in time O(n2 · k2) and the value of the new parameter is
2Wk + k ≤ O(k2). This concludes the proof. �

Corollary 4.42. The problem #EdgeInj(C) is #W[1]-hard.

Proof. Follows from #W[1]-hardness of #WeightedEdgeInj(C) as shown
in Lemma 4.39 as well as from the reduction in the previous lemma. �

It remains to show hardness for counting edge-injective homomorphisms
from paths.

4.2. Edge-Injective Homomorphisms 91

Lemma 4.43. The problem #EdgeInj(P) is #W[1]-hard.

Proof. We will reduce from #EdgeInj(C). First, we let ECk(G, v) be the
set of all edge-disjoint cycles of length k in G that contain v ∈ V (G) and
recall that ECk(G) denotes the set of all edge-disjoint cycles of length k in G.

Claim 4.44. It holds that

ECk(G) =

|V (G)|⋃
i=1

ECk(G− {vi+1, . . . , vn}, vi),

where the union is in fact a pairwise disjoint union.

Proof. By induction on |V (G)|. If |V (G)| = 0, the union is empty and
therefore the claim holds. Otherwise let |V (G)| = n+ 1. It holds that

ECk(G) = ECk(G, vn+1) ∪̇ (ECk(G) \ ECk(G, vn+1))

= ECk(G, vn+1) ∪̇ ECk(G− {vn+1})

= ECk(G, vn+1) ∪̇ (
⋃̇n

i=1
ECk((G− {vn+1})− {vi+1, · · · , vn}, vi))

= ECk(G, vn+1) ∪̇ (
⋃̇n

i=1
ECk(G− {vi+1, · · · , vn+1}, vi))

=
⋃̇n+1

i=1
ECk(G− {vi+1, . . . , vn+1}, vi)

Here, the third equality follows from the induction hypothesis. �

We hence have that

|ECk(G)| =
|V (G)|∑
i=1

|ECk(G− {vi+1, . . . , vn}, vi)| . (4.9)

Now let Gi = G − {vi+1, . . . , vn}. We show that |ECk(Gi, vi)| can be com-
puted using an oracle for #EdgeInj(P):

First, we construct the graph G′i by adding vertices s and t and edges
{s, vi} and {t, vi}. For M ⊆ {s, t} let Ai,M be the set of edge-disjoint paths
of length k + 2 that do not pass through a vertex u ∈ M and let G′i,M be

the graph obtained from G′i by removing every vertex that lives in M . Note
that |AM | can be computed by querying the oracle for Pk+1 and G′i,M and

dividing by 2. Now it holds that for all i ∈ {1, . . . , |V (G)|}:
|ECk(Gi, vi)| = |Ai,∅ \ (Ai,{s} ∪Ai,{t})| = |Ai,∅| − |Ai,{s}| − |Ai,{t}|+ |Ai,{s,t}| ,

where the last equality is an easy application of the inclusion-exclusion
principle (Theorem 2.27). Finally the values of |ECk(Gi, vi)| for all i in
{1, . . . , |V (G)|} allow us to compute |ECk(G)| (see Equation 4.9), which
equals 1/2 ·#EdgeInj(Ck → G). �

Proof (of Theorem 4.18). #W[1]-hardness follows from Corollary 4.42 and
Lemma 4.43. Equivalence for #W[1] hence holds by Theorem 4.16. �

92 Chapter 4: Constrained Homomorphisms

Chapter 5

Induced Subgraphs

In the current chapter, we turn to the problem of counting induced sub-
graphs. To this end, recall that IndSub(H → G) denotes the set of all in-
duced subgraphs of a graph G that are isomorphic to H or, in other words,
the set of all vertex subsets S ⊆ V (G) such that G[S] ' H. Similar to the
previous chapters, we consider the problem of counting induced subgraphs
with respect to the class of allowed graphs for H. More precisely, given a
class of graphs H, we let #IndSub(H) be the problem of, given H ∈ H
and an arbitrary graph G, computing #IndSub(H → G); the problem is
parameterized by |V (H)|.

Example 5.1. The problem #IndSub(H) is equivalent to

• #Clique if H is the class of all complete graphs,

• counting induced matchings if H is the class of all matchings,

• counting independent sets if H is the class of all graphs without edges,

• counting induced cycles if H is the class of all cycles.

Chen, Thurley and Weyer [35] established the following exhaustive classifi-
cation for #IndSub(H).

Theorem 5.2 (Corollary 4 in [35]). The problem #IndSub(H) is solv-
able in polynomial time if H is finite. Otherwise, if H is additionally recur-
sively enumerable, #IndSub(H) is #W[1]-equivalent.

Corollary 5.3. All problems in Example 5.1 are #W[1]-equivalent.

While Theorem 5.2 resolves the parameterized complexity of #IndSub(H),
it is not applicable to the more general problem of counting induced sub-
graphs that satisfy a given graph property, such as the problem of counting
connected induced subgraphs of size k. For this reason, Jerrum and Meeks
[79, 80, 101, 81] introduced and studied the following problem.

94 Chapter 5: Induced Subgraphs

Definition 5.4. Let Φ be a (computable) graph property, that is, Φ is a
function from graphs to {0, 1} such that Φ(H) = Φ(H ′) whenever H is
isomorphic to H ′.

Then the problem #IndSub(Φ) asks, given a graph G and a natural
number k, to count all induced subgraphs of size k in G that satisfy Φ; the
problem is parameterized by k.

Strictly speaking, #IndSub(Φ) is the unlabeled version of p-#INDUCED
SUBGRAPH WITH PROPERTY(Φ), both of which have been introduced
in [79]. However, as Jerrum and Meeks point out, those problems are equiv-
alent for graph properties that are invariant under relabeling of vertices (see
Section 1.3.1 in [79]). The generality of #IndSub(Φ) allows to count almost
arbitrary substructures in graphs, subsuming lots of parameterized counting
problems that have been studied before, and hence the problem deserves a
thorough complexity analysis with respect to the property Φ.

Let us revisit the prior results on the complexity of #IndSub(Φ). In [79]
Jerrum and Meeks prove the problem to be #W[1]-hard if Φ is the property
of being connected. In [81] hardness is established for the property of having
an even (or odd) number of edges and in [80] they prove the problem to be
#W[1]-hard whenever the edge-density of graphs with k vertices for which Φ
holds, grows asymptotically slower than k2. Finally, it is shown by Meeks
in [101] that whenever Φ is closed under the addition of edges, and the set
of (edge-)minimal elements of Φ has unbounded treewidth, the problem is
hard as well.

In what follows, we will construct quantum graphs that allow us to ex-
press the number of induced subgraphs of size k that satisfy Φ as a linear
combination of homomorphisms. Complexity monotonicity will then allow
for an almost exhaustive classification of #IndSub(Φ), subsuming Theo-
rem 5.2 as well as the hardness results in [79, 81] and parts of [101]. In
particular, we will obtain matching lower bounds under ETH.

Let us be more precise. In Chapter 5.1, given a property Φ and a positive
integer k, we will construct a quantum graph Q[Φ, k] satisfying that

#Hom(Q[Φ, k]→ ?) = #IndSub(Φ, k → ?) , (5.1)

where IndSub(Φ, k → G) is the set of induced subgraphs of size k in G that
satisfy Φ. For monotone properties Φ, we will prove that the coefficient of Kk

in Q[Φ, k] is, up to a factor of ±k!, equal to the reduced Euler characteristic
of a certain simplicial complex induced by Φ and k. This will relate the clique
coefficient of the quantum graph to Karp’s famous evasiveness conjecture;
details and definitions are given in Chapter 5.1. In particular, we will be able
to adapt the “topological approach to evasiveness” due to Kahn, Saks and
Sturtevant [85] and use a fixed-point theorem (Theorem 2.33) to restrict
#IndSub(Φ) to instances that are invariant under the actions of prime-
power groups. More concretely, we prove the following.

95

Theorem 5.5. Let Φ be a computable monotone1 property such that Φ
and ¬Φ hold on infinitely many graphs. Then the problem #IndSub(Φ) is
#W[1]-equivalent and, assuming ETH, cannot be solved in time f(k) · no(k)

for any computable function f if at least one of the following conditions is
true

(1) Φ is false for odd cycles.

(2) Φ is true for odd anti-holes.

(3) There exists c ∈ N such that for all H it holds that Φ(H) = 1 if and
only if H is not c-edge-connected.

(4) There exists a graph F such that for all H it holds that Φ(H) = 1 if
and only if there is no homomorphism from F to H.

Examples of properties that satisfy the first condition are the ones of being
bipartite, cycle-free, disconnected and non-hamiltonian.2 One example for
the second condition is the property of having a chromatic number smaller
or equal than half of the size of the graph (rounded up) and the fourth
condition includes the properties of exclusion of a fixed complete graph as
a subgraph. The results of Chapter 5.1 have been obtained in collaboration
with Johannes Schmitt and are published in [120].

While the proof of Theorem 5.5 ultimately relies on the coefficient of Kk

in Q[Φ, k], we strengthen the approach in Chapter 5.1 by considering further
constituents of Q[Φ, k] with large treewidth in Chapter 5.2. For technical
reasons, this requires to consider a color-prescribed variant of complexity
monotonicity. We will then use the fact that there exist edge-transitive
graphs with a prime-power number of edges and arbitrary large treewidth,
the former property of which will allow us to rely on the theory of Sylow
groups to obtain an easy strategy to prove that such graphs are contained
in the support of implicitly H-colored quantum graphs. This algebraic ap-
proach will then induce, as a special case, the following exhaustive classifi-
cation of #IndSub(Φ) restricted to bipartite graphs.

Theorem 5.6. Let Φ be a computable monotone3 property such that Φ
and ¬Φ hold on infinitely many bipartite graphs. Then #IndSub(Φ) is
#W[1]-equivalent and cannot be solved in time f(k) · no(k) for any com-
putable function f unless the Exponential Time Hypothesis fails. This holds
true even if the input graphs to #IndSub(Φ) are restricted to be bipartite.

1For properties that are edge-monotone but not monotone, e.g. being disconnected or
non-hamiltonian, #W[1]-equivalence is obtained as well, but a tight lower bound under
ETH requires a further condition. Details are given in the respective sections.

2See Footnote 1.
3See Footnote 1.

96 Chapter 5: Induced Subgraphs

The results of Chapter 5.2 have been obtained in collaboration with Julian
Dörfler, Johannes Schmitt and Philipp Wellnitz and will be published in [52];
a preliminary full version can be found in [53].
We will now introduce the most important notions and results that are
required for both, the topological and the algebraic approach. First of all,
we will from now on implicitly assume all graph properties to be computable.
Recall that a property Φ is edge-monotone if it is closed under the removal
of edges, that is, whenever H ′ is an edge-subgraph of H and Φ holds on H
then Φ holds on H ′ as well. Φ is called monotone if it is closed under the
removal of edges and vertices, that is, whenever H ′ is a subgraph of H and Φ
holds on H then Φ holds on H ′ as well.

Given a property Φ, we write K[Φ] for the set of all k such that Φ is
neither constant 1 nor constant 0 on the set of all graphs with k vertices,
that is,

K[Φ] :=
{
k ∈ N

∣∣ ∃H,H ′ : |V (H)| = |V (H ′)| = k ∧ Φ(H) 6= Φ(H ′)
}
.

We call a property Φ trivial if K[Φ] is finite. This definition is motivated by
the following lemma.

Lemma 5.7. #IndSub(Φ) is fixed-parameter tractable if Φ is trivial.

Proof. Let B be a constant upper bound on positive integers k for which
there exist graphs H and H ′ such that Φ(H) 6= Φ(H ′). On input G and k,
if k ≤ B, we solve the problem by brute-force in time

f(k) ·
(
n

k

)
,

by enumerating all vertex subsets of size k and testing in time f(k) for
some computable function f whether the property holds on the respective
subgraph. If k > B we check whether Φ(Kk) holds in time f(k). If this is
the case, then, by assumption, all graphs with k vertices satisfy Φ and we
output

(
n
k

)
. Otherwise Φ holds on no graph with k vertices and we output 0.

The overall running time is hence bounded by

f(k) ·
(
n

B

)
≤ f(k) · nB ,

where n is the number of vertices of G. �

To the day this thesis is written and to the best of the author’s knowl-
edge there is not a single example of a non-trivial property Φ for which
#IndSub(Φ) is fixed-parameter tractable. We conjecture that no such
property exists unless all #W[1]-equivalent problems are fixed-parameter
tractable. Weak evidence for this claim is given by the following, implicit
classification of #IndSub(Φ).

5.1. A Topological Approach to Hardness 97

Theorem 5.8 ([41]). The problem #IndSub(Φ) is either fixed-parameter
tractable or #W[1]-equivalent for all properties Φ.

Theorem 5.8 follows by the existence of the quantum graph Q[Φ, k] (5.1)
which is constructed in Chapter 5.1, the complexity monotonicity property
(see Theorem 3.13) and the classification of counting homomorphisms (see
Theorem 2.34). In particular, and similar to the preceding chapters, this
illustrates once more that proving the existence of a quantum graph is much
less involved than proving which graphs are contained in its support.

For the fine-grained reductions that yield matching lower bounds under
ETH for #IndSub(Φ) we rely on the notion of dense sets. Here, a set K
is called dense if there exists a constant c > 0 such that for all but finitely
many k ∈ N there exists k′ ∈ K satisfying that k ≤ k′ ≤ ck.

We conclude our preparations for the subsequent chapters with the fol-
lowing simple yet important facts about #IndSub(Φ).

Fact 5.9. Let G be a graph with n vertices. Then

#IndSub(Φ, k → G) =

(
n

k

)
−#IndSub(¬Φ, k → G) .

Lemma 5.10 ([79]). #IndSub(Φ) is #W[1]-easy.

5.1 A Topological Approach to Hardness

To begin with, we prove the existence of a quantum graph that, given a
graph property Φ and a positive integer k, allows to express the number
of induced subgraphs of size k that satisfy Φ by a linear combination of
homomorphisms. To this end, we say that a graph H is labeled if it comes
with a bijective labeling

` : V (H)→
[
|V (H)|

]
.

Furthermore we write EΦ
k for the set of all edge-subsets A of the labeled

complete graph Kk with k vertices such that Φ holds on the graph Kk[A].

Theorem 5.11. Let Φ be a graph property and let k be a positive integer.
Then there exists a quantum graph Q[Φ, k] such that

#Hom(Q[Φ, k]→ ?) = #IndSub(Φ, k → ?) .

In particular, the mapping k 7→ Q[Φ, k] is computable if Φ is fixed and the
coefficient γ[Φ, k] of the clique of size k in Q[Φ, k] satisfies

k! · γ[Φ, k] = ±
∑
A∈EΦ

k

(−1)#A .

98 Chapter 5: Induced Subgraphs

Proof. Using the principle of inclusion-exclusion (Theorem 2.27) we can ex-
press the number of strong embeddings in terms of the number of embed-
dings [95, Chapt. 5.2.3]:

#StrEmb(H → G) =
∑
H′⊇H

V (H)=V (H′)

(−1)#E(H′)−#E(H) ·#Emb(H ′ → G) , (5.2)

where H ′ ranges over all graphs obtained from H by adding edges. Next
we collect terms in (5.2) that correspond to isomorphic graphs. To this end
we let #{H ′ ⊇ H} denote the number of possibilities to add edges to H
such that the resulting graph is isomorphic to H ′. Note that, in particular,
#{Kk ⊇ H} = 1 if H has k vertices. We obtain

#StrEmb(H → G) =
∑
H′

(−1)#E(H′)−#E(H) ·#{H ′ ⊇ H} ·#Emb(H ′ → G) ,

(5.3)
where the sum is over all (isomorphism types of) graphs. Next we invoke
Möbius inversion to translate the number of embeddings to a linear combi-
nation of homomorphisms as given by Equation (2.3) in Chapter 2.4.2:

#Emb(H ′ → G) =
∑
ρ≥∅

µ(∅, ρ) ·#Hom(H ′/ρ→ G) , (5.4)

where the sum and the Möbius function µ are over the partition lattice
of V (H ′). We observe that the coefficient of #Hom(Kk → G) in the above
sum is µ(∅, ∅) = 1 if H ′ is isomorphic to Kk and zero otherwise as every
quotient of a graph with k vertices that is not the complete graph can-
not result in the complete graph with k vertices. Hence the coefficient of
#Hom(Kk → G) in Equation (5.3) is precisely

(−1)#E(Kk)−#E(H) .

Now let Φk denote the set of all graphs with k vertices that satisfy Φ. Using
Fact 2.9, we invoke transformations (5.3) and (5.4) successively and obtain

#IndSub(Φ, k → G)

(Def)
=

∑
H∈Φk

#IndSub(H → G)

(2.9)
=

∑
H∈Φk

#Aut(H)−1#StrEmb(H → G)

(5.3)
=

∑
H∈Φk

#Aut(H)−1
∑
H′

(−1)#E(H′)−#E(H)#{H ′ ⊇ H}#Emb(H ′ → G)

(5.4)
=

∑
H∈Φk

#Aut(H)−1
∑
H′

(−1)#E(H′)−#E(H)#{H ′ ⊇ H}
∑
ρ≥∅

µ(∅, ρ)#Hom(H ′/ρ→ G) .

5.1. A Topological Approach to Hardness 99

The quantum graph Q[Φ, k] can hence be constructed by collecting for iso-
morphic terms in the preceding sum and deleting quotients graphs with self-
loops. In particular, the prior observations regarding the complete graph
with k vertices, namely that #{Kk ⊇ H} = 1 if H has k vertices and that
no quotient of a graph H 6' Kk with k vertices is isomorphic to Kk, imply
that

γ[Φ, k] =
∑
H∈Φk

(−1)#E(Kk)−#E(H) ·#Aut(H)−1 . (5.5)

We now multiply this equation by k!, which we interpret as the number
#Symk of elements of the symmetric group of the k vertices. Taking also the
absolute value on both sides allows us to drop the constant factor (−1)#E(Kk)

and we obtain

|k! · γ[Φ, k]| =

∣∣∣∣∣∣
∑
H∈Φk

(−1)#E(H) · #Symk

#Aut(H)

∣∣∣∣∣∣ . (5.6)

For any graph H in the above sum choose a set A0 of edges of the labeled
complete graph Kk on k vertices such that the corresponding edge-subgraph
Kk[A0] is isomorphic to H. The group Symk acts on the vertices and thus on
the edges of Kk and by the definition of a graph automorphism, the stabilizer
of the set A0 has exactly #Aut(H) elements. On the other hand the orbit
of A0 under Symk is the collection of all sets A such that Kk[A] ' H. By
the Orbit-Stabilizer-Theorem (Theorem 2.29) we have

#Symk

#Aut(H)
= #{A ⊆ E(Kk) | Kk[A] ' H} .

Inserting in equation (5.6) we obtain

|k! · γ[Φ, k]| =

∣∣∣∣∣∣∣∣
∑
H∈Φk

∑
A⊆E(Kk)

Kk[A]'H

(−1)#E(H)

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
A∈EΦ

k

(−1)#A

∣∣∣∣∣∣ . (5.7)

�

The following hardness result is an immediate consequence of Theorem 5.11.

Corollary 5.12. Let Φ be a graph property and let

K :=

k ∈ N

∣∣∣∣∣∣
∑
A∈EΦ

k

(−1)#A 6= 0

 .

If K is infinite, then #IndSub(Φ) is #W[1]-hard. If additionally K is dense,
#IndSub(Φ) cannot be solved in time f(k) ·#V (G)o(k) for any computable
function f , unless ETH fails.

100 Chapter 5: Induced Subgraphs

Proof. Complexity monotonicity (Theorem 3.13) induces a parameterized
Turing reduction from #Hom({Kk | k ∈ K}), that is,

#Hom({Kk | k ∈ K}) ≤T
fpt #IndSub(Φ) ,

as by Theorem 5.11, γ[Φ, k] 6= 0 whenever k ∈ K. If K is infinite, then
{Kk | k ∈ K} has unbounded treewidth and hence #Hom({Kk | k ∈ K}) is
#W[1]-hard by Theorem 2.34. For the lower bound under ETH we rely on
Theorem 2.18 and construct a simple reduction

#Clique ≤T
fpt #Hom({Kk | k ∈ K}) .

In particular, density of K guarantees that, on input (k,G) for #Clique,
every oracle query (Kk′ , G

′) satisfies that

k′ ∈ O(k) ∧ |V (G′)| ≤ f(k) · |V (G)| .

A detailed construction of the reduction can be found in [120]. Consequently,
any algorithm solving #IndSub(Φ) and hence #Hom({Kk | k ∈ K}) in time

f(k) ·#V (G)o(k)

yields an algorithm with similar running time for #Clique which refutes
ETH by Theorem 2.18. �

Recall that #IndSub(Φ) is known to be #W[1]-hard if Φ is the prop-
erty of having an odd (or even) number of edges [81]. We point out that
Corollary 5.12 immediately implies this result as the sum∑

A∈EΦ
k

(−1)#A

is clearly non-zero for every positive integer k as all terms have the same sign.
Further hardness results for #IndSub(Φ) that are obtained by invoking
Corollary 5.12 directly can be found in [120, Section 5]. In what follows we
will concentrate on (edge-)monotone properties.

5.1.1 Simplicial Graph Complexes and Evasiveness

One of the most important structural insights of this thesis relates the
clique coefficient γ[Φ, k] for monotone Φ to topological properties of sim-
plicial graph complexes and, ultimately, to what is called the evasiveness
conjecture. Before we go into the details, we which to point out that the
subsequent connections have been discovered by implementing sequences of
clique coefficients and searching in Sloane’s On-Line Encyclopedia of Integer
Sequences [122].

5.1. A Topological Approach to Hardness 101

Recall that a simplicial complex ∆ is a set of non-empty sets closed under
taking non-empty subsets (see Chapter 2.4.4). Given an edge-monotone
property Φ and a positive integer k, the set EΦ

k \ {∅} is a simplicial complex,
called the simplicial graph complex , denoted by ∆[Φ, k]. Recall further, that
the reduced Euler characteristic of a simplicial complex is given by Fact 2.32:

χ̂(∆) =
∑
i≥0

(−1)i ·#{A ∈ ∆ ∪ {∅} | #A = i} . (5.8)

Remark 5.13. For every edge-monotone property Φ and k ∈ K[Φ] we have
that Φ holds on the independent set of size k, i.e., Φ(Kk[∅]) = 1; assuming
otherwise Φ would be trivially false on k-vertex graphs by edge-monotonicity
and hence k /∈ K[Φ].

The preceding remark implies that for edge-monotone properties, the empty
set is contained in EΦ

k if k ∈ K[Φ]. In this case we obtain the following.

Lemma 5.14. k! · γ[Φ, k] = ±χ̂(∆[Φ, k]) whenever k ∈ K[Φ].

Proof. Holds by Theorem 5.11, Fact 2.32 and Remark 5.13. �

Consequently, by Corollary 5.12 the problem #IndSub(Φ) is #W[1]-hard
if χ̂(∆[Φ, k]) 6= 0 and k ∈ K[Φ] for infinitely many k. Fortunately, the
reduced Euler characteristic of simplicial graph complexes is a very well
studied object; going into the details of the topological interpretations is
beyond the scope of this thesis, hence we refer the interested reader to the
excellent survey of Miller [102]. However, we wish to take a small detour to
Karp’s evasiveness conjecture. The reason for this is the fact that some of
the existing tools for proving special cases of this conjecture can be used in
our setting as well.

Let us start with a rough introduction to decision tree complexity; con-
sult [102, Chapt. 1 and 2.1] for a more detailed exposition. To this end,
assume that the edges of a graph are only provided by an oracle. That is,
an algorithm is given the set of vertices V of a graph, but it is required to
pose an oracle query for two vertices u and v to find out whether {u, v} is
an edge of the graph. Such algorithms are called decision tree algorithms
and we say that a decision tree algorithm computes a graph property Φ if,
given a graph H, the algorithm correctly decides whether Φ(H) holds. The
decision tree complexity of Φ is the function D(Φ) that maps a positive in-
teger k to the value Dk(Φ) which is defined to be the minimum number of
oracle queries a deterministic decision tree algorithm that computes Φ has
to perform in the worst case on graphs with k vertices.

Definition 5.15. A property Φ is called evasive on k-vertex graphs if

Dk(Φ) =

(
k

2

)
.

102 Chapter 5: Induced Subgraphs

Figure 5.1: A scorpion graph. The leftmost vertex is called the sting, the vertex
next to the sting is called the tail, and the vertex right to the tail is called the body.
The remaining vertices of the graph may be connected to each other arbitrarily and
must be connected to the body but not to sting and tail.

Intuitively, the preceding definition states that Φ is evasive if every possible
edge needs to be queried to correctly decide whether Φ holds.

Example 5.16 ([11]).

• Connectivity is evasive on k-vertex graphs for k > 0.

• Planarity is evasive on k-vertex graphs for k > 4.

Example 5.17 ([11]). The property of being a scorpion graph (Figure 5.1)
is not evasive on k-vertex graphs for all but finitely many k.

The study of evasive graph properties and decision tree algorithms goes
back to the early 70s; the interested reader is again referred to Miller’s
survey [102, Chapt. 1.1] which provides a detailed historical background.
We will focus only on the most important milestones.

To begin with, we observe that the third item of Example 5.17 proves the
existence of non-trivial graph properties that are evasive on k-vertex graphs
for all but finitely many k. Further, the property of being a scorpion graph is
not edge-monotone. The following conjecture, known as Karp’s evasiveness
conjecture or the Aanderaa-Karp-Rosenberg conjecture states that there are
no non-trivial properties in case of edge-monotonicity.

Conjecture 5.18 (Evasiveness conjecture [117, 102]). Let k be a pos-
itive integer and let Φ be an edge-monotone property that is neither true
nor false on all k-vertex graphs. Then Φ is evasive on k-vertex graphs.

The asymptotic version of the evasiveness conjecture was proved by
Rivest and Vuillemin [112]. The next major result was due to Kahn, Saks
and Sturtevant [85] in their breakthrough paper “A Topological Approach
to Evasiveness”:

Theorem 5.19 ([85]). Conjecture 5.18 is true for prime-powers k.

5.1. A Topological Approach to Hardness 103

Their idea was to use topological properties of simplicial graph complexes
induced by the edge-monotone properties. In particular, they relied on the
(reduced) Euler characteristic in the following way.4.

Theorem 5.20 ([85]). If χ̂(∆[Φ, k]) 6= 0 then Φ is evasive on k-vertex
graphs.

Corollary 5.21. If Φ is edge-monotone and γ[Φ, k] 6= 0 then Φ is evasive
on k-vertex graphs.

Proof. If γ[Φ, k] 6= 0 then, by Theorem 5.11,∑
A∈EΦ

k

(−1)#A 6= 0 .

Therefore, EΦ
k is neither empty, nor the set of all edge subsets of the labeled

complete graph Kk. It follows that k ∈ K[Φ]. The claim holds hence by
Lemma 5.14 and Theorem 5.20. �

Consequently, the existence of the clique Kk as a constituent of the
quantum graph Q[Φ, k] does not only rule out an f(k) · no(k) algorithm for
computing #IndSub(Φ, k → ?) under ETH (see Corollary 5.12) but also,
unconditionally, rules out a decision tree algorithm for computing Φ that
beats brute-force.

Unfortunately, the converse of Theorem 5.20 is not true. A counterex-
ample is given in Chapt. 10.6 in Jonsson’s book [84]. Therefore, we cannot
adapt all tools of the topological approach to evasiveness [85] to our case.
However, Smith’s fixed-point theorem (see Theorem 2.33) will suffice for
our purposes. To this end, recall that, given a simplicial complex ∆ and a
group Γ that acts on the ground set of ∆ , we say that ∆ is a Γ-simplicial
complex if for every A ∈ ∆ and g ∈ Γ then the set g . A := {g . a | a ∈ A}
is contained in ∆ as well. Recall further that the fixed-point complex ∆Γ of
a Γ-simplicial complex ∆ is defined as

∆Γ :=

{
S ⊆ {1, . . . , k}

∣∣∣∣∣ S 6= ∅ ∧⋃
i∈S
Oi ∈ ∆

}
,

where Oi are the orbits of the group action. Now Theorem 2.33 states that

χ̂(∆) ≡ χ̂(∆Γ) mod p , (5.9)

if Γ is of order p` for some prime p and positive integer `. For our purposes
it will suffice to use the groups Zp for prime numbers p, explained as follows.

4In fact, Kahn, Saks and Sturtevant show that any non-evasive complex is collapsible.
However, every collapsible complex has a reduced Euler characteristic of zero (see e.g. [96]).
Hence the contraposition implies the Theorem 5.20 as stated.

104 Chapter 5: Induced Subgraphs

0
1

2

3 4

5

6

O1

0
1

2

3 4

5

6

O2

0
1

2

3 4

5

6

O3

0
1

2

3 4

5

6

O1 ∪ O2

0
1

2

3 4

5

6

O1 ∪ O3

0
1

2

3 4

5

6

O2 ∪ O3

0
1

2

3 4

5

6

O1 ∪ O2 ∪ O3

Figure 5.2: Non-empty unions of orbits of the action of Z7 on the edge set of the
labeled graph with 7 vertices. If Φ is trivially true then ∆Z7 [Φ, 7] contains all of the
above subsets of orbits. If Φ holds only for bipartite graphs then none of the above
subsets is contained in ∆Z7 [Φ, 7]. If Φ is planarity then ∆Z7 [Φ, 7] = {O1,O2,O3}.
More exotically, if Φ is the property of not being 5-edge-connected then ∆Z7 [Φ, 7]
contains every subset of orbits except for O1 ∪ O2 ∪ O3.

Recall that the ground set of ∆[Φ, p] is the set of all edges of the labeled
complete graph on p vertices. Now b ∈ Zp is interpreted as a relabeling
x 7→ x+ b of the vertices5, which induces an action on the edges by mapping
the edge {x, y} to the edge {x + b, y + b}. We remark that this group was
also used in an intermediate step in [85]. It can easily be verified that this
mapping is a group action. Furthermore ∆[Φ, p] is a Zp-simplicial complex
with respect to this action as Φ is invariant under relabeling of vertices.
Hence the fixed-point complex

∆Zp [Φ, p] := ∆[Φ, p]Zp

is well-defined. Furthermore observe that every orbit of the group action is a
Hamilton cycle. We illustrate ∆Z7 [Φ, 7] for some properties Φ in Figure 5.2.
Note that, given a prime p > 2, the ground set of ∆Zp [Φ, p] consists of
exactly 1

2(p− 1) elements. In particular those are the Hamiltonian cycles

H1 = (0, 1, 2, . . .)

H2 = (0, 2, 4, . . .)

H3 = (0, 3, 6, . . .)

...

H 1
2

(p−1) =

(
0,

1

2
(p− 1), p− 1, . . .

)
.

Equivalently, Hi is the orbit of the (labeled) edge {0, i} under the action
of Zp for i ∈ {1, . . . , 1

2(p− 1)} and it can easily be verified that those are all
orbits of the group action. In what follows, given a non-empty set

P ⊆ {1, . . . , 1

2
(p− 1)} ,

we write HP for the graph with vertices (labeled with) [p] and edges
⋃
i∈P Hi.

5Here + is addition modulo p.

5.1. A Topological Approach to Hardness 105

Fact 5.22. Let P be non-empty subset of {1, . . . , 1
2(p− 1)}. Then

P ∈ ∆Zp [Φ, p]⇔ Φ(HP) = 1 .

Now we have everything we need to prove all cases of Theorem 5.5. In par-
ticular, we emphasize that using the fixed-point complex ∆Zp [Φ, p] instead
of the primal complex ∆[Φ, p] allows us to give surprisingly simple proofs,
while at the same time Theorem 5.5 significantly extends prior results on
the complexity of #IndSub(Φ). We start with edge-monotone properties
that are false on odd cycles or true on odd antiholes.

Lemma 5.23. If Φ is edge-monotone and does not hold on odd cycles then

χ̂(∆Zp [Φ, p]) 6≡ 0 mod p

for every prime p > 2 in K[Φ].

Proof. If Φ does not hold on odd cycles then ∆Zp [Φ, p] = ∅, because all
non-empty unions of orbits contain an odd cycle as edge-subgraph and Φ is
edge-monotone. Hence, by (5.8),

χ̂(∆Zp [Φ, p]) = 1− 0 = 1 6≡ 0 mod p . �

Lemma 5.24. If Φ is edge-monotone and holds on odd anti-holes6 then

χ̂(∆Zp [Φ, p]) 6≡ 0 mod p

for every prime p ∈ K[Φ].

Proof. If Φ holds on odd anti-holes then

∆Zp [Φ, p] = {P | ∅ (P ({1, . . . , 1

2
(p− 1)}} ,

because every union of all but one orbit constitutes an anti-hole and Φ is
edge-monotone and, furthermore, Φ must be false on the union of all orbits
which constitutes a clique, because otherwise, by edge-monotonicity Φ would
hold on all graphs with p vertices and hence p /∈ K[Φ]. Consequently,

χ̂(∆Zp [Φ, p])

=
∑
i≥0

(−1)i ·#{P ∈ ∆Zp [Φ, p] ∪ {∅} | #P = i}

=
∑
i≥0

(−1)i ·#{P ({1, . . . , 1

2
(p− 1)} | #P = i}

=

 ∑
P⊆{1,..., 1

2
(p−1)}

(−1)#P

− (−1)
1
2

(p−1) = (−1)
1
2

(p−1)+1 6≡ 0 mod p .

Note that the first equality holds by (5.8). �

6Recall that an anti-hole is the complement of a cycle, that is a graph (V,E) such that
its complement (V,E) is a cycle.

106 Chapter 5: Induced Subgraphs

Now let us combine the previous lemmas to obtain the following hardness
result.

Theorem 5.25. Let Φ be an edge-monotone graph property and let P be
the set of all primes p > 2 in K[Φ]. Then #IndSub(Φ) is #W[1]-equivalent
if P is infinite and

(1) Φ is false on odd cycles, or

(2) Φ is true on odd anti-holes.

If additionally P is dense then the problem cannot be solved in time

f(k) · |V (G)|o(k)

for any computable function unless ETH fails.

Proof. We invoke Corollary 5.12 for K = P which requires us to show that∑
A∈EΦ

p

(−1)#A 6= 0 (5.10)

for all p ∈ P. By Theorem 5.11 and Lemma 5.14 we have that (5.10) is
equivalent to

χ̂(∆[Φ, p]) 6= 0 ,

because p ∈ P ⊆ K[Φ] by assumption. Now the latter inequality holds by
application of Smith’s fixed-point theorem (5.9) and Lemma 5.23 if Φ is false
on odd cycles, and Lemma 5.24 if Φ is true on odd anti-holes. This shows
#W[1]-hardness; #W[1]-equivalence follows by Lemma 5.10. �

Corollary 5.26. The problem #IndSub(Φ) is #W[1]-equivalent and can-
not be solved in time f(k) · |V (G)|o(k) for any computable function unless
ETH fails, if Φ is one of the following graph properties.

• Φ(H) = 1 if and only if H is non-hamiltonian.

• Φ(H) = 1 if and only if H is disconnected.

• Φ(H) = 1 if and only if H is bipartite.

• Φ(H) = 1 if and only if H is acyclic.

The same holds true for the complementary properties.

Proof. Each property satisfies the first item of Theorem 5.25. In particular,
the set P contains all primes p > 2 for each property. By Bertrand’s postu-
late P is hence dense. Finally, the result holds true for the complementary
properties by Fact 5.9. �

5.1. A Topological Approach to Hardness 107

The following lemma simplifies the statement of the previous theorem in
case Φ is also closed under the removal of vertices.

Lemma 5.27. Let Φ be a monotone property such that Φ and ¬Φ hold on
infinitely many graphs. Then K[Φ] contains all but finitely many positive
integers.

Proof. Let k ∈ N. By assumption there exists a graph H with at least k
vertices that satisfies Φ. Now the graph Kk[∅], that is, the independent set
of size k, is a subgraph of H and hence, by monotonicity of Φ, it holds that
Φ(Kk[∅]) = 1. Next let H0 be a graph such that Φ(H0) = 0. Further, let
k0 = |V (H0)| and observe that Φ(Kk) = 0 for every k ≥ k0 as Φ is monotone.
Consequently, K[Φ] contains every k ≥ k0. �

The application of Lemma 5.27 allows us to infer the first two cases of
Theorem 5.5 from Theorem 5.25.

Proof (Case (1) and (2) of Theorem 5.5). Follows from Theorem 5.25, as
well as from Lemma 5.27. In particular, density of P is given by Bertrand’s
postulate. �

We continue with one more exotic property which illustrates the utility of
the topological approach by exploiting the simple structure of ∆Zp [Φ, p].
To this end, recall that a graph is called c-edge-connected if it cannot be
disconnected by removing at most c− 1 edges.

Lemma 5.28. Let c ∈ N be an arbitrary constant and let Φ be the graph
property of being not (c+ 1)-edge-connected. Then

χ̂(∆Zp [Φ, p]) 6≡ 0 mod p

for every prime p > c+ 3.

Proof. We rely on the following observation.

Claim 5.29. The graph HP is (c+ 1)-edge-connected if and only if

#P >
⌊ c

2

⌋
.

Proof. If #P ≤ b c2c then every vertex in HP has degree at most c, hence
HP is not (c + 1)-edge-connected. If #P > b c2c then HP contains at least
b c2c + 1 pairwise edge-disjoint Hamilton cycles. Disconnecting the graph
would require to remove at least two edges from every Hamilton cycle, i.e.,
at least 2 · (b c2c+ 1) ≥ c+ 1 edges. Hence HP is (c+ 1)-edge-connected. �

108 Chapter 5: Induced Subgraphs

It follows from the Claim that

∆Zp [Φ, p] =

{
P ⊆

{
1, . . . ,

1

2
(p− 1)

} ∣∣∣∣ P 6= ∅ ∧#P ≤
⌊ c

2

⌋}
.

Hence

χ̂(∆Zp [Φ, p])

=
∑
i≥0

(−1)i ·#{P ∈ ∆Zp [Φ, p] ∪ {∅} | #P = i}

=

b c
2
c∑

i=0

(−1)i ·#{P ⊆ {1, . . . , 1

2
(p− 1)} | #P = i}

=

b c
2
c∑

i=0

(−1)i ·
(1

2(p− 1)

i

)
= (−1)b

c
2
c ·
(1

2(p− 1)− 1

b c2c

)
6≡ 0 mod p .

Note that the first equality holds by (5.8). �

We are now able to prove the third case of Theorem 5.5, that is, #W[1]-
equivalence of #IndSub(Φ) for the property Φ of not being c-edge-connected.

Proof (Case (3) of Theorem 5.5). We invoke Corollary 5.12 for K being the
set of all primes p > c+ 2, which requires us to show that∑

A∈EΦ
p

(−1)#A 6= 0 (5.11)

for all primes p > c + 2. By Theorem 5.11 and Lemma 5.14 we have that
(5.11) is equivalent to

χ̂(∆[Φ, p]) 6= 0 ,

because p ∈ K[Φ] by assumption. The latter inequality holds by by appli-
cation of Smith’s fixed-point theorem (5.9) and Lemma 5.28. This shows
#W[1]-hardness; #W[1]-equivalence follows by Lemma 5.10. �

The last case of Theorem 5.5 follows from a known explicit formula for the
reduced Euler characteristic of the graph complex induced by the property
of excluding the existence of a homomorphism from a graph F .

Lemma 5.30 ([27]). Let F be a graph and let Φ[F] be the graph property
that holds true on a graph H if and only if Hom(F → H) = ∅, i.e., there is
no homomorphism from F to H. Furthermore let

TF := min{22t − 1 | 22t ≥ #V (F)}

and let k ∈ N such that k ≡ 1 mod TF . Then χ(∆[Φ[F], k]) ≡ 0 mod 2 and
hence χ̂(∆[Φ[F], k]) ≡ 1 mod 2.

Proof (Case (4) of Theorem 5.5). Follows from Lemma 5.30, Theorem 5.11,
Corollary 5.12 and Lemma 5.14. Details are given in [120]. �

5.2. An Algebraic Approach to Hardness 109

5.2 An Algebraic Approach to Hardness

So far, we only considered the coefficient γ[Φ, k] of the k-clique in the quan-
tum graph Q[Φ, k]. However, by complexity monotonicity, it suffices to find
an arbitrary graph with large treewidth as constituent of Q[Φ, k] to establish
hardness of counting induced subgraphs of size k satisfying Φ. In the cur-
rent section, we will analyze the coefficients of graphs H with large treewidth
that satisfy the following constraints.

(1) H is edge-transitive, that is, Aut(H) acts on E(H) transitively (see
Chapter 2.4.4), and

(2) the number of edges of H is a prime power p`.

We will call such graphs p-edge-transitive graphs. The algebraic properties
of those graphs will allow us to invoke and adapt the results of Rivest and
Vuillemin [112] concerning transitive boolean functions over a domain of
prime power cardinality. Examples of p-edge-transitive graphs are the bi-
cliques Kt,t for prime powers t = p`. A complete characterization of p-edge-
transitive graphs is given in Chapter 5.2.1. In particular, we will establish
an approach for proving hardness of #IndSub(Φ) if Φ is non-trivial on an
infinite set of p-edge-transitive graphs. The following theorems are obtained
by the application of this approach to properties of bipartite graphs. Recall
that a graph G is called bipartite if V (G) can be partitioned in disjoint sets
L and R such that every edge of G has one endpoint in L and one endpoint
in R; equivalently, G is bipartite if Hom(G→ P1) 6= ∅.

Theorem 5.31. Let Φ be a computable graph property and let K be the set
of all prime powers t such that Φ(IS2t) 6= Φ(Kt,t). If K is infinite then
#IndSub(Φ) is #W[1]-hard. If additionally K is dense then it cannot be
solved in time f(k) · no(k) for any computable function f unless ETH fails.
This holds true even if the input graphs to #IndSub(Φ) are restricted to be
bipartite.

Recall that a set K is dense if there exists a constant c such that for every
m ∈ N, there exists a k ∈ K such that m ≤ k ≤ cm. While the hypotheses
of Theorem 5.31 sound technical, the theorem applies in many situations.
In particular, it is applicable to properties that are neither (edge-)monotone
nor the complement thereof: Let Φ be the property of being Eulerian. The
graph Kt,t contains an Eulerian cycle if t = 2s for s ≥ 1. Hence we can
apply Theorem 5.31 with K = {2s | s ≥ 1}, which is infinite and dense.

Corollary 5.32. Let Φ be the property of being Eulerian. Then the problem
#IndSub(Φ) is #W[1]-hard and cannot be solved in time f(k) ·no(k) for any
computable function f unless the ETH fails. This holds true even if the input
graphs to #IndSub(Φ) are restricted to be bipartite.

110 Chapter 5: Induced Subgraphs

In case Φ is edge-monotone, the condition Φ(IS2t) 6= Φ(Kt,t) is equivalent to
non-triviality and if Φ is monotone, we obtain a more concise statement as
given by Theorem 5.6, which we restate for convenience.

Theorem 5.33 (Theorem 5.6 restated). Let Φ be a computable mono-
tone graph property such that Φ and ¬Φ hold on infinitely many bipartite
graphs. Then #IndSub(Φ) is #W[1]-hard and cannot be solved in time
f(k) · no(k) for any computable function f unless the Exponential Time Hy-
pothesis fails. This holds true even if the input graphs to #IndSub(Φ) are
restricted to be bipartite.

Let us illustrate further consequences of the previous theorems with respect
to (edge-)monotone properties. First of all, most of the prior hardness results
[79, 80, 101, 81, 120] are shown to hold in the restricted case of bipartite
graphs. We provide three examples:

Corollary 5.34. The problem #IndSub(Φ), restricted to bipartite input
graphs, is #W[1]-hard and cannot be solved in time f(k) · |V (G)|o(k) for any
computable function f unless ETH fails, if Φ is one of the properties of being
disconnected, planar or non-hamiltonian.

One example of a monotone property Φ for which the parameterized
complexity of #IndSub(Φ) was unknown, even for general graphs, is given
by the following corollary of Theorem 5.33.

Corollary 5.35. Let F be a fixed bipartite graph with at least one edge and
define Φ(G) = 1 if G does not contain a subgraph isomorphic to F . Then
#IndSub(Φ) is #W[1]-hard and cannot be solved in time f(k) · |V (G)|o(k)

for any computable function f unless ETH fails. This holds true even if the
input graphs of #IndSub(Φ) are restricted to be bipartite.

By Fact 5.9, all of the previous result remain true for the complementary
properties ¬Φ.

5.2.1 Alternating Enumerators of p-Edge-Transitive Graphs

We wish to emphasize that the group theoretic results in this subsection are
due to Johannes Schmitt (see also [53, Section 3]); we include them only
for reasons of self-containment. Given a property Φ and a graph H, the
alternating enumerator of Φ and H is defined to be

χ̂(Φ, H) :=
∑

S⊆E(H)

Φ(H[S]) · (−1)#S .

Roughly speaking, it will turn out that the coefficient of H in the quantum
graph Q[Φ,#V (H)] is closely related to χ̂(Φ, H). We furthermore point

5.2. An Algebraic Approach to Hardness 111

out that, in case Φ is closed under the removal of edges, the alternating
enumerator χ̂(Φ, H) equals the reduced Euler characteristic of the simplicial
complex with ground set E(H) and simplices S ⊆ E(H) for which Φ(H[S])
holds.

For what follows, we recall that the automorphism group of a graph H
induces a group action on the edges of H, given by h{u, v} := {h(u), h(v)}.
Recall further that group action is transitive if there exists only one orbit
and a graph H is called edge-transitive if the group action on the edges is
transitive, that is, if for every pair of edges {u, v} and {û, v̂} there exists an
automorphism h ∈ Aut(H) such that h{u, v} = {û, v̂}.

Lemma 5.36. Let Φ be a graph property and let H be a p-edge-transitive
graph such that Φ(H[∅]) 6= Φ(H). Then we have that

χ̂(Φ, H) = (±1) mod p .

Lemma 5.36 is implicitly proved in [112, Theorem 4.3]; for completeness we
will include a short and self-contained proof, demonstrating a first applica-
tion of the machinery of Sylow subgroups that we will need later.

For the proofs in this section, let us recall some key results from group
theory. Given a prime number p, a finite group Γ′ is called a p-group if the
order #Γ′ is a power of p. The following is a well-known and central result
from the theory of finite groups.

Theorem 5.37 (Sylow theorems). Let Γ be a finite group of order

#Γ = pkm

for a prime p and an integer m ≥ 1 coprime to p. Then Γ contains a
subgroup Γ′ of order pk. Moreover, every other subgroup Γ′′ of Γ of order pk

is conjugate to Γ′, that is there exists g ∈ Γ with Γ′′ = gΓ′g−1. In particular,
the groups Γ′,Γ′′ are isomorphic (via the conjugation by g).

Finally, every subgroup Γ̃ ⊆ Γ which is a p-group is actually contained
in some conjugate gΓ′g−1 of the group Γ′.

A subgroup Γ′ ⊆ Γ as above is called a p-Sylow subgroup of Γ. The following
result is a first important application of the Sylow theorems. It can be found
as Exercise (E28) in [3]; we include a proof for completeness.

Lemma 5.38. Let Γ be a finite group acting transitively on a set T such
that #T = pl for some l ≥ 0. Then the induced action of any p-Sylow
subgroup Γ′ ⊆ Γ on T is still transitive.

Proof. Let t0 ∈ T be any element, then T is the orbit of t0 under Γ. Let
StabΓ(t0) = {g ∈ Γ : gt0 = t0} be the stabilizer of t0 under the action of Γ.
Then by the Orbit-Stabilizer-Theorem (Theorem 2.29), we have

#Γ = (#Γt0) · (# StabΓ(t0)) = (#T) · (# StabΓ(t0)). (5.12)

112 Chapter 5: Induced Subgraphs

As in the Sylow theorems, write #Γ = pkm with m not divisible by p and
let Γ′ ⊆ Γ be a p-Sylow subgroup of Γ, which is of order pk. The stabilizer
of t0 under the induced action of the subgroup Γ′ ⊆ Γ is given by

StabΓ′(t0) = {g ∈ Γ′ : gt0 = t0} = StabΓ(t0) ∩ Γ′.

Clearly this is a subgroup of the group Γ′ and by Lagrange’s theorem, the
order of StabΓ′(t0) divides the order pk of Γ′. Thus it is itself a power of p,
say # StabΓ′(t0) = pn.

On the other hand, StabΓ′(t0) is also a subgroup of StabΓ(t0). Inserting
the order of Γ and the size of T in equation (5.12) we obtain

pkm = pl · (# StabΓ(t0)), (5.13)

and thus # StabΓ(t0) can at most contain a factor of pk−l. Again, by La-
grange’s theorem, the order pn of the subgroup StabΓ′(t0) divides the order
of StabΓ(t0) and thus n ≤ k − l.
Finally, by the Orbit-Stabilizer-Theorem applied to the action of Γ′ on t0,
we have

pk = #Γ′ = (#Γ′t0) · (# StabΓ′(t0)) = (#Γ′t0) · pn. (5.14)

Thus, on the one hand we obtain #Γ′t0 = pk−n ≥ pk−(k−l) = pl. On the
other hand we obtain Γ′t0 ⊆ T and thus #Γ′t0 ≤ #T = pl. Hence we have
the equality #Γ′t0 = pl = #T and thus Γ′t0 = T . In other words, the action
of Γ′ on T is transitive, finishing the proof. �

This result allows us to give a short proof of Lemma 5.36 above.

Proof (of Lemma 5.36). Let Γ = Aut(H) be the automorphism group of
the graph H, then by assumption its action on the set E(H) of edges of
H is transitive. By Lemma 5.38, any p-Sylow subgroup Γ′ ⊆ Γ still acts
transitively on E(H). Now consider the sum

χ̂(Φ, H) =
∑

S⊆E(H)

Φ(H[S]) · (−1)#S .

The action of Γ′ on E(H) induces an action of Γ′ on the set of subsets
P(E(H)) := {S ⊆ E(H)} of E(H). Indeed, for S ⊂ E(H) and g ∈ Γ′ we
define gS = {gs : s ∈ S}. For this action, the set P(E(H)) can be written as
a disjoint union of the orbits Γ′S0 of a set S ⊆ P(E(H)) of representatives S0.
(Recall that for a group action two orbits are either disjoint or equal.) This
allows us to write the sum above as

χ̂(Φ, H) =
∑
S0∈S

∑
S∈Γ′S0

Φ(H[S]) · (−1)#S .

5.2. An Algebraic Approach to Hardness 113

Until now we have just reordered the summands above, combining all sum-
mands for S in the same Γ′ orbit.

Now since all elements g ∈ Γ′ ⊆ Aut(H) act by graph automorphisms
on H, we have that the graphs H[gS0] and H[S0] are isomorphic, so in
particular Φ(H[gS0]) = Φ(H[S0]). Applying this to the formula for χ̂(Φ, H)
above, we get

χ̂(Φ, H) =
∑
S0∈S

(#Γ′S0) · Φ(H[S0]) · (−1)#S0 . (5.15)

Now by the Orbit-Stabilizer-Theorem (Theorem 2.29), the size #Γ′S0 of
the orbit of S0 divides the order pk of Γ′, so #Γ′S0 is itself a power of p.
Further, unless S0 ⊆ E(H) is invariant under Γ′, the size of its orbit #Γ′S0 is
a positive power of p and thus congruent to 0 mod p. However, the only two
sets S0 ⊆ E(H) invariant under Γ′ are S0 = ∅ and S0 = E(H): Consider
for the sake of contradiction the case where S0 is invariant under Γ′ and
nonempty, but not the whole set E(H). Then S0 contains an element e0,
and since S0 is Γ′-invariant, S0 also contains the entire orbit of e0 under Γ′.
But since Γ′ acted transitively on E(H), S0 must have been the whole set
E(H), yielding a contradiction.

To summarize, when computing χ̂(Φ, H) modulo p all but two summands
in the sum in Equation (5.15) are congruent to 0. Hence, we can simplify
Equation (5.15) to

χ̂(Φ, H) = Φ(H[∅])+Φ(H[E(H)])·(−1)#E(H) = Φ(H[∅])−Φ(H) mod p .

Note that we use the fact that for p > 2 we have that #E(H) is odd since
it is a prime power and for p = 2 we have −1 = 1 modulo p. Now, the
condition Φ(H[∅]) 6= Φ(H) exactly gives us Φ(H[∅])−Φ(H) = ±1 mod p.�

There are two main examples for p-edge-transitive graphs. The first
example is the class of the complete, bipartite graphs Kpl,pm with l,m ≥ 0.

The graph Kpl,pm has pl+m edges and the automorphism group clearly acts
transitively on the edges of that graph. The second example is the class
of wreath graphs Wpk for k ≥ 1. The graph Wpk has pk vertices that can

be decomposed in disjoint sets V0, . . . , Vp−1 of order pk−1 each, and edges
{vi, vi+1} for each i = 0, . . . , p − 1 and vertices vi ∈ Vi, vi+1 ∈ Vi+1 (where
it is understood that Vp = V0). Thus in total, Wpk has p2k−1 edges, except

for p = 2 where it has 22k−2 edges. The graph Wpk can be seen as the

lexicographical product of a p-cycle with a graph consisting of pk−1 disjoint
vertices. For k = 1 we exactly obtain the p-cycle. To see that Wpk is edge-
transitive, we observe that on the one hand, for fixed i we can apply an
arbitrary permutation on Vi leaving the graph invariant.

114 Chapter 5: Induced Subgraphs

On the other hand, there exists a “rotational action” sending Vj to Vj+1

for j = 0, . . . , p− 1, which also leaves the graph invariant. Using these two
types of automorphisms, we can map every edge to every other edge.

The following result tells us that in a certain sense the graphs Kpl,pm

and Wpk are the maximal p-edge-transitive graphs. A graph G is called
vertex-transitive if its automorphism group Aut(G) acts transitively on its
set of vertices V (G).

Theorem 5.39. Let G be a connected p-edge-transitive graph. Then either
G is bipartite (and thus a subgraph of a graph of the form Kpl,pm for some
l,m ≥ 0) or G is vertex-transitive and an edge-subgraph of Wpk for k ≥ 1
(or both).

For the proof of Theorem 5.39, we will make use of the following well-
known result about the relation between edge and vertex-transitivity [12,
Proposition 15.1].

Lemma 5.40. Let G be a connected graph and let Γ ⊆ Aut(G) be a subgroup
acting transitively on the set of edges E(G). Then either Γ acts transitively
on the set of vertices V (G) (and thus G is vertex-transitive) or G is bipartite
(or both).

The proof from [12] carries over verbatim to the setting of the previous
lemma, by replacing the full group Aut(G) with the subgroup Γ. We include
it for completeness

Proof. Let e0 = {v1, v2} ∈ E(G) be some edge. Then for each vertex w1

and some edge {w1, w2} incident to w1 there exists an automorphism g ∈ Γ
sending {v1, v2} to {w1, w2}, thus either w1 = gv1 or w1 = gv2. This proves
that the set V (G) is the union of the orbits of v1, v2 under Γ. If these
two orbits intersect, then in fact Γv1 = Γv2 (orbits under a group action
are either disjoint or equal), and so Γv1 = V (G) since the two sets above
cover V (G). On the other hand, if the two orbits are disjoints, then they
form a partition making G into a bipartite graph. Indeed, any edge of G is
in the orbit of the edge {v1, v2} and thus connects an element of Γv1 to an
element of Γv2. �

Proof (of Theorem 5.39). Let G be a p-edge-transitive, non-bipartite graph.
Then by Lemma 5.38 any p-Sylow subgroup Γ ⊆ Aut(G) still acts transitively
on the edges E(G) of G. By Lemma 5.40, since G is not bipartite, the group
Γ acts transitively on the set of vertices V (G) (and thus G is also vertex-
transitive). We observe that in this case, by the Orbit-Stabilizer-Theorem
(Theorem 2.29), we have #V (G) = pk for some k ≥ 1. We claim that then G
is a subgraph of Wpk .

5.2. An Algebraic Approach to Hardness 115

To see this, let us reformulate our situation slightly: We identify the vertex
set V (G) with the set [pk] = {1, . . . , pk}. Then we can canonically identify
Aut(G) as a subgroup of Spk , the symmetric group on [pk] (this is because a
graph automorphism is uniquely determined by its action on the vertices of
a graph). Inside Aut(G) we have the subgroup Γ, which is a p-group. By the
Sylow theorem, there exists a p-Sylow subgroup Γ′ ⊆ Spk containing Γ. Since
the action of Γ is transitive on the set of edges E(G), we can obtain E(G) by
starting with some edge e0 = {v1, v2} ∈ E(G) with v1, v2 ∈ [pk] and taking
its orbit {{gv1, gv2} : g ∈ Γ} = E(G). But note that by instead taking the
orbit of e0 under Γ′ ⊆ Spk we get at least this set of edges and maybe more.

Denote by G′ the graph with vertices [pk] and edges {{gv1, gv2} : g ∈ Γ′}.
We claim that G′ ∼= Wpk .

To show this we will explicitly identify the p-Sylow subgroup Γ′ ⊆ Spk
(recall that by the Sylow theorem it is unique up to conjugation, that is
reordering of the elements of [pk]).

First note that Spk has (pk)! elements. Inductively one sees that the

highest power of p appearing in this number is pe(k) for

e(k) = pk−1 + pk−2 + . . .+ p+ 1 .

We will inductively construct a subgroup Γ(p, k) of Spk with pe(k) elements,
which then is a p-Sylow subgroup. We note that a description of such a
p-Sylow subgroup is given in [132].

For k = 1 we have e(k) = 1 and a p-Sylow subgroup Γ(p, 1) ⊆ Sp is
generated by a cyclic permutation 1 7→ 2, 2 7→ 3, . . . , p 7→ 1 of the elements
of [p]. The group Γ(p, 1) is isomorphic to the cyclic group Z/pZ.

Now assume we constructed Γ(p, k − 1) for some k ≥ 2, then we first
note that a product of p copies

∏p−1
i=0 Γ(p, k − 1) of Γ(p, k − 1) acts on [pk]

where the i-th factor acts by permutations on the elements

ipk−1 + 1, ipk−1 + 2, . . . , ipk−1 + pk−1 = (i+ 1)pk−1 .

All of these actions commute, so we can see the product
∏p−1
i=0 Γ(p, k − 1)

as a subgroup of Spk . However, there is a further action of Z/pZ on [pk]

sending j to j + pk−1 (modulo pk). This action cyclically permutes the p
blocks of pk−1 elements in [pk] on which the p factors of

∏p−1
i=0 Γ(p, k−1) act.

Thus these two actions do not commute, but indeed they induce an action
of the semidirect product

Γ(p, k) =

(
p−1∏
i=0

Γ(p, k − 1)

)
o Z/pZ,

where Z/pZ acts on
∏p−1
i=0 Γ(p, k−1) by permuting the factors of the product.

116 Chapter 5: Induced Subgraphs

We claim that Γ(p, k) is the desired p-Sylow subgroup of Spk . Indeed, as a
semidirect product its number of elements is

#Γ(p, k) = (#Γ(p, k − 1))p · p = (pe(k−1))p · p = ppe(k−1)+1 = pe(k),

so it has the correct number of elements and is indeed a subgroup of Spk .
Now recall what we want to show: for a pair {v1, v2} of vertices forming

an edge of our original graph G, we want to show that the graph G′ with
edges {{gv1, gv2} : g ∈ Γ′ ∼= Γ(p, k)} is isomorphic to the wreath graph Wpk .
By relabeling the vertices (that is performing a conjugation in Spk) we may
assume that Γ′ = Γ(p, k). Furthermore, by a translation in the group Γ(p, k),
which acts transitively on the elements of [pk], we may assume that v1 = 1.
Now if v2 were in the first block [pk−1] of vertices, on which the first factor
Γ(p, k− 1) operates, then it is easy to see that the resulting graph G′ would
not be connected: the first factor Γ(p, k − 1) would send the edge {1, v2}
only to edges within the first block [pk−1] and then the cyclic permutation
by the factor Z/pZ would send this pattern of edges to the p−1 other blocks,
giving us a disjoint union of p graphs. This is not possible, since our original
graph G is a subgraph of G′ and also was assumed to be connected.

Thus we may assume that v2 is in one of the other blocks

P (a) = [pk−1] + ipk−1 ,

for a = 1, . . . , p−1. Now we want to argue that we can reorder these blocks,
sending P (a) to P (1) and leaving P (0) invariant, such that the group action
of Γ(p, k) is respected. And indeed, let b ∈ Z/pZ be the multiplicative inverse
of a (such that ab = 1 mod p), then there is a permutation of [pk] sending
the block P (i) to P (i · b mod p) (where the block is just translated as a
whole, not permuting the elements inside). And indeed, we see that P (a)
is sent to P (1). The reason why this permutation respects the form of the
action7 of Γ(p, k) is that multiplication by b induces a group isomorphism
Z/pZ→ Z/pZ on the semidirect factor Z/pZ of Γ(p, k).

To summarize, we can assume without loss of generality that we start
with an edge {1, v2} with v2 in the second block of vertices. But then it
is easy to see that the graph G′ obtained by taking the orbit of {1, v2}
under Γ(p, k) is indeed the wreath graph Wpk . Indeed, the group Γ(p, k)
acts transitively within each of the p blocks of vertices (since the i-th factor
Γ(p, k− 1) above acts transitively there), so every edge from the first to the
second block is in the orbit of {1, v2}. Then finally the cyclic permutation
action of Z/pZ sends these edges to the set of all edges between blocks i and
i+ 1, which exactly gives the set of edges of the wreath graph. This finishes
the proof. �

7To be precise, what happens is the following: the map sending P (i) to P (i · b mod p)
is a permutation of [pk], that is an element σ ∈ Spk . What we are claiming is that the
subgroup Γ(p, k) ⊆ Spk is stable under the conjugation by σ, that is Γ(p, k) = σΓ(p, k)σ−1.
So σ is a relabeling of the vertices of our graph G′ which leaves the graph itself invariant.

5.2. An Algebraic Approach to Hardness 117

From Homomorphisms to Induced Subgraphs

In what follows we will construct a sequence of reductions, starting from
#Hom(H) and ending in #IndSub(Φ). Here, H is a recursively enumerable
set of p-edge-transitive graphs and Φ is a graph property such that for every
graph H ∈ H we have that Φ(H[∅]) 6= Φ(H). For technical reasons, we
cannot directly rely on the quantum graph Q[Φ, k].8 For this reason, we will
take a detour over color-prescribed homomorphisms and induced subgraphs
as given by the following reduction sequence:

#Hom(H) ≤T
fpt #cp-Hom(H) Lemma 5.46

≤T
fpt #cp-IndSub(Φ) Lemma 5.45

≤T
fpt #IndSub(Φ) Lemma 5.47

(5.16)

Here, the definition of #cp-IndSub(Φ) requires to introduce color-prescribed
induced subgraphs. Recall that, given graphs G and H, we say that G is
H-colored if G comes with a homomorphism c from G to H, called an
H-coloring. Note that, in particular, every edge-subgraph of H can be
H-colored by the identity function on V (H), which is assumed to be the
given coloring whenever we consider H-colored edge-subgraphs of H in this
chapter. Given an edge-subgraph F of H and a homomorphism h from
F to a H-colored graph G, we overload notation and say that h is color-
prescribed if for all v ∈ V (F) = V (H) it holds that c(h(v)) = v. We
write cp-Hom(F → G) for the set of all color-prescribed homomorphisms
from F to G. cp-StrEmb(F → G) is defined similarly for color-prescribed
strong embeddings. We point out that a definition of cp-Emb(F → G)
is obsolete as every color-prescribed homomorphism is injective by defini-
tion and hence an embedding. Furthermore, we write cp-Sub(F → G) and
cp-IndSub(F → G) for the sets of images of color-prescribed embeddings and
strong embeddings from F to G, respectively. Elements of cp-Sub(F → G)
and cp-IndSub(F → G) are referred to as color-prescribed subgraphs and in-
duced subgraphs.9 Given a graph property Φ and an H-colored graph G, we
write cp-IndSub(Φ→ G) for the set of all color-prescribed induced subgraphs
of size |V (H)| in G that satisfy Φ. Finally, we define #cp-IndSub(Φ) to be
the problem of, given a graph G that is H-colored for some graph H, com-
puting #cp-IndSub(Φ→ G) and parameterize it by κ(G) := |V (H)| — note
that the H-coloring of G is part of the input and hence κ is well-defined.

8The transformation given by Theorem 5.11 relies in an intermediate step on the terms
#{H ′ ⊇ H}, i.e., the number of possibilities to add edges to H such that a graph isomor-
phic to H ′ is obtained. While #{Kk ⊇ H} is either 1 or 0, the case for arbitrary graphs
H ′ is much less clear.

9The observant reader might have noticed that the sets cp-Sub(F → G) and
cp-Hom(F → G) as well as cp-IndSub(F → G) and cp-StrEmb(F → G) are essentially the
same as a color-prescribed homomorphism is uniquely identified by its image. However,
we decided to distinguish those notions in order to make the subsequent combinatorial
arguments more accessible.

118 Chapter 5: Induced Subgraphs

The proofs of Lemma 5.46 and Lemma 5.47 in Reduction Sequence 5.16
are straightforward. For this reason, we will begin with the intermediate
step (Lemma 5.45). The reduction from color-prescribed homomorphisms to
color-prescribed induced subgraphs will make implicit use of an H-colored
variant of quantum graphs. More precisely, given an H-colored graph G
and a graph property Φ, we will express #cp-IndSub(Φ → G) as a lin-
ear combination of color-prescribed homomorphisms, that is, terms of the
form #cp-Hom(H[S]→ G). In a first step, we show complexity monotonic-
ity for linear combinations of color-prescribed homomorphisms. While this
property allows a quite simple proof, a second step, in which we study the
coefficient of #cp-Hom(H → G) requires a thorough understanding of the
alternating enumerator of Φ and H. In case of p-edge-transitive graphs, the
latter is provided by Lemma 5.36.

We start by introducing a colored variant of the tensor product of graphs
(see e.g. Chapter 5.4.2 in [95]). Given two H-colored graphs G and Ĝ with
colorings c and ĉ we define their color-prescribed tensor product G ×H Ĝ
as the graph with vertices V = {(v, v̂) ∈ V (G) × V (Ĝ) | c(v) = ĉ(v̂)} and
edges between two vertices (v, v̂) and (u, û) if and only if {v, u} ∈ E(G) and
{v̂, û} ∈ E(Ĝ). The next lemma states that #cp-Hom(F → ?) is linear with
respect to ×H .

Lemma 5.41. Let H be a graph, let F be an edge-subgraph of H and let G
and Ĝ be H-colored. Then we have that

#cp-Hom(F → G×H Ĝ) = #cp-Hom(F → G) ·#cp-Hom(F → Ĝ) .

Proof. It can easily be verified that the function b(h, ĥ)(v) := (h(v), ĥ(v))
that assigns elements in cp-Hom(F → G)× cp-Hom(F → Ĝ) to elements in
cp-Hom(F → G×H Ĝ) is a well-defined bijection. �

We are now prepared to prove the color-prescribed variant of complexity
monotonicity.

Lemma 5.42 (Complexity monotonicity). Let H be a graph and let a
be a function from edge-subgraphs of H to rationals. There exists an algo-
rithm A that is given an H-colored graph G as input and has oracle access
to the function ∑

S⊆E(H)

a(H[S]) ·#cp-Hom(H[S]→ ?) ,

and computes #cp-Hom(H[S]→ G) for all S such that a(H[S]) 6= 0 in time
f(|H|) · |V (G)| where f is a computable function. Furthermore, every oracle
query Ĝ satisfies |V (Ĝ)| ≤ f(|H|) · |V (G)|.

5.2. An Algebraic Approach to Hardness 119

Proof. Using Lemma 5.41 we have that for every H-colored graph F it holds
that ∑

S⊆E(H)

a(H[S]) ·#cp-Hom(H[S]→ (G×H F)) (5.17)

=
∑

S⊆E(H)

a(H[S]) ·#cp-Hom(H[S]→ G) ·#cp-Hom(H[S]→ F) , (5.18)

which we can evaluate for F = H[∅], . . . ,H[E(H)]. This induces a system of
linear equations and the corresponding matrix is proved to be non-singular
in Appendix B (see Lemma B.2). Consequently, the numbers

a(H[S]) ·#cp-Hom(H[S]→ G)

are uniquely determined and can be computed by solving the system using
Gaussian elimination. Finally, we obtain the numbers #cp-Hom(H[S]→ G)
by multiplying with a(H[S])−1 whenever a(H[S]) 6= 0. �

It remains to express the number of color-prescribed induced subgraphs
that satisfy a property Φ as a linear combination of color-prescribed homo-
morphisms.

Lemma 5.43. Let H be a graph, let Φ be a graph property and let G be an
H-colored graph. Then we have that

#cp-IndSub(Φ→ G) =
∑

S∈E(H)

Φ(H[S])
∑

J⊆E(H)\S

(−1)#J ·#cp-Hom([H[S∪J]→ G) .

Moreover, the absolute values of the coefficient of #cp-Hom(H → G) and
the alternating enumerator χ̂(Φ, H) are equal.

Proof. We start by establishing the following claim.

Claim 5.44. Let H be graph, let S ⊆ E(H) and let G be an H-colored
graph. Then we have that

#cp-IndSub(H[S]→ G) =
∑

J⊆E(H)\S

(−1)#J ·#cp-Sub(H[S ∪ J]→ G) .

Proof. We have that

cp-IndSub(H[S]→ G) = cp-Sub(H[S]→ G) \
⋃

e∈E(H)\S

cp-Sub(H[S ∪ {e}]→ G) .

Hence, by inclusion-exclusion (Theorem 2.27),

#cp-IndSub(H[S]→ G) =
∑

J⊆E(H)\S

(−1)#J ·#cp-Sub(H[S ∪ J]→ G) . �

120 Chapter 5: Induced Subgraphs

Now we have that

#cp-IndSub(Φ→ G) =
∑

S∈E(H)

Φ(H[S]) ·#cp-IndSub(H[S]→ G) (5.19)

=
∑

S∈E(H)

Φ(H[S])
∑

J⊆E(H)\S

(−1)#J ·#cp-Sub(H[S ∪ J]→ G)

(5.20)

=
∑

S∈E(H)

Φ(H[S])
∑

J⊆E(H)\S

(−1)#J ·#cp-Hom(H[S ∪ J]→ G)

(5.21)

where (5.19) follows from the definition of cp-IndSub(Φ → G), (5.20) is
Claim 5.44 and (5.21) holds as color-prescribed homomorphisms are injec-
tive and a color-prescribed embedding is uniquely identified by its image.
Collecting for the coefficient of #cp-Hom(H → G) yields∑

S∈E(H)

Φ(H[S]) · (−1)#E(H)−#S = (−1)#E(H) · χ̂(Φ, H) . (5.22)

�

The application of complexity monotonicity for color-prescribed homo-
morphisms (Lemma 5.42) requires non-zero coefficients. However, this can
be guaranteed for the coefficient of interest in case of p-edge-transitive graphs
as shown in Lemma 5.36. Formally, the reduction is constructed as follows.

Lemma 5.45. Let Φ be a graph property and let H be a p-edge-transitive
graph such that Φ(H[∅]) 6= Φ(H). There exists an algorithm A that is
given an H-colored graph G as input and has oracle access to the function
#cp-IndSub(Φ→ ?) and computes #cp-Hom(H → G) in time f(|H|)·|V (G)|
where f is a computable function. Furthermore, every oracle query Ĝ is H-
colored as well and satisfies |V (Ĝ)| ≤ f(|H|) · |V (G)|.

Proof. Using Lemma 5.43 we can express #cp-IndSub(Φ → ?) as a linear
combination of color-prescribed homomorphisms. In particular, the co-
efficient of #cp-Hom(H → ?) is (±1) · χ̂(Φ, H) and by Lemma 5.36 we
have that this number is non-zero whenever H is p-edge-transitive and
Φ(H[∅]) 6= Φ(H). Hence we can use the algorithm from Lemma 5.42 to
compute #cp-Hom(H → G) in the desired running time. �

Proofs of Lemma 5.46 and Lemma 5.47

In the first reduction we are given graphs H and G and the goal is to compute
#Hom(H → G) using an oracle for #cp-Hom(H → ?). This can be done
by taking precisely |V (H)| copies of the vertices of G, that is, one for each
vertex in H and then adding an edge between two vertices u and v if they
have been adjacent in G and the vertices of H corresponding to the copies
of V (G) that contain u and v are adjacent in H as well. The construction

5.2. An Algebraic Approach to Hardness 121

is formalized in the proof of the following lemma. In particular it is shown
that the resulting graph Ĝ is H-colored.

Lemma 5.46. Let H be a graph. There exists an algorithm A that is given
a graph G as input and has oracle access to the function #cp-Hom(H → ?)
and computes #Hom(H → G) in time f(|V (H)|) · |V (G)| where f is a
computable function. Furthermore, every oracle query Ĝ satisfies that
|V (Ĝ)| ≤ f(|V (H)|) · |V (G)|.

Proof. Let k = |V (H)|. It will be convenient to assume that V (H) = [k].
Given G, we construct a graph Ĝ as follows. The vertex set of Ĝ is defined
to be

V (Ĝ) =

k⋃
i=1

Vi ,

where Vi = {vi | v ∈ V (G)} is a copy of V (G) identified with i ∈ V (H). We
add an edge {ui, vj} to Ĝ if and only if {i, j} ∈ E(H) and {u, v} ∈ E(G).
Now it can easily be verified that the function c : V (Ĝ) → V (H) given
by c(vi) := i is an H-coloring of Ĝ. Furthermore it is easy to see that
#cp-Hom(H → Ĝ) = #Hom(H → G). �

The last part of the reduction sequence allows us to get rid of the colors.
More precisely, we will reduce the problem of counting color-prescribed in-
duced subgraphs of an H-colored graph to the problem of counting uncolored
induced subgraphs of size |V (H)| in a graph, both with respect to some prop-
erty Φ. The proof is a straightforward application of the inclusion-exclusion
principle (Theorem 2.27).

Lemma 5.47. Let Φ be a graph property and let H be a graph with k ver-
tices. There exists an algorithm A that is given an H-colored graph G as
input and has oracle access to the function #IndSub(Φ, k → ?) and com-
putes #cp-IndSub(Φ → G) in time f(k) · |V (G)| where f is a computable
function. Furthermore, every oracle query Ĝ satisfies |V (Ĝ)| ≤ |V (G)| and,
in particular, Ĝ allows an H-coloring as well.

Proof. It will be convenient to assume that V (H) = [k]. We first check
whether the H-coloring c of G is surjective. If this is not the case then
there exists some vertex i ∈ V (H) such that i /∈ im(c) and hence there is no
color-prescribed induced subgraph of G, so A can just output 0. Otherwise,
the H-coloring of G induces a partition of V (G) in k many non-empty and
pairwise disjoint subsets, each associated with some “color” i ∈ V (H). This
allows us to equivalently express cp-IndSub(Φ → G) in terms of vertex-
colorful induced subgraphs:

cp-IndSub(Φ→ G) =

{
S ⊆

(
V (G)

k

) ∣∣∣∣ c(S) = [k] ∧ Φ(G[S]) = 1

}

122 Chapter 5: Induced Subgraphs

By the principle of inclusion and exclusion (Theorem 2.27) we obtain that

#cp-IndSub(Φ→ G) =
∑
J⊆[k]

(−1)#J ·#IndSub(Φ, k → GJ) ,

where GJ is the graph obtained from G by deleting all vertices that are
colored with some color in J . Hence we can compute #cp-IndSub(Φ → G)
using 2k oracle calls. Finally, we observe that H-colored graphs are closed
under the removal of vertices and therefore every GJ allows an H-coloring.�

Non-trivial bipartite graph properties

Finally, we apply the algebraic approach which was laid out in the preceding
sections to bipartite graph properties. This will allow us to prove our main
result. Recall that a set K ⊆ N is called dense if there exists a constant c
such that for every k′ ∈ N there exists k ∈ K such that k′ ≤ k ≤ ck′. Fur-
thermore, we write ISk for the graph with k isolated vertices. The following
theorem is obtained by invoking the reduction sequence (5.16) to complete
bipartite graphs Kt,t for prime powers t = pk, which are p-edge-transitive
(see Section 5.2.1).

Theorem 5.48 (Theorem 5.31 restated). Let Φ be a computable graph
property and let K be the set of all prime powers t such that Φ(IS2t) 6=
Φ(Kt,t). If K is infinite then #IndSub(Φ) is #W[1] hard. If additionally
K is dense then it cannot be solved in time f(k) · no(k) for any computable
function f unless ETH fails. This holds true even if the input graphs to
#IndSub(Φ) are restricted to be bipartite.

The proof of the previous theorem requires the following intermediate lemma.
In particular, we use a trick inspired by Lemma 1.11 in [39] to make the re-
duction parsimonious which is required for the extension in Appendix B.

Lemma 5.49. There exists an algorithm that, given an integer ` > 1 and
a graph G with n vertices, computes in time O(`n) a K`,`-colored graph G′

with at most O(`n) vertices such that the number of cliques of size ` in G
equals #cp-Hom(K`,` → G′).

Proof. Let the vertex set of G be {vi | 1 ≤ i ≤ n} and let that of K`,`

be {ai, bi | 1 ≤ i ≤ `}. We now construct the graph G′ on the vertex set
{ui,j , wi,j | 1 ≤ i ≤ `, 1 ≤ j ≤ n} with a K`,`-coloring given by c(ui,j) = ai
and c(wi,j) = bi. We add an edge between ui,j and wi′,j′ if and only if

• either (i, j) = (i′, j′),

• or i < i′, j < j′ and the vertices vj and vj′ are adjacent,

• or i > i′, j > j′ and the vertices vj and vj′ are adjacent.

5.2. An Algebraic Approach to Hardness 123

Let {vi1 , . . . vi`} be an `-clique in G. Assume w.l.o.g. that ik < ik′ for k < k′.
Then the set {u1,j1 , . . . u`,j` , w1,i1 , . . . w`,j`} forms a colorful biclique in G′, so
it gives rise to a color-prescribed homomorphism h ∈ cp-Hom(K`,` → G′).
Now let h′ ∈ cp-Hom(K`,` → G′) be a color-prescribed homomorphism.
Then there has to be the following colorful biclique in G′:

{u1,α1 , . . . u`,α` , w1,β1 , . . . w`,β`} .

We first see that for every i we have αi = βi since there has to be an
edge between ui,αi and wi,βi . Furthermore the edges enforce αj < βj′ for
every j < j′. Thus {vα1 , . . . , vα`} is a clique of size ` in G. Since every
homomorphism yields βj = αj < βj′ = αj′ for j < j′ there is exactly one
homomorphism in cp-Hom(K`,` → G′) corresponding to each `-clique in G.�

Proof (of Theorem 5.48). Let Φ and K be as given in Theorem 5.48. We
define a class of graphs H as follows:

H = {Kt,t | t ∈ K} .

By Reductions Sequence (5.16), given by Lemma 5.46, Lemma 5.45 and
Lemma 5.47, we obtain that #Hom(H) ≤T

fpt #IndSub(Φ). As Φ is com-
putable, H is recursively enumerable. Furthermore, as K is infinite, we have
that there are arbitrary large bicliques in H and, in particular, the treewidth
of H is unbounded. Therefore #Hom(H), and hence #IndSub(Φ), are
#W[1]-hard by Theorem 2.34. For the tight bound under ETH, we reduce
from the decision problem Clique which asks, given G and k, to decide
whether G contains a clique of size k and which cannot be solved in time
f(k) · no(k) for any computable function f , unless ETH fails [33, 34]. Now
assume that K is dense and let (G, k) be an instance of Clique. By density
of K, there exists ` ∈ K such that k ≤ ` ≤ ck for some overall constant c
independent of k. We construct the graph Ĝ from G by adding ` − k fur-
ther vertices and adding edges between all new vertices as well as between
every pair of an old and a new vertex. It can then easily be verified that G
contains a clique of size k if and only if Ĝ contains a clique of size `.

Next we apply Lemma 5.49 to Ĝ and `, and obtain an K`,`-colored

graph G′ satisfying that the number of `-cliques in Ĝ is equal to the number
#cp-Hom(K`,` → G′). Finally, we invoke Lemma 5.45 and Lemma 5.47 to
conclude the reduction. In particular, all reductions are tight in the sense
that every oracle call for #IndSub(Φ) in the final part of the reduction is a
pair (G̃, 2`) where the number of vertices of G̃ is bounded by O(` · |V (G)|).
As ` ≤ ck we conclude that every algorithm that solves #IndSub(Φ) in time
f(k) · no(k) can be used to solve Clique in time f(k) · no(k) — just check in
the end whether the output is a number greater than zero.

Finally, we point out that for both (#W[1] and ETH) hardness results,
the last part of the reduction, that is, Lemma 5.47 only queries for graphs
that are Kt,t-colorable and hence bipartite. �

124 Chapter 5: Induced Subgraphs

Note that, in case Φ or its complement is edge-monotone, we only have to
find infinitely many prime powers t for which Φ is neither true nor false on
the set of all edge-subgraphs of Kt,t, which is the case for all sensible, non-
trivial properties that do not rely on the number of vertices in some way.
If Φ (or its complement) is monotone, that is, not only closed under the
removal of edges, but also under the removal of vertices, then such artificial
properties do not exist and we can state the result more clearly as follows.

Corollary 5.50 (Theorem 5.33 restated). Let Φ be a computable mono-
tone graph property such that Φ and ¬Φ hold on infinitely many bipartite
graphs. Then #IndSub(Φ) is #W[1]-hard and cannot be solved in time
f(k) ·no(k) for any computable function f unless ETH fails. This holds true
even if the input graphs to #IndSub(Φ) are restricted to be bipartite.

Proof. If Φ is monotone and Φ and ¬Φ hold on infinitely many bipartite
graphs, then Φ(ISk) = 1 for all positive integers k and Φ(Kt,t) = 0 for all
but finitely many t. Hence we can apply Theorem 5.48 and, in particular,
the set K will contain all but finitely many prime powers and is therefore
dense. �

Chapter 6

Existential First-order
Formulas

The last chapter of this thesis is devoted to the study of the parameterized
and fine-grained complexity of the problem of counting answers to existential
(and universal) first-order formulas. Very roughly speaking, this family of
counting problems generalizes problems that have been studied prior in this
thesis by one additional quantifier alternation. It will turn out that count-
ing answers to conjunctive queries, which constitute the most basic class
of first-order formulas (see Chapter 2.6), takes the role of the homomor-
phism counting problem in the setting of the current chapter. In particular,
building upon prior work of Chen, Durand and Mengel [58, 31, 32], we will
provide an extensive classification result for the parameterized problem of
counting answers to conjunctive queries that subsumes the classification for
counting homomorphisms (Theorem 2.34) as a special case. After that, we
will adapt complexity monotonicity to conjunctive queries by introducing
what we call quantum queries, which constitute a natural generalization of
quantum graphs to existential first-order formulas. This will then allow us to
lift the classification for counting answers to conjunctive queries to general
existential first-order formulas.

One major difference to the previous chapters is the fact that we will
encounter problems that are not #W[1]-easy, and not even #W[2]-easy under
standard assumptions. Instead, we need to consider the #A-classes to fully
understand the parameterized complexity of counting answers to existential
first-order formulas. The reader is encouraged to recall the introduction to
first-order logic in Chapter 2.6; in what follows, we assume familiarity with
the notions introduced there.

The results of this chapter have been obtained in collaboration with
Holger Dell and Philip Wellnitz and are published in [48]; a full version can
be found in [49].

126 Chapter 6: Existential First-order Formulas

6.1 The #A-Hierarchy

We begin with the necessary background on the #A-classes. A detailed
exposition can be found in [65, Chapt. 14]. Similarly to #W[1] and #W[2],
we use complete problems for the definitions.

Definition 6.1. Let t > 0 be a fixed positive integer. A parameterized
counting problem (P, κ) is called

• #A[t]-hard if #p-MC(Πt−1) ≤T
fpt (P, κ),

• #A[t]-easy if (P, κ) ≤T
fpt #p-MC(Πt−1), and

• #A[t]-equivalent if it is both, #A[t]-hard and #A[t]-easy.

Flum and Grohe [65, Chapt. 14.2] proved that #W[1]-easy ⇔ #A[1]-easy,
and

#W[1]-easy ⇒ #W[2]-easy ⇒ #A[2]-easy.

However, it is conjectured that the backward directions do not hold. In
particular, this implies that the sets of #W[1]-equivalent problems, #W[2]-
equivalent problems and #A[2]-equivalent problems are pairwise different.
By definition, counting answers to existential first-order formulas is #A[2]-
easy. We complement this result by proving that the problem is #A[2]-hard,
even when restricted to conjunctive queries over the signature of graphs, ex-
cluding those with self-loops. This requires us to lift a technical normaliza-
tion result from decision to counting; the proof can be found in Appendix C.

6.2 Conjunctive Queries

Conjunctive query evaluation is a core problem in database theory. Recall
from Chapter 2.6 that conjunctive queries can be expressed by formulas of
the form

x1 . . . xk∃y1 . . . ∃y`(a1 ∧ · · · ∧ am) , (6.1)

where the xi are the free variables, the yi are the (existentially) quantified
variables, and the ai are atomic formulas (such as edge E(x1, y4) or relational
R(x7, y3, y6) constraints on the variables). Conjunctive queries exactly cor-
respond to select-project-join queries; a detailed introduction can be found
in the textbook of Abiteboul, Hull, and Vianu [4].

Perhaps the most näıve way to study the complexity of counting an-
swers to conjunctive queries is via its combined complexity, in which both
the query and the structure are considered to be worst-case inputs. Since
conjunctive queries generalize the clique problem on graphs, the problem is
clearly NP-hard in this setting [28]. In the real world, however, the structure

6.2. Conjunctive Queries 127

models a relational database and is much larger than the query, and thus the
combined complexity may fixate on instances that we do not care about. For
this reason the framework of parameterization fits best to study the com-
plexity of the problem. Furthermore, we will consider its data complexity
which allows for a fine-grained complexity analysis. In particular, the data
complexity considers the query to be completely fixed and only the struc-
ture to be worst-case input. If the query is fixed, the number of variables
k + ` is a constant, and so the problem is polynomial-time solvable: even
the exhaustive search algorithm just needs to try out and check all nk+`

possible assignments to the variables, where n is the size of the universe.
Unsurprisingly, exhaustive search is not the best strategy for every query.
For example, Chekuri and Rajaraman [30] showed that the decision and
counting problems can be solved in time O(nt+1) where t is the treewidth of
the query’s Gaifman graph, that is, the graph containing a vertex for every
variable and an edge between two vertices whenever the corresponding vari-
ables are contained in a common constraint. Their algorithm is a natural
generalization of the treewidth-based dynamic programming algorithm for
counting homomorphisms (see Theorem 2.35). Since t+ 1 is typically much
smaller than k+ `, this algorithm is better than exhaustive search. For each
fixed query Q, the guiding question for a fine-grained understanding of data
complexity is this: What is the smallest constant cQ such that the query
evaluation problem can be solved in time O(ncQ)?

Now consider a conjunctive query as given in (6.1) and observe that
instances with k = 0 constitute decision problems. For this reason, it is
not surprising that there are families Ψ of conjunctive queries for which
#p-MC(Ψ) is equivalent to a decision problem. It is hence necessary to
consider the decision version of #W[1] to fully understand the complexity of
counting answers to conjunctive queries. To this end, we let Clique be the
problem of, given a graph G and a positive integer k, computing 1 if G con-
tains a clique of size k as a subgraph and 0 otherwise; the parameterization
is given by k.

Definition 6.2. A parameterized counting problem (P, κ) is called W[1]-
equivalent if it is interreducible with Clique with respect to parameterized
Turing reductions.

We build upon the work of Chen, Durand and Mengel [58, 31] who
established the following classification.

Theorem 6.3. Let Ψ be a class of conjunctive queries of bounded arity.1

Then #p-MC(Ψ) is either polynomial-time solvable, or W[1]-equivalent, or
#W[1]-hard.

1Unbounded arity is not meaningful as the size of a structure might in this case not
be bounded by a polynomial in the number of vertices. We address this issue formally in
Appendix C.

128 Chapter 6: Existential First-order Formulas

The criteria for the above theorem are given explicitly; we will provide an
exposition in the subsequent section. Furthermore, Chen and Mengel [32]
extended the previous theorem to the following more general case.

Theorem 6.4. Let Σ be a class of existential first-order formulas of bounded
arity without negations. Then #p-MC(Σ) is either fixed-parameter tractable,
or W[1]-equivalent, or #W[1]-hard.

In proving the previous theorem, Chen and Mengel implicitly used complex-
ity monotonicity. In contrast to Theorem 6.3, they did not provide explicit
criteria for the three different cases.

Note that neither of Theorem 6.3 and Theorem 6.4 does fully reveal
the complexity of #p-MC(Ψ) and #p-MC(Σ), respectively, as the general
problem of counting answers to conjunctive queries is #A[2]-equivalent.

As already indicated before, we make simultaneous progress on two
fronts: Our complexity classifications are finer than previous work, and we
can prove the classification for more general classes of queries. An important
feature of our work is that the proofs are modular and largely self-contained:
We first prove the complexity results for counting partial homomorphisms2,
then lift them to conjunctive queries, and then further to a more general
class of queries. So what is the most general class of queries that we study?
We allow queries ϕ of the form

x1 . . . xk∃y1 . . . ∃y` : ψ , (6.2)

where ψ is a quantifier-free formula in first-order logic and all negations
in ψ must be directly applied to constraints that only involve free variables
(e.g. E(x1, x7) ∨ (R(x7, y7, y9) ∧ ¬R(x1, x4, x9))). Constraints of the form
¬R(x1, x4, x9) are referred to as non-monotone constraints in the remainder
of the paper. Furthermore ϕ may be equipped with a set of inequalities over
the free variables (eg. x3 6= x5), the semantics of which are formally defined
in the respective section.

All of our theorems also apply to the corresponding universal queries,
where each ∃ in (6.2) is replaced with ∀, but for the sake of readability we
will often omit this fact.

To study the data complexity of the problem, we employ the Strong Ex-
ponential Time Hypothesis. The problem #DomSet can be easily expressed
as a (universal) conjunctive query, and recall that this problem cannot be
solved in time O(nk−ε) unless SETH is false (see Theorem 2.21). We are
able to lift this hardness result to all queries ϕ that have the k-dominating
set query as a query minor, a notion that we translate from graphs and for-
malize later. The dominating star size dss(ϕ) of a conjunctive query ϕ is the
maximum number k such that the k-dominating set query is a query minor.

2Not to be confused with partially injective homomorphisms.

6.2. Conjunctive Queries 129

Equivalently, this means that some connected component in the quantified
variables of ϕ has k neighbors in the free variables.3 We obtain the following
result:

Theorem 6.5 (Data complexity). Let ϕ be a fixed query of the form (6.2)
such that dss(ϕ) ≥ max{3, arity(ϕ)}. Given a structure G with n vertices,
we wish to compute #ϕ(G). This problem cannot be solved in time

O(ndss(ϕ)−ε)

for any ε > 0, unless SETH fails.

Neglecting many technical details, the proof of Theorem 6.5 reduces
#DomSet to the model counting problem for ϕ by following operations of
the query minor. If ϕ is a query of the form (6.2), then it can be represented
by a quantum query with constituents ϕ′; in this case, we define dss(ϕ) as
the maximum dss(ϕ′) over all ϕ′. We formalize those notions in Chapter 6.3.

Theorem 6.5 is similar in spirit to other known conditional lower bounds
for first-order model checking, such as the one of Williams [136] and Gao et
al. [68]. One of their results is that first-order sentences with k+ 1 variables
cannot be decided in time O(mk−ε), where m is the size of the structure,
unless SETH fails. However, these results are incomparable to Theorem 6.5
for several reasons: The results in [136, 68] allow negations and consider
the decision problem, while we allow only limited negations and consider
the counting problem. More fundamentally, however, Theorem 6.5 gives
a hardness result for every fixed query ϕ, while the results in [136, 68]
show that there exists a query ϕ that is hard. Moreover, the lower bounds
in [136, 68] are in terms of the size m of the structure, not merely the size n
of the domain.

Regarding the parameterized complexity of counting answers to con-
junctive queries, we show that the dominating star size, i.e., the parameter
considered in Theorem 6.5, is a structural parameter for conjunctive queries
that, if unbounded, makes the problem #W[2]-hard and that, if bounded,
keeps the problem #W[1]-easy.

Furthermore, we study which families of conjunctive queries constitute
the hardest parameterized counting problems, even harder than the #W[2]-
hard cases unless #A[2] = #W[2] holds, which seems unlikely.4 We prove
that families of conjunctive queries are #A[2]-hard if their linked matching
number is unbounded. Intuitively a conjunctive query ϕ with free vari-
ables X and quantified variables Y has a large linked matching if there is a
large well-linked set in Y that cannot be separated from X by removing a
small number of variables. It is formally defined in Chapter 6.3. We obtain
the following refined complexity classification.

3The dominating star size coincides with the strict star size from [31].
4See Chapt. 8 and 14 in [65] for a discussion.

130 Chapter 6: Existential First-order Formulas

Theorem 6.6 (Parameterized complexity). Let Φ be a family of con-
junctive queries of bounded arity. The problem #p-MC(Φ) is

1. #W[1]-easy if the dominating star size of Φ is bounded,

2. #W[2]-hard if the dominating star size of Φ is unbounded, and

3. #A[2]-equivalent if the linked matching number of Φ is unbounded.

It is instructive to provide examples for the application of the above
theorem. First consider the problem of, given a graph G and a positive
integer k, computing the number of cliques of size k that are not maximal.
While the problem of counting cliques of size k is #W[1]-equivalent, adding
the non-maximality constraint makes the problem hard for #W[2]. To see
this, we will express the problem as a conjunctive query

ϕk := x1 . . . xk∃y :
∧

1≤i<j≤k
E(xi, xj) ∧

∧
1≤i≤k

E(xi, y) . (6.3)

Note that the number of solutions to ϕk in G is precisely k! times the number
of non-maximal cliques of size k in G. Furthermore, it holds that ϕk has
dominating star size k and hence that Φ = {ϕk | k ∈ N} has unbounded
dominating star size. By Theorem 6.6 the problem of counting answers to
queries in Φ is #W[2]-hard. Furthermore, invoking Theorem 6.5, we obtain
that counting non-maximal cliques of size k cannot be done in time O(nk−ε)
for any ε > 0. Note that this is also in sharp contrast to the problem of
counting (not necessarily non-maximal) cliques of size k which can be done
in time O(nωk/3) (see Theorem 2.20). Furthermore deciding the existence
of a non-maximal clique of size k is equivalent to deciding the existence of a
clique of size k+1 and hence the lower bound under SETH crucially depends
on the fact that we count the solutions.

On the other hand, counting non-maximal cliques of size k is most likely
not #A[2]-hard as it is #W[2]-easy5. An example for a #A[2]-hard prob-
lem would be the following. Assume a graph G and a positive integer k
are given. Then the goal is to compute the number of k-vertex sets that
can be (perfectly) matched to a k-clique. Let us express the problem as a
conjunctive query

ψk := x1 . . . xk∃y1 . . . ∃yk :
∧

1≤i<j≤k
E(yi, yj) ∧

∧
1≤i≤k

E(xi, yi) . (6.4)

We point out that ψk does not correspond directly to the vertex sets we
would like to count as xi and xj could be the same vertex in G.

5If there is a constant bound on the number of quantified variables then the problem of
counting answers to conjunctive queries is reducible to a #W[2]-equivalent problem w.r.t.
parameterized Turing reductions. We omit a proof of this statement but point out that it
can be done by lifting the results of Chapt. 7.4 in [65] to the realm of counting problems.

6.2. Conjunctive Queries 131

y

x1

xk

y

ỹ

x1

xk

Figure 6.1: Left: Graphical representation of the conjunctive query in (6.5). Right:
A graphical conjunctive query that is “equivalent” to the example on the left in the
sense that an assignment a : {x1, . . . , xk} → V (G) is a partial homomorphism from
the left graph to G if and only if it is a partial homomorphism from the right graph
to G.

However, it can be shown along the lines of Chapter 6.3.4 that an oracle for
counting answers to ψk allows us to compute the desired number efficiently
and vice versa. Finally, as the linked matching number of ψk is not bounded
for k →∞, #A[2]-hardness follows from Theorem 6.6.

Building up on Theorem 6.6 and using the framework of quantum queries,
we obtain the following, extensive classification result.

Theorem 6.7. Let Φ be a family of existential or universal positive for-
mulas with inequalities and non-monotone constraints, both over the free
variables. If the arity of Φ is bounded then the problem #p-MC(Φ) is either
fixed-parameter tractable, W[1]-equivalent, #W[1]-equivalent, #W[2]-hard or
#A[2]-equivalent.

Note that allowing the inequalities and non-monotone constraints over
all variables, not just the free ones, would in particular include the subgraph
decision problem. However, the parameterized complexity of finding a sub-
graph in G that is isomorphic to a small pattern graph P is a long-standing
open question in parameterized complexity (see e.g. [57, Chapt. 33.1]).

6.2.1 Graphical Conjunctive Queries and Colorings

It is instructive to first focus on conjunctive queries with one relation sym-
bol E of arity two. After that, we will generalize the results to arbitrary
structures in Chapter 6.5. An example of such a query is the following
formula:

x1 . . . xk∃y : Ex1y ∧ · · · ∧ Exky . (6.5)

The relation E corresponds to a graphG and the free and quantified variables
will be assigned vertices of G. In (6.5), an assignment a1, . . . , ak in V (G) to
the free variables satisfies the formula if and only if the vertices a1, . . . , ak
have a common neighbor in G. It will be convenient for us to view the
formula as a graph H as depicted in Figure 6.1. The vertices of H are
partitioned into a set X = {x1, . . . , xk} of free variables and a set Y = {y}
of quantified variables. An assignment to the free variables corresponds to
a function a : X → V (G), and such an assignment satisfies the formula if

132 Chapter 6: Existential First-order Formulas

it can be consistently extended to a homomorphism from H to G. This
motivates the following definition, where we only consider simple graphs
without loops, so we do not allow atoms of the form Ezz.

Definition 6.8. A graphical conjunctive query (H,X) consists of a graph
H and a set X of vertices of H. We let Hom(H,X → G) be the set of all
mappings from X to V (G) that can be extended to a homomorphism from
H to G, and we call these mappings partial homomorphisms. Formally, the
set of partial homomorphisms is defined via

Hom(H,X → G) = {a : X → V (G) | ∃h ∈ Hom(H → G) : h|X = a} .

Given a set ∆ of graphical conjunctive queries, the problem #Hom(∆) asks,
given (H,X) ∈ ∆ and a graph G, to compute #Hom(H,X → G) and is
parameterized by |V (H)|.

Given two different graphical conjunctive queries (H,X) and (Ĥ, X̂) it
might be the case that #Hom(H,X → ?) and #Hom(Ĥ, X̂ → ?) are the
same functions. An example for this is given in Figure 6.1. In this case, we
say that (H,X) and (Ĥ, X̂) are equivalent , denoted as (H,X) ∼ (Ĥ, X̂),
and the subgraph-minimal elements of the induced equivalence classes are
called minimal . An explicit notion of equivalence is given in Chapter 6.4.
In our proofs, we make use of the following property of minimal queries,
whose elementary proof we defer to Chapter 6.5.2, where we generalize it to
arbitrary structures.

Lemma 6.9. Let (H,X) be a minimal and let h be an endomorphism of H.
If h maps X bijectively to itself then h is an automorphism.

While we are ultimately interested in the complexity of computing the
number of partial homomorphisms, our hardness proofs become much more
pleasant if we consider vertex-colored graphs (see Definition 2.44). Recall,
that a graph G is H-colored if there is a homomorphism c from G to H. The
value c(v) for a vertex v ∈ V (G) is called the color of v and given a vertex
u ∈ V (H) we write c−1(u) for the set of all vertices in G that are mapped
to u. Similar to the second part of Chapter 2.5, we consider color-prescribed
homomorphisms, which are homomorphisms h ∈ Hom(H → G) with the ad-
ditional property that every vertex u ∈ V (H) maps to a vertex h(u) whose
color is u. Recall that cp-Hom(H → G) denotes the set of all color-prescribed
homomorphisms. Now given X ⊆ V (H), we write cp-Hom(H,X → G)
for the set of partial color-prescribed homomorphisms, that is, functions
a : X → V (G) that can be extended to color-prescribed homomorphisms.
The problem #cp-Hom(∆) is defined analogously to #Hom(∆). Note that
the set cp-Hom(H → G) is empty if the H-coloring of G is not surjec-
tive. Therefore it will be convenient to assume that the input graphs of
the functions #cp-Hom(H → ?) and #cp-Hom(H,X → ?) are surjectively
H-colored.

6.2. Conjunctive Queries 133

Color-prescribed Homomorphisms Under Taking Minors

Recall that a minor of a graph H is any graph that can be obtained from H
by deleting vertices and edges and by contracting edges. In this section, we
extend the minor relation to graphical conjunctive queries. As it turns out,
if M is a minor of a graphical conjunctive query (H,X), then M can be
reduced to (H,X).

Recall further, that given a graph H and an edge e ∈ E(H), we write
H − e to denote the graph obtained from H by deleting e and H/e for the
graph H where e is contracted. Note that any multiple edges and self-loops
are deleted. Similarly, for an isolated vertex v ∈ V (H) we write H − v for
the graph resulting from H by deleting v. A minor of H is any graph that
can be obtained from H by iteratively applying these operations.

The deletion and contraction operations extend to graphical conjunctive
queries (H,X) in the natural way, but we must decide each time how to
modify the set X. For an isolated vertex v ∈ V (H), we set

(H,X)− v := (H − v,X \ {v}) ,

and for an edge e ∈ E(H), we set

(H,X)− e := (H − e,X) .

For the contraction operation, let e ∈ E(H) and let we be the vertex that e
is contracted to in H/e. The contraction of two quantified variables yields
a quantified variable, but as soon as one endpoint of e is a free variable, the
contracted variable is a free variable. Formally, we define

(H,X)/e = (H/e,X ′) ,

where

X ′ =

{
X , if e is disjoint from X,

(X \ e) ∪ {we} , otherwise.

Here we denotes the vertex that e got contracted to. Similar as to graphs,
we say that (Ĥ, X̂) is a minor of (H,X) if (Ĥ, X̂) can be obtained from
(H,X) by iteratively applying these deletion and contraction operations.
We now prove that color-prescribed homomorphisms are “minor-closed”,
that is, if we know the color-prescribed homomorphisms from (H,X) then
we know them from any minor as well. In particular, we emphasize that the
following lemma is a generalization of Lemma 2.47 from graphs to graphical
conjunctive queries.

Lemma 6.10. Let (H,X) be a graphical conjunctive query and let (Ĥ, X̂)
be a minor of (H,X). Given an Ĥ-colored graph G, we can in polynomial
time compute an H-colored graph G′ with |V (G′)| ≤ |V (H)| · |V (G)| and

#cp-Hom(Ĥ, X̂ → G) = #cp-Hom(H,X → G′) .

134 Chapter 6: Existential First-order Formulas

u v u v

H − uv H

G G′

Edge deletion

uv u v

H/uv H

G G′

Edge contraction

z
H − z H

G G′

Vertex deletion

Figure 6.2: Illustration of the reduction for each operation as demonstrated in
Lemma 6.10. Edges that are added in the reduction are dashed.

Proof. The claim is trivial if (Ĥ, X̂) and (H,X) are equal. We prove the
claim in case (Ĥ, X̂) is obtained from (H,X) by a single deletion or con-
traction operation, the full result then follows by induction. Figure 6.2
illustrates the proof for each of the three operations. In what follows, it will
be convenient to just write uv for an edge {u, v}.

Edge deletions. Let e ∈ E(H) be an edge with e = uv and suppose that
Ĥ = H−e and X̂ = X. Let G be a Ĥ-colored graph given as input, together
with the coloring c : V (G)→ V (Ĥ). To construct G′, we start from G and
simply add all possible edges between the color classes c−1(u) and c−1(v);
clearly this construction takes polynomial time, G′ has the same number of
vertices as G, and c is a homomorphism from G′ to H. To verify the correct-
ness, we show that cp-Hom(Ĥ,X → G) = cp-Hom(H,X → G′) = holds. In-
deed, let h : V (H)→ V (G) a color-prescribed mapping. Since h(e) ∈ E(G′)
holds by construction and e is the only constraint where H and Ĥ dif-
fer, the addition of the edge e does not matter. Hence h is an element
of cp-Hom(Ĥ,X → G) if and only if it is an element of cp-Hom(H,X → G′).
Moreover, the set of partial color-prescribed homomorphisms stays the same.

Vertex deletions. Let z ∈ V (H) be an isolated vertex and suppose that
Ĥ = H−z and X̂ = X \{z}. Let G be a Ĥ-colored graph given as input, to-
gether with the coloring c : V (G)→ V (Ĥ). To construct G′, we start from G
and simply add an isolated vertex z′ to it, whose color c(z′) we define as z;
clearly c is now a homomorphism from G′ to H. To verify the correctness,
observe that #cp-Hom(Ĥ, X̂ → G) = #cp-Hom(H,X → G′) holds: Any
color-prescribed homomorphism h from H to G′ remains a color-prescribed
homomorphism from Ĥ to G by restricting h to V (Ĥ). Conversely, any h
from Ĥ to G can be extended in exactly one color-prescribed way by set-
ting h(z) = z′. Thus the number of partial color-prescribed homomorphisms
stays the same.

Edge contractions. Let e ∈ E(H) be an edge with e = uv, and sup-
pose (Ĥ, X̂) = (H,X)/e. Contracting the edge e in H identifies the vertices
u and v; let us call the new vertex w ∈ V (Ĥ). Let G be a Ĥ-colored

6.2. Conjunctive Queries 135

graph given as input, together with the coloring c : V (G)→ V (Ĥ). We
want to use G′ ensure that any color-prescribed homomorphism h from H
to G′ assigns u and v to the same value, that is, satisfies the equality con-
straint h(u) = h(v). To do this, we simply put an induced perfect matching
in G′ between the color class of u and the color class of v. More formally,
we start from G and split every vertex x ∈ c−1(w) into an edge xuxv in G′,
but we leave their neighborhoods intact, that is, we have

NG′(xu) ∩ V (G) = NG′(xv) ∩ V (G) = NG(x) .

Clearly G′ is now H-colored, and it has exactly |c−1(w)| vertices more
than G. To verify correctness, again observe that

#cp-Hom(Ĥ, X̂ → G) = #cp-Hom(H,X → G′)

holds: Our construction forces any color-prescribed homomorphism h fromH
to G′ to satisfy h(u) = h(v) and thus gives rise to a color-prescribed homo-
morphism ĥ from Ĥ to G by setting ĥ(w) = h(u); this mapping h 7→ ĥ is a
bijection. If e is disjoint from X, then X = X̂ holds and the set of partial
homomorphisms is the same because h|X = ĥ|X̂ holds. If e is not disjoint

from X, then X̂ (X holds, but still the mapping h|X 7→ ĥ|X̂ is bijective.
In any case, the number of partial homomorphisms is the same. �

Reducing Color-prescribed to Uncolored Homomorphisms

We show that the number of color-prescribed homomorphism for graphical
conjunctive queries can be expressed by using the number uncolored homo-
morphisms. For the reduction, we need yet another type of homomorphisms
as in intermediate step, namely colorful homomorphisms. Again, we re-
fer to the second part of Chapter 2.5 where we introduced the notion for
graphs. Recall that, in contrast to color-prescribed homomorphisms, color-
ful homomorphisms are homomorphisms h ∈ Hom(H → G) with the less
prescriptive property that the image of h contains a vertex for each color,
that is, we have c(h(V (H))) = V (H). Recall further, that cf-Hom(H → G)
denotes the set of all colorful homomorphisms. Now, given X ⊆ V (H), we
write cf-Hom(H,X → G) for the set of partial colorful homomorphism, that
is, functions a : X → c−1(X) that can be extended to a colorful homo-
morphism from H to G. We point out that we only consider functions a
satisfying c(a(X)) = X. The problem #cf-Hom(∆) is defined analogously
to #Hom(∆).

We emphasize the following modifications of our notation prior to the
subsequent reductions. The reason for this is the fact that the proofs become
much more pleasant to read.

Notation. We write [k] for the set {1, . . . , k} and we write h ◦ g for the
functional composition x 7→ h(g(x)) in the remainder of this thesis.

136 Chapter 6: Existential First-order Formulas

For the reductions, we need a simple observation about the relationship
between H-colored graphs and homomorphisms into them.

Fact 6.11. Let c be the H-coloring of a graph G and let h ∈ Hom(H → G).
Then the function π : v 7→ c(h(v)) is an endomorphism of H. If h is colorful
and satisfies c(h(X)) = X for a set X ⊆ H, then π is an automorphism
that maps X to X in such a way that the function composition h ◦ π−1 is a
color-prescribed homomorphism.

Proof. The first statement holds as π is the composition of two homomor-
phisms h : V (H)→ V (G) and c : V (G)→ V (H). For the second statement
observe that colorfulness of h implies that π(V (H)) = V (H) and hence,
together with the assumption that c(h(X)) = X, the endomorphism π is an
automorphism that maps X to X. Finally we have that

c(h ◦ π−1(v)) = c(h ◦ (c ◦ h)−1(v)) = c(h(h−1(c−1(v)))) = v ,

and hence that h ◦ π−1 is color-prescribed. �

Using Fact 6.11 and by defining a suitable equivalence relation, we obtain
the first part of the reduction, namely from #cp-Hom(∆) to #cf-Hom(∆).
In particular, the following lemma generalizes Lemma 2.51 to graphical con-
junctive queries.

Lemma 6.12. Let (H,X) be a graphical conjunctive query and let G be an
H-colored graph. Then

#cf-Hom(H,X → G) = #Aut(H,X) ·#cp-Hom(H,X → G),

where Aut(H,X) := {b : X → X | ∃h ∈ Aut(H) : h|X = b}.

Proof. We define an equivalence relation ∼ on the set cf-Hom(H,X → G)
as follows: Two mappings a, a′ ∈ cf-Hom(H,X → G) are equivalent, written
a ∼ a′, if and only if their image is equal, that is, a(X) = a′(X) holds. We
denote the equivalence class of a with JaK.

To show “≥”, let a ∈ cp-Hom(H,X → G) be a partial color-prescribed
homomorphism. We show that JaK contains at least #Aut(H,X) elements,
exactly one of which is color-prescribed. Indeed, composing a with a bi-
jection b ∈ Aut(H,X) yields distinct functions a ◦ b, each of which has the
same image as a and thus is an element of JaK. Moreover, each a ◦ b can be
extended to a colorful homomorphism by composing the assumed automor-
phism extension of b with the assumed colorful homomorphism extension
for a. Finally, a◦b is color-prescribed only if b is the identity function. Thus
each color-prescribed a leads to at least #Aut(H,X) distinct colorful a ◦ b,
which proves “≥”.

6.2. Conjunctive Queries 137

For the backward direction “≤”, it suffices to prove that every colorful
partial homomorphism a ∈ cf-Hom(H,X → G) has some partial automor-
phism b ∈ Aut(H,X) such that a ◦ b ∈ cp-Hom(H,X → G) holds. Let h
denote the assumed colorful extension of a. Using Fact 6.11, h induces a
canonical automorphism π ∈ Aut(H) which maps X to X. Thus the func-
tion b with b = π−1|X is a member of Aut(H,X). Moreover, by definition
of π, the mapping a ◦ b is a partial color-prescribed homomorphism. �

It remains to reduce colorful homomorphisms to uncolored homomor-
phisms. We first observe that for minimal queries (H,X), the property
c(a(X)) = X already implies the existence of a colorful extension of a.

Observation 6.13. Let (H,X) be a minimal graphical conjunctive query
and let G be an H-colored graph with coloring c. Furthermore let a be a
function from X to V (G) satisfying c(a(X)) = X. If h ∈ Hom(H → G) is
a homomorphism that extends a, then h is colorful.

Proof. By Fact 6.11, h induces the canonical endomorphism π : v 7→ c(h(v)).
As h extends a and c(a(X)) = X holds, the endomorphism π bijectively
maps X to X. Therefore, by Lemma 6.9, π is an automorphism, which
implies that h is colorful. �

We proceed with the reduction to uncolored homomorphisms. Again,
the following lemma strengthens the corresponding version for graph homo-
morphisms (see Lemma 2.52). Our proof follows the strategy of multivariate
polynomial interpolation.

Lemma 6.14. Let (H,X) be a minimal graphical conjunctive query. Then
there is a deterministic algorithm A with oracle access to #Hom(H,X → ?)
that computes #cf-Hom(H,X → ?). Furthermore the running time of A
is bounded by O(f(|H,X|) · nc) for some computable function f and some
constant c independent of (H,X).

Proof. We start by providing an intuition. Let k = |V (H)|, ` = |X| and
assume that the vertices of H are the integers 1, . . . , k from which the first `
are in X. Further, let an H-colored graph G with coloring c be given. For
every color i ∈ [k], we clone (including incident edges) all vertices with color i
precisely zi − 1 times for some positive integer zi. We denote the resulting
graph as G~z, which is still H-colored.

Next, the numbers zi for i ∈ [k] are interpreted as formal variables and
it will turn out that #Hom(H,X → G~z) is a polynomial in Q[z1, . . . , zk].
Additionally, the coefficient of Π`

i=1zi is the number of assignments a from X
to V (G) such that c(a(X)) = X and that a can be extended to a homomor-
phism.

138 Chapter 6: Existential First-order Formulas

Applying Lemma 6.13 we obtain that those homomorphisms are indeed
colorful. We will be able to compute the coefficient by multivariate inter-
polation. Note that the evaluation of the polynomial in ~z can be done by
querying the oracle for G~z.

Formally, we define an equivalence relation on Hom(H,X → G~z) as fol-
lows. Two assignments a~z and a′~z are equivalent if and only if for every x ∈ X
it holds that a~z(x) and a′~z(x) are clones of the same vertex. Note that every
equivalence class corresponds to precisely one mapping a ∈ Hom(H,X → G)
and we write JaK~z for that class.

Next observe that every a ∈ Hom(H,X → G) induces a color-vector

ca = (c(a(1), . . . , c(a(`))) ∈ [k]` ,

which allows us to express the size of JaK~z as Π`
i=1zca(i). This yields the

following polynomial for #Hom(H,X → G~z):

#Hom(H,X → G~z) =
∑

a∈Hom(H,X→G)

#JaK~z =
∑
v∈[k]`

∑
a∈Hom(H,X→G)

ca=v

∏̀
i=1

zca(i)

Finally it can be verified easily that the coefficient of Π`
i=1zi is indeed

the number of assignments a from X to V (G) such that c(a(X)) = X and
that a can be extended to a homomorphism h. Note that h is colorful by
minimality of H and Lemma 6.13. In other words, the coefficient of Π`

i=1zi
is precisely #cf-Hom(H,X → G).

As we can evaluate the polynomial for every vector ~z ∈ Nk>0 the coeffi-
cient can be computed by Theorem 2.28. �

6.3 Classifying Graphical Conjunctive Queries

In this section, we classify the complexity of counting homomorphisms for
classes of graphical conjunctive queries. From Chapter 6.3.4 on we will also
consider the color-prescribed variant which yields significantly more pleasant
proofs as Lemma 6.10 allows us to reduce from minors of conjunctive queries
in this case. Using the observations in Chapter 6.2.1, the hardness results
we discuss for color-prescribed homomorphisms carry over to the uncolored
situation and yield our refined complexity classification for the case of graphs
(Theorem 6.6).

The first five subsections correspond to the five cases in the Complexity
Pentachotomy. In each case, we define the precise parameters that we need
in order to classify the complexity of #Hom(∆), and we also give an example
class of queries that exhibits that complexity. All five example classes along
with their structural properties are depicted in Figure 6.3.

6.3. Classifying Graphical Conjunctive Queries 139

∆poly ∆W[1] ∆#W[1] ∆#W[2] ∆#A[2]

Query

contract ∅

tw O(1) ∞ ∞ O(1) ∞
tw(contract) O(1) O(1) ∞ ∞ ∞
dss O(1) O(1) O(1) ∞ ∞
lmn O(1) O(1) O(1) O(1) ∞
Complexity P W[1]-eq. #W[1]-eq. #W[2]-hard #A[2]-eq.†

Figure 6.3: Illustration of the five typical classes of conjunctive queries that
we discuss in Chapter 6.3. Depicted is the query (H,X) for k = 4, where free
variables (i.e., vertices in X) are drawn as solid discs and quantified variables (i.e.,
vertices in V (G) \ X) are drawn as hollow squares. We also display the contract
(see Definition 6.15) of each query for k = 4. We write O(1) whenever a parameter
is bounded by a constant in the entire query class, and∞ whenever it is unbounded.

†The observant reader might notice that the queries in ∆#A[2] are not minimal. For this

reason, the #A[2]-equivalence in the last column only holds for classes of minimal queries that

contain ∆#A[2] as minors, or for the color-precsribed variant, that is for #cp-Hom(∆#A[2]).

In the sixth subsection, we are then in position to restate the full classifi-
cation theorem in an explicit fashion, relying on the structural parameters
defined in Subsections 1–5, The first three subsections should be considered
a review of previous work [58, 31], which is necessary to formally state our
techniques and results.

6.3.1 Query Classes that are Polynomial-time

Which classes ∆ of graphical conjunctive queries yield polynomial-time al-
gorithms for #Hom(∆)? Chen, Durand and Mengel [58, 31] proved that the
problem is polynomial-time computable if all graphs in ∆ as well as their
contracts have at most a constant treewidth.

140 Chapter 6: Existential First-order Formulas

Definition 6.15 (Contract). The contract of a conjunctive query (H,X)
is a graph on the vertex set X, obtained by adding an edge between two
vertices u and v in X if {uv} is an edge of H or if there exists a connected
component C in H \X that is adjacent to both u and v. Given a class ∆ of
conjunctive queries, we write contract(∆) for the set of all of its contracts.

The following example class ∆poly of queries is satisfied by the k-tuples

v1, v3, . . . , v2k−1

of vertices in the input graph G for which there exists an extension

v2, v4, . . . , v2k−2 ,

such that v1, . . . , v2k−1 is a walk in G. ∆poly = {ψk | k ∈ N}, where

ψk := x1 . . . xk ∃y1 . . . ∃yk−1 :
∧

1≤i<k
Exiyi ∧ Eyixi+1 . (6.6)

Since these queries and their contracts are just paths (cf. Figure 6.3), their
treewidth is bounded by a constant. Thus the problem #Hom(∆poly) is
polynomial-time computable by the complexity trichotomy of Chen, Mengel
and Durand [58, 31]. This can be seen more directly using dynamic pro-
gramming, or by considering the square A2 of the adjacency matrix of G
and replacing each positive entry by a 1 to obtain B – then the sum of all
entries in Bk is the desired number.

Formally, the trichotomy theorem of [58, 31] is as follows:

Theorem 6.16 ([58, 31]). Let ∆ be a set of minimal conjunctive queries.

(1) If the treewidth of the formulas in ∆ and their contracts, is bounded
then #Hom(∆) is solvable in polynomial time.

(2) If the treewidth of the formulas is unbounded but the treewidth of the
contracts is bounded, then #Hom(∆) is W[1]-equivalent.

(3) If the treewidth of the contracts is unbounded, then #Hom(∆) is hard
for #W[1].

6.3.2 Query Classes that are W[1]-equivalent

As it turns out, the situation in which the treewidth of the queries and
their cores is bounded appears to be the only one that is polynomial-time
computable: If the treewidth of ∆ or contract(∆) is unbounded, then The-
orem 6.16 implies that #Hom(∆) is not polynomial-time computable, un-
less all W[1]-easy problems are fixed-parameter tractable and hence ETH
fails. More precisely, when the treewidth of contract(∆) is bounded but the

6.3. Classifying Graphical Conjunctive Queries 141

treewidth of ∆ is unbounded, then the problem is W[1]-equivalent. To ex-
emplify this latter situation further, note that the W[1]-equivalent problem
Clique is a special case: The following query ψk in the class ∆W[1] is satis-
fiable (i.e., has the empty tuple as a satisfying assignment) if and only if the
input graph has a clique of size k. Formally ∆W[1] = {ψk | k ∈ N}, where

ψk := ∃y1 . . . ∃yk :
∧

1≤i<j≤k
Eyiyj . (6.7)

Indeed, the contract of each query in ∆W[1] is the empty graph, but the
treewidth of the k-th query is equal to k − 1, so Hom(∆W[1]) is W[1]-
equivalent by Theorem 6.16.

6.3.3 Query Classes that are #W[1]-equivalent

If the treewidth of contract(∆) is unbounded, then #Hom(∆) is #W[1]-
hard by Theorem 6.16. We now define the dominating star size, a structural
parameter with the property that, if all elements of ∆ have bounded domi-
nating star size, then #Hom(∆) is #W[1]-easy.

Definition 6.17 (Dominating star size). Let (H,X) be a conjunctive
query and let Y1, . . . , Y` be the connected components of the induced sub-
graph H[V (H) \ X] given by the quantified variables. Further, let ki be
the number of vertices x ∈ X for which there exists a vertex y ∈ Yi that is
adjacent to x. The dominating star size of (H,X) is defined via

dss(H,X) = max{ki | i ∈ `} .

This notion is identical to the notion of strict star size, which was used by
Chen and Mengel [31] in an intermediate step of their #W[1]-hardness proof.

Before we prove that bounded dss implies #W[1]-easiness, we first give
an example query class ∆#W[1] that fits into this situation. The query ψk
contains as satisfying assignments exactly those tuples v1, . . . , vk of vertices
in G such that there is a length-2 walk viwijvj in G for any distinct i, j.
Formally, ∆#W[1] = {ψk | k ∈ N}, where

ψk := x1 . . . xk :
∧

1≤i<j≤k
∃yij : Exiyij ∧ Eyijxj . (6.8)

Note that the graphical representation of ψk corresponds to a subdivided
k-clique (cf. Figure 6.3), and its contract is a k-clique. Thus the queries
of ∆#W[1] and their contracts have unbounded treewidth. However, the
dominating star size is equal to 2 because each connected component of the
graph H[V (G) \X] consists of a variable yij which has two neighbors.

The #W[1]-hardness of #Hom(∆#W[1]) as claimed by Theorem 6.16
can be proved using a straightforward reduction from counting multicolored

142 Chapter 6: Existential First-order Formulas

cliques of size k, where each edge is subdivided once. Conversely, we estab-
lish that #Hom(∆#W[1]) is #W[1]-easy by reducing it to counting cliques.
We prove the special case of ∆#W[1] here for illustration and then sketch the
proof of the general result when the dominating star size is bounded.

Lemma 6.18. #Hom(∆#W[1]) is #W[1]-easy.

Proof. Given ψk for some k ∈ N and a graph G, we wish to compute
#Hom(ψk → G). We reduce to the problem of counting cliques. First,
we construct a graph G′ from G as follows. The vertex set of G′ consists
of k copies of the vertex set of G. We add an edge between two vertices u
and v in G′ if and only if they are contained in different copies and if there
exists a vertex z such that {u, z} and {z, v} are edges in G. Now it can easily
be observed that #Hom(ψk → G) equals k! times the number of cliques of
size k in G′. This concludes the proof. �

Important in this proof is the preprocessing phase, where for every pair
of vertices u and v we check if they have a common neighbor. After that,
we expressed the problem as a homomorphism counting problem without
quantified variables. Indeed, whenever the dominating star size is bounded,
the preprocessing works and allows us to get rid of the quantified variables.
The remainder of the reduction to a #W[1]-easy problem follows from the
fact that counting answers to model-checking problems without quantified
variables is #W[1]-equivalent by Theorem 2.59.

Theorem 6.19. Let ∆ be a class of graphical conjunctive queries such that
the dominating star size of queries in ∆ is bounded. Then #Hom(∆) is
#W[1]-easy.

We give a sketch here, the formal proof is deferred to the general case of
structures in Chapter 6.5.3.

Proof (Sketch). Let c ∈ N be the maximum dominating star size among
all queries in ∆. Let δ ∈ ∆ be a conjunctive query with free variables X
and quantified variables Y . Furthermore let (H,X) be the associated graph
of δ. Recall that H[Y] and H[X] are the induced subgraphs of H that only
contain vertices in Y and in X, respectively. Furthermore, we let Y1, . . . , Y`
be the connected components of H[Y]. Given a graph G, we wish to compute
#Hom(δ → G). Since dss(H,X) ≤ c, the number of vertices in X that are
adjacent to a vertex in Yi in H is bounded by c.

This allows us to perform the following preprocessing: For every tuple
~v = (v1, . . . , vc) of vertices in G and for every i ∈ [`], we check whether ~v is a
candidate for the image of the neighbors of Yi in an answer to δ. Note that
these checks can be done using an oracle for a (#)W[1]-equivalent problem
as they can equivalently be expressed as a (decision version of a) model

6.3. Classifying Graphical Conjunctive Queries 143

checking problem where all variables are existentially quantified, which is
known to be W[1]-easy (see e.g. Theorem 7.22 in [65]).

After performing all of those checks — at most ` · nc many — we need
to count the number of homomorphisms from H[X] to G that addition-
ally are consistent with the checks. This final step can be expressed as a
counting model checking problem such that every variable is free, more pre-
cisely, as an instance of #p-MC(Π0) which is known to be #W[1]-easy by
Theorem 2.59. �

Remark 6.20. For each fixed conjunctive query (H,X), we can use the pre-
processing of Theorem 6.19 to obtain a deterministic algorithm for comput-
ing #Hom(H,X → ?): Each oracle query is answered by a subroutine that
uses standard dynamic programming over the tree decompositions of H[Y]
and the contract of (H,X) (see Theorem 2.35 and Remark 2.42). The overall
running time of the algorithm is bounded by

O
(
ndss(H,X)+tw(H[Y])+1 + ntw(contract(H,X))+1

)
.

6.3.4 Query Classes that are #W[2]-hard

We have seen that #Hom(∆) is #W[1]-easy if the dominating star size of ∆
is bounded. We now show that the dominating star size is the right param-
eter for this complexity demarcation, since if it is unbounded for ∆, then
we show the problem to be #W[2]-hard. To this end, we will from now on
consider its color-prescribed variant. Recall that the problem #cp-Hom(∆)
is given δ ∈ ∆ and a δ-colored graph G and the task is to compute

#cp-Hom(δ → G) .

It is parameterized by the size of δ.
As an example, consider the queries ψk in ∆#W[2], which have as satis-

fying assignments exactly the tuples

v1, . . . , vk

of vertices in G whose neighborhood contains at least one common vertex.
Formally, ∆#W[2] = {ψk | k ∈ N}, where

ψk := x1 . . . xk∃y :
∧

1≤i≤k
Exiy . (6.9)

Note that dss(ψk) = k holds because the only quantified variable y has k
neighbors. Thus ∆#W[2] has unbounded dominating star size. Moreover, the

negated formula ¬ψk on the complement graphG has exactly the dominating
sets (or rather, tuples) of size at most k as its satisfying assignments. Since

144 Chapter 6: Existential First-order Formulas

the counting problem #cp-Hom(∆) allows for this negation by subtracting
the number of color-prescribed solutions of ψk from the number of all possible
color-prescribed tuples, it is clear that #cp-Hom(∆) is indeed #W[2]-hard.
Using the same observation, it is also clear that counting solutions of ψk
cannot be done in time O(nk−ε) for any ε > 0 unless SETH is false. This
implies the following lemma.

Lemma 6.21. #cp-Hom(∆#W[2]) is #W[2]-hard. Furthermore, for every

k ≥ 3, counting answers to ψk cannot be done in time O(nk−ε) for any ε > 0
unless SETH fails.

Proof. We construct a reduction from the problem #DomSet of counting
dominating sets of size k, which is known to be #W[2]-hard when param-
eterized by k and which cannot be solved in time O(nk−ε) for any ε > 0
assuming SETH holds by Theorem 2.21.6 Intuitively, the proof exploits
that the set of solutions to ψk is in some sense the complement of the set
of all k-dominating sets and that the ability to count solutions allows us to
compute the cardinality of the complementary set. Let k ∈ N and let G be
a graph. It will be convenient to relabel the quantified variable in ψk with 0
and the k free variables with 1, . . . , k. Recall that a subset S of vertices
dominates a graph G if every vertex in V (G) \ S is adjacent a vertex in S.
We first show how to compute the cardinality of the following set using an
oracle for #cp-Hom(ψk → ?):

Domk(G) := {a : [k]→ V (G) | im(a) dominates G} .

We assume a given graph G to be not complete as otherwise Domk(G) can
be computed trivially. Now a ψk-colored graph G′ is constructed from G as
follows. First, we take k + 1 copies V 0, . . . , V k of the vertex set of G and
color V 0 with the quantified variable 0 and V i with the free variable i for
each i ∈ [k]. Finally, for every i ∈ [k], we add an edge between a pair of
vertices u ∈ V 0 and v ∈ V i if and only if the primal vertices of u and v
are not adjacent in G. Observe that G′ is indeed ψk-colored as G is not a
complete graph. Now let F be the set of all assignments a from [k] to V (G′)
such that for all i ∈ [k] the vertex a(i) is colored with i, i.e., contained in V i.
Then we have that cp-Hom(ψk → G′) ⊆ F and, in particular,

F \ cp-Hom(ψk → G′)

= F \ {a : [k]→ V (G′) | a(i) ∈ V i ∧ ∃y ∈ V 0 : {a(i), y} ∈ E(G′)}
= {a : [k]→ V (G′) | a(i) ∈ V i ∧ ∀y ∈ V 0 : {a(i), y} /∈ E(G′)}

Observe that by construction of G′, the cardinality of the latter set is equal
to #Domk(G). As #F = #V (G)k we hence obtain

#V (G)k −#cp-Hom(ψk → G′) = #Domk(G) .

6See also [109] for the case of a fixed k ≥ 3.

6.3. Classifying Graphical Conjunctive Queries 145

Now, given a graph G and j ∈ N, we define Gj to be the graph obtained
from G by adding j isolated vertices. Furthermore we let Surj(i, j) be the
number of surjections from [i] to [j]. Then we claim that

#Domk(G
j) =

k∑
i=1

(
k

i

)
· Surj(i, j) ·#Domk−i(G) . (6.10)

To see this we observe that every isolated vertex has to be in the image of
every a ∈ Domk(G

j). Hence we can partition the elements in Domk(G
j) by

the number of elements in [k] that are mapped to the isolated vertices. Let i
be this number. Then there are

(
k
i

)
possibilities to choose these elements and

Surj(i, j) to map them to the isolated vertices. Finally, the remaining k − i
elements have to be mapped to V (G) such that their image dominates G.
We observe that (6.10) yields a system of linear equations such that the
corresponding matrix is triangular if proper values for j are chosen. Hence
we can compute all numbers #Dom`(G) for ` ≤ k. Finally we show how to
use these numbers to compute the numbers D1, . . . , Dk of dominating sets
of size i = 1, . . . , k in G. We proceed inductively. If i = 1 we have that
D1 = #Dom1(G). Otherwise let ` ≤ k and assume that D1, . . . , D`−1 have
be computed so far. It can easily be seen that

#Dom`(G) =
∑̀
i=1

Di · Surj(`, i) ,

and therefore

D` = Surj(`, `)−1 ·

(
#Domk(G)−

`−1∑
i=1

Di · Surj(`, i)

)
.

The above steps constitute a tight reduction from counting dominating sets
of size k to counting solutions to #cp-Hom(ψk → ?) which implies both, the
lower bound under SETH and #W[2]-hardness of #cp-Hom(∆#W[2]). �

The class ∆#W[2] is not only an example of a class for which Hom(∆#W[2])
is #W[2]-hard, but it is the minimal one. Indeed, every class ∆ of unbounded
dominating star size contains arbitrarily large elements of ∆#W[2] as a mi-
nor, and we have already seen that this implies that Hom(∆#W[2]) reduces
to Hom(∆). Using the fact that counting color-prescribed answers to a con-
junctive query is at least as hard as counting color-prescribed answers for
any minor of the query (Lemma 6.10), we are now able to prove the following
theorem.

Theorem 6.22. Let ∆ be a recursively enumerable class of conjunctive
queries with unbounded dominating star size. Then #cp-Hom(∆) is #W[2]-
hard, and given a formula δ with dss(δ) ≥ 3, computing #cp-Hom(δ → ?)
cannot be done in time O(ndss(δ)−ε) for any ε > 0 unless SETH fails.

146 Chapter 6: Existential First-order Formulas

Proof. Assume that we are given such a class ∆. As the dominating star
size of ∆ is unbounded, we have that for every k, there exists δk ∈ ∆ with
dominating star size ≥ k and hence ψk is a minor of δk. Therefore we have
that the set ∆#W[2] is a set of minors of ∆. By Lemma 6.21 and Lemma 6.10
the claim of the theorem follows. �

6.3.5 Query Classes that are #A[2]-equivalent

Recall that the parameterized complexity class #A[2] is defined via the
model checking problem of universally quantified first-order formulas, and it
is not known to be equal to #W[2]. By the same observation as in the preced-
ing subsection, it follows that #Hom(∆) and #cp-Hom(∆) are #A[2]-easy,
which is made formal in Appendix C. We now introduce the structural pa-
rameter linked matching number for conjunctive queries that, if unbounded
for ∆, leads to #A[2]-equivalence. To define the parameter, we use the
notion of a node-well-linked set.

Definition 6.23 (Node-well-linked). Let G be a graph. A set S ⊆ V (G)
is called node-well-linked if, for every two disjoint and equal-sized sub-
sets A,B of S, there are |A| vertex disjoint paths in G that connect the
vertices in A with the vertices in B.

Node-well-linked sets play a central role in the theory of graph minors,
particularly in the proof of Chekuri, Chuzhoy and Tan [29, 36, 37] for the
Excluded-Grid-Theorem (see Theorem 2.6 and Theorem 2.7). Indeed, if
large node-well-linked sets exist in a graph, then its treewidth is large and it
contains a large grid as a minor. We now introduce a structural parameter
for conjunctive queries that measures the size of the largest set that is node-
well-linked in the quantified variables and has a saturating matching to the
free variables. Furthermore, we say that set of vertices S of a graph G is
`-connected if, for every pair A,B of disjoint size-` subsets of S, there are `
vertex-disjoint paths in G connecting A and B. A separation of a graph is
an ordered pair (A,B) of vertex subsets of G such that V (A)∪V (B) = V (G)
and there are no edges between A \B and B \A.

Definition 6.24 (Linked matching number). Let (H,X) be a graphi-
cal conjunctive query, let Y be the set V (H)\X of quantified variables, and
let M be a matching from X to Y . The matching M is called linked if the
set V (M) ∩ Y is node-well-linked in the graph H[Y]. The linked matching
number lmn of (H,X) is the size of the largest linked matching of H.

We prove later that queries with a large linked matching number not
only have large treewidth, but they also contain a large grate as a minor.
Informally, a grate is just half of a grid that lives in the quantified variables
and is cut along its diagonal, and the diagonal has a saturating matching to
the free variables (the upper right corner of Figure 6.3 depicts the 4-grate).

6.3. Classifying Graphical Conjunctive Queries 147

Definition 6.25. For a positive integer k, the k-grate is the graphical con-
junctive query whose k free variables are xij for i, j ≥ 0 with i+ j = k − 1,

and whose quantified variables are yij for i, j ≥ 0 with i + j ≤ k − 1. The

edges between free and quantified variables are xijy
i
j for i+ j = k − 1. The

edges on the quantified variables are yijy
i
j+1 and yijy

i+1
j . Let Grates be the

set of all grates.

We now sketch a proof that #cp-Hom(Grates) is #A[2]-hard. The
full proof requires lifting a rather technical normalization theorem for A[2]
to #A[2] which is done in Appendix C. In particular, this normalization
implies that the general problem of counting answers to conjunctive queries
in graphs is #A[2]-equivalent.

Lemma 6.26. The problem #cp-Hom(Grates) is #A[2]-hard.

Proof (Sketch). The construction is similar to the reduction in Lemma 2.45.
We will reduce from #cp-Hom(Γ) where Γ contains the queries

γk := x1 . . . xk∃y1 . . . ∃yk :
k∧
i=1

Exiyi ∧
∧

1≤i<j≤k
Eyiyj (6.11)

for all k ∈ N. #cp-Hom(Γ) is shown to be #A[2]-hard in Appendix C in
the context of the normalization result. Intuitively, answers to γk are vertex
sets of size at most k that can be perfectly matched to a clique.

Now let ωk be the k-grate. Roughly speaking, given a γk-colored graph G
for which we want to compute #cp-Hom(γk → G), we just need to modify
the part of G that is colored with quantified variables. To this end recall
that in case of γk, the free variables have to be connected to a clique of
quantified variables by a matching and in case of ωk, the free variables have
to be connected to vertices on the diagonal of a half-grid by a matching.
Now, given G, we obtain a new graph G′ by first deleting all edges between
vertices that are colored with quantified variables, and then adding blocks
of vertices that correspond to the former edges in a half-grid like manner.
Then, given two vertices a and a′ corresponding to the former edges {u, v}
and {u′, v′} we add an edge between a and a′ if and only if either u = u′

and the blocks of a and a′ are adjacent horizontally or v = v′ and the blocks
of a and a′ are adjacent vertically. We encourage the reader to verify the
correctness of the construction in the case k = 3 using Figure 6.4. �

Next we show that every class ∆ with unbounded linked matching num-
ber contains arbitrarily large grate minors and point out that this constitutes
a generalization of the Excluded-Grid-Theorem (Theorem 2.6). Due to the
hardness of #cp-Hom(Grates) (Lemma 6.26) and using the fact that the ho-
momorphism counting problem is “minor-closed” (Lemma 6.10), this yields
the #A[2]-hardness of #cp-Hom(∆).

148 Chapter 6: Existential First-order Formulas

1

2

3

a

b

c

(1, 1)

(2, 2)

(3, 3)

(1, 2)

(2, 3)

(1, 3)

a

b

c

y0(G)

y1(G)

y2(G)

x0(G)

x1(G)

x2(G)

y20(G′)

y11(G′)

y02(G′)

x20(G′)

x11(G′)

x02(G′)

y0
1(G′)

y1
0(G′)

y00(G′)

Figure 6.4: Illustration of the construction of G′ for k = 3. The graph G (left)
is γ3-colored and the mapping m = {x2 7→ a, x1 7→ b, x0 7→ c} is contained in
cp-Hom(γ3 → G) as a, b, c are connected to 1, 2, 3 by a matching and 1, 2, 3 form
a clique. The graph G′ (right) is ω3-colored and m corresponds to the mapping
m′ = {x02 7→ a, x11 7→ b, x20 7→ c}. Now m′ is contained in cp-Hom(ω3 → G′) as
a, b, c are connected to (1, 1), (2, 2), (3, 3) by a matching and (1, 1), (2, 2), (3, 3) are
the diagonal of a half-grid. Note that the latter is only the case as there are vertices
(1, 2), (2, 3) and (1, 3) that correspond to the edges of the clique in G.

We use the work of Marx, Seymour and Wollan [97] as well as of Diestel
et al. [51] for an easy proof of the following theorem. Recall that the (g×g)-
grid �g has vertices vi,j for i, j ∈ {1, . . . , g} and edges vi,jvi+1,j for i < g
and vi,jvi,j+1 for j < g. Recall further from Definition 2.3 that a minor
mapping η from a graph H to a graph G is a function mapping vertices v
in V (H) to sets η(v) ⊆ V (G) such that the following constraints are satisfied:

• For every v ∈ V (H) the graph G[η(v)] is nonempty and connected.

• For all u, v ∈ V (H) with u 6= v the sets η(u) and η(v) are disjoint.

• For all edges {u, v} ∈ E(H) there exist u′ ∈ η(u) and v′ ∈ η(v) such
that {u′, v′} ∈ E(G).

Theorem 6.27. For all integers g > 0 there exists κ ≥ 1 such that the
following is true. Let G be a graph and X ⊆ V (G) be a node-well-linked
set of size at least κ. Then there exists a minor mapping η from �g to G
satisfying that for all j ∈ [g] there exists x ∈ X such that x ∈ η(v1,j).

Proof. Given a graph G, we write Sep(G) for the set of all separations of G.
We apply Theorem 1.2 of [97] with k = g. By the theorem, there exists a
number K ∈ N such that for any tangle7 T of order at least K in G and any
set Z ⊆ V (G) with |Z| = g the following is true.

7For the purpose of this proof we do not need the definition of a tangle. The interested
reader is referred to e.g. Chapter 4 in [51].

6.3. Classifying Graphical Conjunctive Queries 149

Fact 6.28. If there is no separation (A,B) ∈ T with |V (A ∩ B)| < g and
Z ⊆ V (A) then there is a minor mapping η from �g to G satisfying that for
all j ∈ [g] there exists z ∈ Z such that z ∈ η(v1,j).

Now let ` := max{g,K} and κ := 3`. Hence X is an node-well-linked set of
size 3`. In particular, X is an `-connected set of size 3`. Diestel et al. (see
Chapter 4 in [51]) have shown that the following is a tangle of order ` ≥ K
in G:

T [X] := {(A,B) | (A,B) ∈ Sep(G)∧ |V (A∩B)| < `∧ |V (A)∩X| ≤ |V (B)∩X|}

Next let Z be any subset of X of size g ≤ ` and assume for contradiction
that there exists a separation (A,B) ∈ T [X] such that |V (A ∩ B)| < g and
Z ⊆ V (A). By the definition of T [X] we have that

|V (B) ∩X| ≥ |V (A) ∩X| ≥ |Z| = g .

Consequently there exists Z ′ ∈ V (B) ∩ X with |Z ′| = g and Z ∩ Z ′ = ∅.
As X is ` ≥ g-connected, there are g vertex-disjoint paths from Z to Z ′.
Therefore, by Menger’s Theorem, |V (A ∩ B)| < g is false and we obtain a
contradiction. We hence conclude the proof with the application of Fact 6.28
and the observation that Z was chosen to be a subset of X. �

Theorem 6.29 (Excluded-Grate-Theorem). Let ∆ be a class of graph-
ical conjunctive queries. If the linked matching number of ∆ is unbounded,
then ∆ contains arbitrarily large grates as minors.

Proof. Let g ∈ N and let ωg be the g-grate. We show that ωg is a minor
of some query in ∆. To this end, invoke Theorem 6.27 with g to obtain
κ for which its statement is true. Now let δ ∈ ∆ be a query with linked
matching number at least κ and let (H,X) be the query graph of δ. By
assumption there exists a set S of at least κ many vertices in the quantified
variables that is node-well-linked in the H \X and that is connected to X
by a matching. By Theorem 6.27 there exists a minor mapping η from the
g × g-grid, such that for every vertex v in the first column of the grid, we
have that η(v) contains an element of S. The grid minor can now further
be contracted to obtain a half-grid. Finally, we obtain the g-grate ωg as a
minor by deleting all vertices and edges in X and then all edges between X
and H \ Y except for the matching connecting S to X. �

Theorem 6.30. Let ∆ be a class of conjunctive queries with unbounded
linked matching number. Then #cp-Hom(∆) is #A[2]-equivalent.

Proof. Follows from the #A[2]-equivalence of #cp-Hom(Grates), given by
Lemma 6.26, from the Excluded-Grate-Theorem (Theorem 6.29) as well as
the minor reduction (Lemma 6.10). �

150 Chapter 6: Existential First-order Formulas

6.3.6 A Pentachotomy-Theorem

We are now in position to state the main result of this section, the full classi-
fication for counting answers to conjunctive queries. Note that Theorem 6.6
is subsumed by the full classification in the case of graphs. The general
version, that is, the case of arbitrary logical signatures with bounded arity,
is proved in Chapter 6.5.3.

Theorem 6.31. Let ∆ be a recursively enumerable class of minimal con-
junctive queries.

1. If the treewidth of ∆ and contract(∆) is bounded, then #Hom(∆) can
be computed in polynomial time.

2. If the treewidth of ∆ is unbounded and the treewidth of contract(∆) is
bounded, then #Hom(∆) is W[1]-equivalent.

3. If the treewidth of contract(∆) is unbounded and the dominating star
size of ∆ is bounded, then #Hom(∆) is #W[1]-equivalent.

4. If the dominating star size of ∆ is unbounded, then #Hom(∆) is
#W[2]-hard. Moreover, for any fixed query δ with dss(δ) ≥ 3, the
problem #Hom(δ → ?) cannot be computed in time O(ndss(δ)−ε) for
any ε > 0 unless SETH fails.

5. If the linked matching number of ∆ is unbounded, then #Hom(∆) is
#A[2]-equivalent.

Proof. The first two claims and the #W[1]-hardness in the third follow from
Theorem 6.16. The #W[1]-easiness in the third claim follows from Theo-
rem 6.19 and the fact that #Hom(∆) reduces to #cp-Hom(∆) as shown in
the context of the normalization theorem in Appendix C. The fourth and
fifth claim follow from Theorem 6.22 and Theorem 6.30, respectively, as
well as from the fact that #cp-Hom(∆) reduces to #Hom(∆) as shown in
Chapter 6.2.1. �

Our classification leaves open the question whether every class ∆ that has
a bounded linked matching number is in fact #W[2]-easy; this question
is related to some exotic parameterized complexity classes between #W[2]
and #A[2].8

8The interested reader is encouraged to make themself familiar with the class Wfunc[2]
(see Chapt. 8 in [65]) and to observe that strengthening the classification as suggested
would imply #W[2] = #Wfunc[2] or #A[2] = #Wfunc[2].

6.4. Quantum Queries 151

6.4 Quantum Queries

In this section, we extend our results to disjunctions of conjunctive queries,
and to conjunctive queries with inequality constraints and negations on the
free variables. We show in this section that both of these extensions are
captured by considering abstract linear combinations of conjunctive queries.
To this end, we first adapt the notion of quantum graphs to the setting of
graphical conjunctive queries.

Definition 6.32. A quantum query Q is a formal linear combination of a
finite number of graphical conjunctive queries. We write

Q =
∑̀
i=1

λi · (Hi, Xi) , (6.12)

where all λi are non-zero rational numbers. The support of Q is the set
supp(Q) = {(Hi, Xi) | i ∈ {1, . . . , `}}. The number of homomorphisms
extends to quantum graphs linearly, i.e., if Q is a quantum query as above
and G is a simple graph, then we define

#Hom(Q→ G) =
∑̀
i=1

λi ·#Hom(Hi, Xi → G) . (6.13)

In the subsequent sections we are going to collect for equivalent queries in
a quantum query and hence consider the support to be a set of pairwise
non-equivalent and minimal conjunctive queries. The structural parameters
discussed in Chapter 6.3 then extend to quantum queries by taking the
maximum over all queries in the support.

Definition 6.33. Let (H,X) and (Ĥ, X̂) be graphical conjunctive queries.

1. (H,X) maps surjectively to (Ĥ, X̂), written (H,X) ≥ (Ĥ, X̂), if there
is a surjective function s : X → X̂ that extends to a homomorphism,
that is, which satisfies s ∈ Hom(H,X → Ĥ). Let Surj(H,X → Ĥ, X̂)
be the set of all surjective mappings s : X → X̂ that can be extended
to a homomorphism from H to Ĥ.

2. If (H,X) ≥ (Ĥ, X̂) ≥ (H,X) holds, then we adopt the notation of
Chen and Mengel [32] and say that the two queries are renaming
equivalent . Moreover, (H,X) is a minimal representative if it has
a lexicographically smallest pair (|V (H)|, |E(H)|) among all queries
that are renaming equivalent to (H,X). For each equivalence class,
we arbitrarily fix one minimal representative. If (H,X) is the selected
minimal representative of its class, we also call it renaming minimal .

152 Chapter 6: Existential First-order Formulas

It is clear that ≥ defines a partial order and so this notion of equiva-
lence is indeed an equivalence relation. If X = X̂ = ∅ holds, then the no-
tion specializes to homomorphic equivalence,9 whereas for X = V (H) and
X̂ = V (Ĥ), it specializes to isomorphism. It will turn out that renaming
equivalence is identical to equivalence of conjunctive queries as introduced
in Chapter 6.2.1. In what follows we will therefore omit “renaming” and
only speak of equivalent and minimal queries. The next lemma generalizes
the fact that all homomorphic cores of a graph are isomorphic.

Lemma 6.34. If two minimal graphical conjunctive queries are equivalent,
then they are isomorphic.

Proof. Let (H,X) and (Ĥ, X̂) be minimal graphical conjunctive queries that
are equivalent. By equivalence, we get bijective functions s : X → X̂ and
ŝ : X̂ → X that can be extended to homomorphisms h and ĥ, respec-
tively. Let F be the subgraph of Ĥ that is the image of h, that is we
have V (F) = h(V (H)) and E(F) = h(E(H)). We claim that F = Ĥ must
hold by minimality. Indeed, when ĥ is restricted to the vertices of F , it
must remain a homomorphism that extends ŝ, and so (H,X) and (F, X̂) are
equivalent. Minimality implies |V (H)| = |V (F)| and |E(H)| = |E(F)|, and
so h must have every vertex and edge of Ĥ in its image. Thus h is in fact
an isomorphism between H and Ĥ, which is what we claimed. �

We can easily express the number of all partial homomorphisms as a
linear combination of the number of partial surjective homomorphisms.

Lemma 6.35. For all graphical queries (H,X) and all graphs G, we have
the following identity:

#Hom(H,X → G) =
∑

Z⊆V (G)

#Surj(H,X → G,Z) .

Proof. Every element a ∈ Hom(H,X → G) has a unique set

Z = a(X) ⊆ V (G) ,

such that a is surjective on Z. Thus the sets Surj(H,X → G,Z) are disjoint
for distinct Z, and their union is Hom(H,X → G), so the claimed identity
follows. �

In the following lemma, we show that the functions #Hom(H,X → ?) are
linearly independent for all minimal conjunctive queries (H,X). It was
proved implicitly by Chen and Mengel [32]. The following, explicit proof is
due to Holger Dell;10 we include it only for completeness.

9Two graphs F and H are homomorphically equivalent if there exists a homomorphism
from F to H and a homomorphism from H to F .

10See also Lemma 34 in [49].

6.4. Quantum Queries 153

Lemma 6.36. Let k ≥ 0 and let M be the (finite) set of all minimal graph-
ical conjunctive queries with at most k vertices, and let G be the finite set of
all (unlabeled) simple graphs with at most kk vertices.

(1) Let L be the (M×M)-matrix with

L[(H,X), (Ĥ, X̂)] = #Surj(H,X → Ĥ, X̂) .

If we linearly sort M consistent with the partial order “≤”, then L is
a lower-triangular matrix whose diagonal entries are positive integers.

(2) Let B be the (M × G)-matrix where B[(Ĥ, X̂), G] is the number of
sets Z ⊆ V (G) such that (Ĥ, X̂) and (G,Z) are equivalent. Then B
has full rank.

(3) Let A be the (M×G)-matrix with

A[(H,X), G] = #Hom(H,X → G) .

Then A = LB holds and thus A has full rank.

Proof. First we discuss how to sort the elements of M. Since M only
contains minimal queries, any two distinct elements ofM are not equivalent,
and thus (H,X) 6≥ (Ĥ, X̂) or (H,X) 6≤ (Ĥ, X̂) holds. Thus we can linearly
orderM in such a way, that (H,X) 6≥ (Ĥ, X̂) holds whenever (H,X) occurs
before (Ĥ, X̂) in the order, and this is the order we choose.

(1). The identity function s : X → X is clearly an element of

Surj(H,X → H,X) ,

so all diagonal entries of L are positive integers. Now let (H,X) and (Ĥ, X̂)
be distinct elements of M such that (H,X) occurs before (Ĥ, X̂) in the
linear order and so (H,X) 6≥ (Ĥ, X̂) holds. By definition, this means that
no surjective function X → X̂ extends to a homomorphism from H to Ĥ,
which implies L[(H,X), (Ĥ, X̂)] = 0. Thus, L is lower-triangular.

(2). The proof is similar to the proof of Lemma 6.14. To prove the
claim, we show that each (Ĥ, X̂) ∈ M has a linear combination of the
columns

∑
z λz · B[?,Gz] = 1 such that

∑
z λz · B[(H,X), Gz] 6= 0 holds if

and only if (H,X) = (Ĥ, X̂).

For each (Ĥ, X̂) and each z ∈ {1, . . . , k}X̂ , we construct graphs Gz as
follows: Start from G := Ĥ and clone each vertex v ∈ X̂ exactly zv−1 times
(i.e. replace it with an independent set of size zv where each vertex has the
same neighborhood as v). Note that Gz is Ĥ-colored, and let

c ∈ Hom(Gz → Ĥ)

154 Chapter 6: Existential First-order Formulas

be the coloring. Now recall that B[(H,X), Gz] counts the sets Z ′ ⊆ V (Gz)
such that (Gz, Z ′) and (H,X) are equivalent. Clearly |Z ′| = |X| must hold
for this to be the case.
We call Z ′ proper if c(Z ′) = X̂ holds, and improper otherwise. Moreover,
we say that Z ′ is H-equivalent if (H,X) and (Gz, Z) are equivalent. We
have:

B[(H,X), Gz] = #{proper H-equivalent Z ′}+ #{improper H-equivalent Z ′} .

If Z ′ is proper, then (Gz, Z ′) is equivalent to (Ĥ, X̂) by construction
of Gz. Thus if a proper H-equivalent Z ′ exists, then (Ĥ, X̂) = (H,X) holds
and the number of proper H-equivalent Z ′ in Gz is equal to∏

v∈X̂

zv .

On the other hand, if (Ĥ, X̂) 6= (H,X), then the number of proper H-
equivalent Z ′ is equal to zero. In any case, the number of improper H-
equivalent Z ′ is a polynomial in the zv variables which however does not
contain the monomial

∏
v∈X̂ zv. By multivariate Lagrange interpolation,

there is a linear combination∑
z

λzB[(H,X), Gz]

which is equal to the coefficient of the monomial
∏
v∈X̂ zv. This monomial

is zero if and only if (H,X) 6= (H̃, X̃).

(3). The fact that A = LB holds follows directly from Lemma 6.35 by
collecting terms for equivalent (G,Z). Since L is invertible and B has full
rank, this also implies that A has full rank. �

We point out, that Lemma 6.36 implies that renaming equivalence of
two conjunctive queries is an explicit notion for equivalence. Note that the
following was also shown by Chen and Mengel [32] with a more complicated
proof.

Corollary 6.37. Two conjunctive queries are renaming equivalent if and
only if they are equivalent.

Proof. The forward implication is immediate and the reverse follows from
the third item of Lemma 6.36. To see this, we observe that the full rank
of A certainly implies that its row vectors are pairwise different. �

6.4. Quantum Queries 155

6.4.1 Complexity Monotonicity revisited

We will now lift complexity monotonicity from quantum graphs (Theo-
rem 3.13) to the more general case of quantum queries. The proof is com-
pletely analogous.

Lemma 6.38 (Complexity monotonicity, implicit in [32]). Let Q be
a quantum query. There is an oracle algorithm A that is given G as input
and oracle access to the #Hom(Q → ?), and computes #Hom(H,X → G)
for all (H,X) ∈ supp(Q) in time t(|Q|) · n, where n = |V (G)| and t is
a computable function. Furthermore, every oracle query #Hom(Q → G′)
satisfies |V (G′)| ≤ t(|Q|) · n.

Proof. Let k be the largest number of vertices among the graphs in the
support of Q and let M be the set from Lemma 6.36. Recall that the
tensor product of two graphs is denoted by G × F and note that, similarly
to Fact 3.11, we have that

Hom(H,X → G× F) = Hom(H,X → G) · Hom(H,X → F) .

Let Q =
∑

H∈M λHH and write xH = λH ·Hom(H,X → G). Moreover, set
bF = Hom(Q → G × F) and let A be the matrix from Lemma 6.36. Then
we have xTA = b. To compute the vector b, we simply query the oracle,
and the queries have the required size bound. The matrix A and in fact its
inverse A−1 can be hard-wired into the algorithm. Then xT = bA−1 holds,
and we can compute the values xH/λH for H in the support of Q in the
time required. �

Theorem 6.39. Let ∆ be a recursively enumerable class of quantum queries
and let ∆̂ be the set of all minimal conjunctive queries that are contained in
the support of some query in ∆.

1. If the treewidth of ∆̂ and contract(∆̂) is bounded, then #Hom(∆) is
fixed-parameter tractable.

2. If the treewidth of ∆̂ is unbounded and the treewidth of contract(∆̂) is
bounded, then #Hom(∆) is W[1]-equivalent.

3. If the treewidth of contract(∆̂) is unbounded and the dominating star
size of ∆̂ is bounded, then #Hom(∆) is #W[1]-equivalent.

4. If the dominating star size of ∆̂ is unbounded, then #Hom(∆) is
#W[2]-hard. Moreover, for any fixed quantum query δ with dss(δ) ≥ 3,
the problem #Hom(δ → ?) cannot be computed in time O(ndss(δ)−ε) for
any ε > 0 unless SETH fails.

5. If the linked matching number of ∆̂ is unbounded, then #Hom(∆) is
#A[2]-equivalent.

156 Chapter 6: Existential First-order Formulas

Proof. Follows from the classification for conjunctive queries (Theorem 6.31)
and the complexity monotonicity property. �

We remark that, in case of graphs, the classification for quantum queries
implies both, Theorem 6.5 and Theorem 6.7, if we can express existential and
universal positive queries with inequalities and non-monotone constraints
over the free variables as quantum queries. This is proved in the subse-
quent Chapters 6.4.2-6.4.4. Again the general version for arbitrary logical
signatures with bounded arity is deferred to Chapter 6.5.3.

6.4.2 Conjunctive Queries with Inequalities

In what follows, we will generalize Theorem 6.31 to conjunctive queries that
may contain inequalities over free variables11. In particular we will show that
the support of the resulting quantum query can be given explicitly. Answers
to conjunctive queries with inequalities are modeled via partially injective
homomorphisms. We remark that the subsequent notions and proofs are
completely similar to our treatment of partially injective homomorphisms
in Chapter 4.1. For this reason we will keep this section concise and refer
the reader to the detailed exposition in Chapter 4.1 for the entirety of the
technicalities.

Definition 6.40. A conjunctive query with inequalities over the free vari-
ables is a triple (H, I,X) where (H,X) is a conjunctive query and I is an
irreflexive and symmetric relation I ⊆ X2. We say that I is a set of inequal-
ities and write {x, x′} ∈ I whenever (x, x′) ∈ I.

Given a graph G and a conjunctive query with inequalities (H, I,X), an
assignment a : X → V (G) is an answer to (H, I,X) in G if and only if a
is an answer to (H,X) and, additionally, for every inequality {x, x′} ∈ I, it
holds that a(x) 6= a(x′). Formally, we define the set of answers to (H, I,X)
in terms of partially injective partial homomorphisms

PartInj(H, I,X → G) := {a ∈ Hom(H,X → G) | ∀(x, x′) ∈ I : a(x) 6= a(x′)} .

Given a conjunctive query (H,X) and a set σ ⊆ I the quotient query
(H/σ,X/σ) is obtained by identifying every pair of vertices x and x̂ as a
single vertex for every inequality (x, x̂) ∈ σ. Self-loops are kept and multiple
edges are deleted. We point out that it is possible that the contraction of all
pairs in σ might also contract vertices x and x̂ that are not contained in σ.
Consider for example σ = {{x1, x2}, {x2, x3}}. Then contracting {x1, x2}
and {x2, x3} will also contract x1 and x3.

11At the end of this subsection, we argue why a similar result which also takes inequal-
ities into account that may contain quantified variables, would require to solve a long
standing open problem in parameterized complexity theory.

6.4. Quantum Queries 157

Theorem 6.41. Let χ = (H, I,X) be a conjunctive query with inequalities
over the free variables. Then there exists a quantum query Q[χ] such that

#PartInj(H, I,X → ?) = #Hom(Q[χ]→ ?) .

Furthermore, the mapping χ 7→ Q[χ] is computable and the support of Q[χ]
is, up to equivalence, the set of all contracted queries (H/σ,X/σ) without
self-loops where σ is a subset of I.

In other words, given χ = (H, I,X), we can contract arbitrary variables
in (H,X) that are connected by an inequality in I. Then Theorem 6.41
guarantees that a minimal equivalent of the resulting query is contained in
the support of the quantum query Q[χ].

We remark that a general theorem in the above form that also includes
inequalities over quantified variables remains elusive, as this would require
to completely understand the subgraph decision problem, which is one of
the most famous open problems in parameterized complexity (see e.g [57,
Chapt. 33.1]). In terms of conjunctive queries with inequalities, the sub-
graph decision problem can be formulated by a query without free variables
and with all inequalities over the quantified variables. Then the empty
assignment is in the set of solutions if and only if there is an injective ho-
momorphism, that is, a subgraph embedding from the quantified variables
to the host graph.

Proof (of Theorem 6.41). Let G be a graph and let (H,X, I) be a conjunc-
tive query with inequalities. In particular, as the inequalities are only over
the free variables, we can use Möbius inversion similarly as in Chapter 4.1
and obtain that

#PartInj(H,X, I → G) =
∑
ρ∈L

µ(∅, ρ) ·#Hom(H/ρ,X/ρ→ G) ,

where µ is the Möbius function of the lattice of flats L of the graphic matroid
M(X, I). Now let JH1, X1K, . . . , JHk, XkK be the equivalence classes of the
set

{(H/ρ,X/ρ) | ρ ∈ L ∧ H/ρ contains no self-loops}

with minimal representatives. Then, we can define the desired quantum
query to be

Q[χ] :=
k∑
i=1

λi · (Hi, Xi) where λi =
∑
ρ∈L

(H/ρ,X/ρ) ∼ (Hi,Xi)

µ(∅, ρ) .

It remains to show that for all i ∈ [k] we have that λi 6= 0.

158 Chapter 6: Existential First-order Formulas

To this end, we observe that

(H/ρ,X/ρ) ∼ (H/σ,X/σ) ⇒ #X/ρ = #X/σ ,

and hence that ρ and σ have the same number of blocks with respect to
the graphic matroid M(X, I). Therefore, rk(ρ) = rk(σ) =: ri and therefore,
by Rota’s NBC Theorem (Theorem 2.26), we have that sign(λi) = (−1)ri .
Consequently, λi 6= 0.

Finally, we have that for every subset σ of I, there exists a flat ρ of
M(X, I) such that (H/ρ,X/ρ) = (H/σ,X/σ). In particular it can be ob-
served that in this case ρ is the closure cl(σ) of σ. This concludes the proof.�

6.4.3 Positive Formulas with Inequalities

In this subsection we will lift the classification once more, namely to existen-
tial and universal positive formulas with inequalities over the free variables.
Our goal is hence to find quantum queries Q that allow us to express the
number of solutions to the more general queries as #Hom(Q → ?). Recall
that an existential first-order formula is of the form

ψ = x1 . . . xk∃y1 . . . ∀y` : ψ′ ,

and that a universal first-order formula is of the form

θ = x1 . . . xk∀y1 . . . ∀y` : θ′ ,

where both, ψ′ and θ′ are quantifier-free. An existential first-order formula
is called existential positive if additionally ψ′ does not contain negations.
Similarly, a universal first-order formula is called universal positive if θ′ does
not contain negations. We write Σ+

1 and Π+
1 for the sets of all existential

and universal positive formulas, respectively. The following is due to Chen
and Mengel — we state their result in terms of quantum queries.

Theorem 6.42 ([32]). Let ψ ∈ Σ+
1 be an existential positive formula. Then

there exists a quantum query Q[ψ] such that for every graph G it holds that
#ψ(G) = #Hom(Q[ψ]→ G). Furthermore, the mapping ψ 7→ Q[ψ] is com-
putable.

This result can easily be extended to universal positive queries.

Corollary 6.43. Let θ ∈ Π+
1 be a universal positive formula. Then there

exists a quantum query Q[θ] such that for every graph G it holds that

#θ(G) = #Hom(Q[θ]→ G) ,

where G is the complement graph of G. Furthermore, the mapping θ 7→ Q[θ]
is computable.

6.4. Quantum Queries 159

Proof. Let θ = x1, . . . xk∀y1, . . . y` : θ′. Without loss of generality we can
assume that θ′ =

∨m1
i=1

∧m2
j=1Evivj . For every graph G with n vertices, we

have that

#θ(G) = nk −#{a : X → V (G) | ∃h : X ∪ Y → V (G) : h|X = a∧G 2h θ′} ,

i.e., we can count all assignments a that can be extended to an assignment h
that does not satisfy θ′ and subtract this number from the number nk of all
assignments from X to V (G). Now, using DeMorgan’s Law, it holds that

G 2h θ′ ⇔ G �h θ′ ,

where

θ′ =

m1∧
i=1

m2∨
j=1

Evivj .

Finally, we let
θ := x1, . . . xk∃y1, . . . y` : θ′ ,

and obtain

#θ(G) = nk −#{a : X → V (G) | ∃h : X ∪ Y → V (G) : h|X = a ∧G 2h θ′}
= nk −#θ(G)

Since θ is an existential positive formula, we can apply Theorem 6.42 to
compute Q[θ]. Furthermore, it holds that #Hom(ISk → G) = nk, where ISk
is the independent set of size k, that is, the graph consisting of vertices [k]
without edges. We conclude by setting

Q[θ] := (ISk, [k])−Q[θ] ,

and collecting for equivalent conjunctive queries in the support; note that
the query (ISk, [k]) might a priori be contained in the support of Q[θ]. �

Remark 6.44 (Isolated vertices). Observe that the graph ISk does not
correspond directly to a conjunctive query; the same holds true for every
graph with isolated vertices. For this reason, we allow that conjunctive
queries may be equipped with additional free variables. We write

ϕ = x1, . . . , xk : ψ

to equip a conjunctive query ψ with new free variables x1, . . . , xk. Then we
have that #ϕ(G) = |V (G)|k ·#ψ(G).

Now consider (existential or universal) positive formulas ϕ that are equipped
with a set I of inequalities between free variables. Similarly to conjunctive
queries with inequalities, we define

ϕI(G) := {β ∈ ϕ(G) | ∀{x, x′} ∈ I : β(x) 6= β(x′)} .

160 Chapter 6: Existential First-order Formulas

Furthermore, we extend the notion of a quotient query to positive formulas
as well. To this end, let J be a subset of the inequalities I. We define ϕ/J as
the formula obtained from ϕ by renaming every variable x′ with x whenever
we have that {x, x′} ∈ J . We observe that

#ϕ/J(G) = #{β ∈ ϕ(G) | ∀{x, x′} ∈ J : β(x) = β(x′)} . (6.14)

We will now use the principle of inclusion and exclusion to express #ϕI(?)
as a linear combination of terms #ϕ/J(?) for J ⊆ I. We point out that
it is also possible to prove the subsequent theorem with Möbius inversion
over the lattice of flats of the matroid induced by I as in case of conjunctive
queries with inequalities. However, the terms #ϕ/J(?) will be expressed
by the quantum queries given by Theorem 6.42 and Corollary 6.43, and the
support of those quantum queries cannot be given explicitly. For this reason
there is no advantage in relying on the NBC Theorem to prove that the
coefficients of the first transformation

#ϕI(?) =
∑
J

υJ ·#ϕ/J(?)

do not cancel, as the cancellation might occur in the second transformation

#ϕ/J(?) = #Hom(Q[ϕ/J]→ ?) .

Consequently, we will not be able to explicitly give the support of the quan-
tum graph Q[ϕ, I] that satisfies

#Hom(Q[ϕ, I]→ ?) = #ϕI(?) ,

regardless on whether we invoke inclusion-exclusion or Möbius inversion.12

We decided for the former as it allows for a cleaner proof.

Theorem 6.45. Let ϕ be an existential or universal positive formula and
let I be a set of inequalities I over the free variables of ϕ. Then there exists
a quantum query Q[ϕ, I] such that for every graph G it holds that

#ϕI(G) = #Hom(Q[ϕ, I]→ G) .

Furthermore, the mapping (ϕ, I) 7→ Q[ϕ, I] is computable.

12Indeed, using the boolean expansion formula for the Möbius function over lattices of
flats [141, Proposition 7.1.4], it can be shown that both principles are essentially equivalent.

6.4. Quantum Queries 161

Proof. We have that for all graphs G

#ϕI(G) = #{β ∈ ϕ(G) | ∀{x, x′} ∈ I : β(x) 6= β(x′)}

= #

ϕ(G) \
⋃

{x,x′}∈I

{β ∈ ϕ(G) | β(x) = β(x′)}


=
∑
J⊆I

(−1)#J ·#{β ∈ ϕ(G) | ∀{x, x′} ∈ J : β(x) = β(x′)}

=
∑
J⊆I

(−1)#J ·#ϕ/J(G) ,

where the third equality is inclusion-exclusion (Theorem 2.27) and the last
equality is (6.14). Now if ϕ is existential positive, then so is ϕ/J for all
J ⊆ I. We hence use Theorem 6.42 and collect for equivalent conjunctive
queries; if ϕ is universal positive we proceed similarly with Corollary 6.43.�

6.4.4 Non-monotone Constraints over Free Variables

Last but not least we will lift the classification theorem to existential and
universal positive queries with inequalities over the free variables that addi-
tionally may contain non-monotone constraints of the form ¬Exx̂ over free
variables. The idea is quite simple: Just perform inclusion-exclusion over
the non-monotone constraints. Unfortunately, this requires us to circumvent
the following two cumbersome technicalities: First, it is possible that some
of the free variables only occur in non-monotone constraints. This issue will
be dealt with by using Remark 6.44. Second, we have to guarantee that a
transformation of existential or universal positive queries with non-monotone
constraints over free variables to a linear combination of conjunctive queries
does not create queries that contain non-monotone constraints over quanti-
fied variables. This latter issue will be dealt with by taking a closer into the
proof of Theorem 6.42 by Chen and Mengel [32].

We start by considering conjunctive queries with non-monotone con-
straints over the free variables. For technical reasons (see Remark 6.44),
given a formula ϕ, a set J of atoms containing only variables that are new
or free in ϕ and a set V = {v1, . . . , vk} disjoint from all variables in ϕ and J ,
we define

[ϕ ∧ J]V := v1, . . . , vk : ϕ ∧
∧
a∈J

a .

We write [ϕ∧ J] if V is empty and [ϕ]V if J is empty. Now let G be a graph
and let ϕ be a conjunctive query with non-monotone constraints

¬S = {¬s1,¬s2, . . . ,¬s`} (6.15)

where each si is an atom Exix̂i for some free variables xi and x′i.

162 Chapter 6: Existential First-order Formulas

As ϕ is a conjunctive query, there is a subquery δ without non-monotone
constraints such that ϕ = [δ ∧ ¬S]. Now observe that

ϕ(G) = [δ ∧ ¬S](G) =

{
a ∈ [δ]V(¬S\δ)(G)

∣∣∣∣∣ ∧̀
i=1

{a(xi), a(x̂i)} /∈ E(G)

}
, (6.16)

where V(¬S \ δ) is the set of variables occurring only in ¬S and not δ.
In other words, (6.16) states that the assignments satisfying ϕ are precisely
those assignments that satisfy δ and all non-monotone constraints in ¬S.
As, however, it might be possible that there are free variables in ϕ that only
occur in the non-monotone part ¬S, we have to extend δ by those variables.

Again, we will use the principle of inclusion and exclusion to first get rid
of the non-monotone constraints and then build up on the prior transforma-
tions to quantum queries.

Lemma 6.46. Let ϕ = [δ ∧ ¬S] be a conjunctive query with non-monotone
constraints ¬S as given by (6.15). Then we have that

#ϕ(?) =
∑
J⊆S

(−1)#J ·#[δ ∧ J]V(S,δ,J)(?) ,

where S := {s1, s2, . . . , s`} and V(S, δ, J) is the set of all variables occurring
in S but neither in δ nor in J .

Proof. Let G be a graph. Using inclusion-exclusion (Theorem 2.27), we
obtain that

#ϕ(G) = #[δ ∧ ¬S](G)

= #

{
a ∈ [δ]V(¬S\δ)(G)

∣∣∣∣∣ ∧̀
i=1

{a(xi), a(x̂i)} /∈ E(G)

}

= #[δ]V(¬S\δ)(G)−#

a ∈ [δ]V(¬S\δ)(G)

∣∣∣∣∣∣
∨

(Exx̂)∈S

{a(x), a(x̂)} ∈ E(G)


=
∑
J⊆S

(−1)#J ·#

a ∈ [δ]V(¬S\δ)(G)

∣∣∣∣∣∣
∧

(Exx̂)∈J

{a(x), a(x̂)} ∈ E(G)


=
∑
J⊆S

(−1)#J ·#[δ ∧ J]V(S,δ,J)(G) .

�

Our next goal is to generalize to existential and universal positive formu-
las with inequalities and non-monotone constraints over the free variables.
To this end, we wish to invoke Theorem 6.45. However, the statement of
the latter theorem does formally not apply to formulas with non-monotone
constraints.

6.4. Quantum Queries 163

To circumvent this issue, we will just add a the relation symbol E to the
signature of graphs — we will argue in Chapter 6.5 that all results for the
signature of graphs readily extend to arbitrary signatures of bounded arity.

Now let ψ be an existential or universal positive formula over the sig-
nature of graphs with non-monotone constraints of the form ¬Exx̂. The
formula ψ↑ is obtained from ψ by substituting every atom ¬Exx̂ by Exx̂,
where E is a new relation symbol of arity 2. Consequently, the signature
of ψ↑ is τ = (E,E). Similarly, given a graph G, that is, a structure over
the signature (E), we let G↑ be the following structure over signature τ :
The vertices V (G↑) of G↑ are precisely the vertices of G and a pair (x, x̂) is
in E(G↑) if and only if {x, x̂} is an edge of G. Furthermore, a pair (x, x̂) is
in E(G↑) if and only if {x, x̂} is not an edge of G.

The operation ↓ is defined analogously: Given an existential or universal
positive formula ϕ over the signature τ , we obtain the formula ϕ↓ from ϕ
by substituting every atom Exx̂ by a non-monotone constraint ¬Exx̂. Con-
sequently, the signature of ϕ↓ is (E). Similarly, given a structure G over
signature τ , we obtain a graph G↓ without self-loops from G by taking the
same set of vertices and adding an edge {x, x̂} to E(G↓) if and only if x 6= x̂
and (x, x̂) ∈ E(G). The following is immediate.

Fact 6.47. We have that

(1) ψI(G) = ψ↑I(G↑) for every graph G without self-loops, existential or
universal positive formula ψ over the signature of graphs, and set of
inequalities I over the free variables of ψ,

(2) ϕI(G) = ϕ↓I(G↓) for every structure G and existential or universal
positive formula ϕ over the signature (E,E), and for every set of in-
equalities I over the free variables of ϕ,

(3) and G↑↓ = G for every graph G without self-loops.

Theorem 6.48. Let ψ be an existential or universal positive formula with
non-monotone constraints over the free variables and let I be a set of in-
equalities over the free variables of ψ. There exists a quantum query Q[ψ, I]
satisfying that

#ψI(?) = #Hom(Q[ψ, I]→ ?) .

Furthermore, the mapping (ψ, I) 7→ Q[ψ, I] is computable.

164 Chapter 6: Existential First-order Formulas

Proof. We have that for every graph G

#ψI(G) = #ψ↑I(G↑) (6.17)

= #Hom(Q[ψ↑, I]→ G↑) (6.18)

=
∑

ϕ∈supp(Q[ψ↑,I])

λϕ ·#ϕ(G↑) (6.19)

=
∑

ϕ∈supp(Q[ψ↑,I])

λϕ ·#ϕ↓(G) , (6.20)

where (6.17) holds by Fact 6.47 and (6.18) holds by the generalized version
of Theorem 6.45 that works for arbitrary signatures. Furthermore, (6.19)
holds by definition of a quantum query and (6.20) is again due to Fact 6.47.
Now consider the conjunctive queries ϕ↓: Those formulas might contain non-
monotone constraints and we wish to get rid of them by invoking Lemma 6.46.
However, this requires that the non-monotone constraints are only over free
variables of ϕ↓. Equivalently, ϕ must satisfy that each atom Exx̂ in only
over free variables. To this end, we observe that the quantum query Q[ψ↑, I]
in (6.18) is obtained in two steps; consult the proof of Theorem 6.45.

In the first step #ψ↑I(G↑) is transformed into a linear combination of
quotient formulas #ψ↑/J for J ⊆ I. As, by assumption, all non-monotone
constraints of ψ are over free variables, it hence holds that all atoms Exx̂
in #ψ↑/J are over free variables as well — recall that the quotient only
contracts free variables.

Note that all quotient formulas #ψ↑/J are universal or existential pos-
itive. Now, in the second step, depending on whether ψ is existential or
universal positive, the formulas #ψ↑/J are transformed to a linear combi-
nation of conjunctive queries by either Theorem 6.42 or Corollary 6.43. The
latter does not change the free variables and also relies on Theorem 6.42.
Consequently, we have to guarantee that the construction of the quantum
queries Q[#ψ↑/J] yields as constituents only conjunctive queries satisfying
that every atom Exx̂ is only over free variables. Now taking a look into
the proof of Chen and Mengel [32, Section 4 and 5.3] reveals that they
perform inclusion and exclusion over conjunctions of subformulas of ψ↑/J .
Consequently, no atom Exx̂ such that either x or x̂ is quantified, can be con-
structed. This allows us to continue from (6.20) by invoking Lemma 6.46:

#ψI(G) =
∑

ϕ∈supp(Q[ψ↑,I])

λϕ ·#ϕ↓(G)

=
∑

ϕ∈supp(Q[ψ↑,I])

λϕ ·
∑
J⊆S

(−1)#J ·#[δ ∧ J]V(S,δ,J)(G) ,

where ϕ ↓= [δ∧¬S] and V(S, δ, J) are as in Lemma 6.46. Finally, we collect
for equivalent conjunctive queries and obtain the quantum query Q[ψ, I]. �

6.5. Generalization to Structures 165

We are now able to proof Theorem 6.7 in case of the signature of graphs.

Proof (of Theorem 6.7). Given a family Φ of existential or universal posi-
tive formulas with non-monotone constraints and inequalities over the free
variables, we let ∆ be the set of the corresponding quantum queries as given
by Theorem 6.48. Then the problems #p-MC(Φ) and #Hom(∆) are equiv-
alent. The claim follows hence by Theorem 6.39. �

6.5 Generalization to Structures

In this section we are going to generalize all results that have been proved
for graphs to logical structures. Similarly as to graphs, every conjunctive
query ϕ over signature τ = (Ei)i∈[`] with free variables X and quantified
variables Y is associated with a pair (H, X) where H is a structure over the
signature τ . Here, V (H) = X ∪ Y and for every i ∈ [`] we add a vector

(zj)j∈[ai] ∈ (X ∪ Y)ai

to Ei(H) if and only if Ei(zj)j∈[ai] is an atom of ϕ. Observe that for all
structures G over τ it holds that ϕ(G) = Hom(H, X → G). We adapt the
notion for graphs and call (H, X) a graphical conjunctive query. The defini-
tions of H-colored structures, color-prescribed and colorful homomorphism
as well as of quantum queries transfers in the canonical way from graphs to
structures.

Now let ∆ be a set of first-order formulas. We say that ∆ has bounded
arity if there is a constant C ∈ N such that every signature of some formula
in ∆ has arity at most C. We assume all classes of formulas in this chapter
to have bounded arity.

6.5.1 Reduction from the Gaifman Graph

In what follows we prove that counting color-preserving partial homomor-
phisms from a structure is at least as hard as counting color-preserving
partial homomorphisms from its Gaifman graph.

Lemma 6.49. Let (H, X) be a graphical conjunctive query of signature τ .
Then there exists a deterministic algorithm A equipped with oracle access
to #cp-Hom(H, X → ?) that computes #cp-Hom(G(H), X → ?). Further-
more, A runs in time O(f(H) · na(τ)) for some computable function f .

Proof. We will first provide the intuition behind the proof by considering
the following restriction on H. We assume that τ = (E1) and let a = a1.
Furthermore, we assume that H does not have any tuple in E1(H) that
contains a multiple occurrence of the same vertex. Now given a G(H)-
colored graph G for which we want to compute #cp-Hom(G(H), X → G),

166 Chapter 6: Existential First-order Formulas

we can construct an H-colored structure G′ from G as follows. For every
~u = (u1, . . . , ua) ∈ E1(H) we search all cliques in G of size a that are colored
with u1, . . . , ua. Every clique ~c = (c1, . . . , ca) satisfying that ci has color ui
is then added to G as a tuple in E1. If this is done for all ~u ∈ E1(H) we
delete all former edges of G. It is easy to see that the resulting structure G′

is H-colored, except for the case that there was an ~u ∈ E1(H) for which there
was no corresponding clique in G. In this case, however, there is no color-
preserving homomorphism from G(H) to G at all and we can just output 0.
Otherwise we claim that

cp-Hom(G(H), X → G) = cp-Hom(H, X → G′) . (6.21)

For the first direction, let a ∈ cp-Hom(G(H), X → G). Then there exists a
homomorphism h ∈ cp-Hom(G(H)→ G) such that h|X = a. We claim that h
is contained in cp-Hom(H→ G′) as well. To this end, let ~u = (u1, . . . , ua) be
a tuple of E1(H). By the definition of the Gaifman graph it holds that ~u is a
clique in G(H) (recall that we assumed the absence of multiple occurrences).
As h ∈ cp-Hom(G(H)→ G) it hence holds that h(~u) is a clique of size a in G
with colors u1, . . . , ua. By the construction of G′ we have that h(~u) ∈ E1(G′).
Consequently h ∈ cp-Hom(H→ G′) and a ∈ cp-Hom(H, X → G′).

For the backward direction, let a ∈ cp-Hom(H, X → G′). Then there
exists a homomorphism h ∈ cp-Hom(H → G′) such that h|X = a. We
claim that h is contained in cp-Hom(G(H) → G) as well. To see this, let
e = {v, w} ∈ E(G(H)). By the definition of the Gaifman graph, there exists
an edge ~u = {u1, . . . , ua} in E1(H) such that v = ui and w = uj for some
1 ≤ i < j ≤ a. As h ∈ cp-Hom(H → G′) it holds that h(~u) ∈ E1(G′).
By the construction of G′ we have that h(~u) is a clique in G, colored with
u1, . . . , ua. In particular it holds that {h(ui), h(uj)} ∈ E(G) and that h(ui)
has color ui and h(uj) has color uj . As v = ui and w = uj we conclude that
h ∈ cp-Hom(G(H)→ G) and hence a ∈ cp-Hom(G(H), X → G).

This completes the reduction for the restricted case. We remark that the
claimed running time bound follows from the fact that G′ can be constructed
in time f(H) · na(τ) as we only need to search for cliques of size ≤ a(τ).

Let us now explain how to get rid of the restrictions. First, consider a
tuple of H that contains multiple occurrences of a vertex, e.g.

~u = (u1, u2, u1, u1, u3, u2) ∈ E1(H) .

We observe that there are exactly 3 different vertices: u1, u2 and u3. Hence,
when constructing G′, we search for cliques of size 3, colored with u1, u2

and u3. Then, for every clique (a, b, c) in G colored with (u1, u2, u3) we add
(a, b, a, a, c, b) to E1(G′).

Finally, we can assume that τ contains more than one relation symbol
by employing the construction for every relation. It is easy to see that
Equation 6.21 remains true for the unrestricted case if the construction is
modified as explained above. �

6.5. Generalization to Structures 167

6.5.2 Equivalence of Conjunctive Queries

In this subsection we prove that every endomorphism of a minimal graph-
ical conjunctive that bijectively maps the free variables to itself is already
an automorphism. Recall that two conjunctive queries (H, X) and (Ĥ, X̂)
are called equivalent, we write (H, X) ∼ (Ĥ, X̂), if #Hom(H, X → ?) and
#Hom(Ĥ, X̂ → ?) are the same functions and a query (H, X) is called min-
imal if it is a vertex-minimal element in its equivalence class.

Chen and Mengel provided an explicit criterion for equivalence.13

Lemma 6.50 ([32]). Two conjunctive queries (H, X) and (Ĥ, X̂) are equiv-
alent if and only if there exist surjective functions s : X → X̂ and
ŝ : X̂ → X that can be extended to homomorphisms h ∈ Hom(H → Ĥ)
and ĥ ∈ Hom(Ĥ→ H), respectively.

We do not want to distinguish between two conjunctive queries that are
equal up to consistently renaming both, the quantified as well as the free
variables. Hence we say that two conjunctive queries (H, X) and (Ĥ, X̂)
are isomorphic if and only if there is an isomorphism from H to Ĥ that
bijectively maps X to X̂. We write (H, X) ∼= (Ĥ, X̂).

We now prove Lemma 6.9 in the more general context of structures.
We start by introducing the necessary preliminaries with respect to cores
of structures and homomorphic equivalence: Two structures H and Ĥ are
homomorphically equivalent if there exist homomorphisms from H to Ĥ and
from Ĥ to H. H is called a core if it is not homomorphically equivalent
to a proper substructure of H. As for every proper substructure of H, the
identity function is a homomorphism, we obtain

Observation 6.51. A structure H is a core if and only if there exists no ho-
momorphism from H to a proper substructure. Hence, every endomorphism
of a core is an automorphism.

We say that a substructure Ĥ of H is a core of H if Ĥ and H are homomor-
phically equivalent and Ĥ is a core.

Lemma 6.52 (cf. Lemma 13.9 in [65]). Let H and G be homomorphi-
cally equivalent and let Ĥ and Ĝ be cores of H and G, respectively. Then Ĥ
and Ĝ are isomorphic. In particular, all cores of a structure are isomorphic.

Corollary 6.53. All minimal elements in a single equivalence class with
respect to homomorphic equivalence are isomorphic.

13Note that in case of graphs, Lemma 6.50 is identical with Corollary 6.37. While Chen
and Mengel gave a more involved proof of the lemma, we point out that the generalization
to structures can be proved just as easy as we demonstrated it for graphs in Chapter 6.4.

168 Chapter 6: Existential First-order Formulas

Now Lemma 6.52 and Corollary 6.53 allow us to speak of the core of a
structure — we write core(H) — and the minimal representative of a ho-
momorphic equivalence class. Our goal is to achieve a similar result for
equivalence of conjunctive queries. To this end, we use the augmented core
of a graphical conjunctive query which refines the notion of a core.

Definition 6.54. Given a conjunctive query (H, X), we obtain an aug-
mented structure aug(H, X) from H by adding a new relation

Eaug(H) = {(x, x′) ∈ X2 | x 6= x′} .

Note that this also adds a new relation symbol Eaug to the signature. We
let Hc be the structure obtained from core(aug(A, X)) by removing Eaug(H)
and we define the augmented core of (H, X) to be coreaug(H, X) := (Hc, X).

We note that coreaug is well-defined, i.e., that every element x ∈ X is con-
tained in the core of aug(H, X). To see this, we observe that Eaug(H) induces
a clique without loops on X and hence, any substructure Ĥ of H such that
there is a homomorphism from H to Ĥ must contain every element x ∈ X.

Lemma 6.55. Let (H, X) and (Ĥ, Ĥ) be two graphical conjunctive queries.
Then it holds that (H, X) and (Ĥ, Ĥ) are equivalent if and only if aug(H, X)
and aug(Ĥ, Ĥ) are homomorphically equivalent. Moreover, aug(H, X) is
minimal with respect to homomorphic equivalence if and only if (H, X) is
minimal.

Proof. Every homomorphism from aug(H, X) to aug(Ĥ, Ĥ) must surjectively
map X to X̂ as Eaug induces a clique (without self-loops) on X and X̂. On
the other hand, every homomorphism from H to Ĥ that surjectively maps X
to X̂ is a homomorphism from aug(H, X) to aug(Ĥ, Ĥ).

If aug(H, X) is not minimal with respect to homomorphic equivalence
then it is not a core. Hence aug(H, X) is homomorphically equivalent to
a proper substructure F of aug(H, X). Hence F must contain all vertices
in X and Eaug(F) = Eaug(H), because otherwise there would be no homo-
morphism from aug(H, X) to F. It follows that F = aug(Ĥ, X) for some
structure Ĥ. By the first part, it follows that (H, X) and (Ĥ, X) are equiv-
alent. As Ĥ is a proper substructure of H is follows that (H, X) is not
minimal.

On the other hand, if (H, X) is not minimal, then there exists a con-
junctive query (Ĥ, Ĥ) such that Ĥ is a proper substructure of H and there
are homomorphisms h from H to Ĥ and ĥ from Ĥ to H that surjectively
map X to X̂ and X̂ to X respectively. Hence h and ĥ are also homo-
morphisms from aug(H, X) to aug(Ĥ, Ĥ) and from aug(Ĥ, Ĥ) to aug(H, X),
respectively. Therefore aug(H, X) is not minimal with respect to homomor-
phic equivalence. �

6.5. Generalization to Structures 169

The previous lemma, together with Lemma 6.52 and Corollary 6.53, imme-
diately implies the following:

Corollary 6.56. For all graphical conjunctive queries (H, X) and (Ĥ, Ĥ) it
holds that

(1) (H, X) ∼ coreaug(H, X).

(2) If (H, X) is minimal then (H, X) ∼= coreaug(H, X).

(3) If (H, X) and (Ĥ, Ĥ) are minimal and (H, X) ∼ (Ĥ, Ĥ) then we have
that (H, X) ∼= (Ĥ, Ĥ).

(4) If (H, X) is minimal and h is an endomorphism of H that surjectively
maps X to X, then h is an automorphism.

Note that Lemma 6.9 follows from (4), restricted to the signature of graphs.

6.5.3 The Generalized Classification Theorem

Before generalizing our main theorem, we need to point out that all struc-
tural parameters we have seen for conjunctive queries over the signature of
graphs are generalized to structures via the Gaifman graph. We further-
more observe that the reduction from color-prescribed to uncolored homo-
morphisms in Chapter 6.2.1 as well as the transformation of existential and
universal positive queries, possibly including inequalities and non-monotone
constraints over the free variables, can be done completely analogously as
in the case of graphs. However, we did not give a formal proof of #W[1]-
easiness in case of bounded dominating star size yet, which is hence provided
first.

Theorem 6.57 (Theorem 6.19 for structures). Let ∆ be a class of con-
junctive queries with bounded dominating star size. Then #Hom(∆) is
#W[1]-easy.

Proof. We construct a parameterized Turing reduction to #p-MC(Π0) which
is #W[1]-equivalent by Theorem 2.59.

Given an instance of #Hom(∆), i.e., a conjunctive query (H, X) ∈ ∆
and a structure G, we will construct in FPT time a query (Ĥ, X) ∈ Π0 and
a structure Ĝ such that

#Hom(H, X → G) = #Hom(Ĥ, X → Ĝ) ,

using an “oracle for #W[1]” with the additional restriction that the param-
eter of every query to the oracle only depends on (H, X). The latter oracle
will be implemented by using the provided oracle access to #p-MC(Π0).

170 Chapter 6: Existential First-order Formulas

Let G = G(H) be the Gaifman graph of H, let Y be the set of quantified
variables in (H, X) and let Y1, . . . , Y` be the connected components of G[Y].
Furthermore, for each i ∈ [`] we set ci to be the number of vertices in X
that are adjacent to a vertex in Yi in G. Note that every ci is bounded
by some overall constant as ∆ has bounded dominating star size. Next we
add new relation symbols Ê1, . . . , Ê` with arities c1, . . . , c` to the signature.
We proceed for each i ∈ [`] as follows: Let xi1, . . . , x

i
ci ∈ X be the elements

in H that are adjacent to an element in Yi in G. Now, for every tuple
~v = (v1, . . . , vci) ∈ V (G)ci , we check whether there is a homomorphism h
from H[Yi ∪ {xi1, . . . , xici}] to G such that h(xij) = vj for all j ∈ [ci]. In-
tuitively, this check is positive if ~v is a possible candidate for the image of
the free variables xi1, . . . , x

i
ci ∈ X with respect to “neighborhood” Yi. Next

we add ~v to Êi(G) if and only if the check was positive and remark that
we only need to perform ` · |G|O(1) checks as all ci are upper bounded by a
constant. The resulting structure is Ĝ. We observe that every check can be
done by querying an oracle to W[1] as it can be formulated as an instance of
the problem of deciding the existence of a solution to a conjunctive query,
which is known to be W[1]-easy (cf. Theorem 7.22 in [65]). As we have
access to an oracle for #W[1], we can certainly simulate an oracle for W[1];
if we know the number of solutions we also know whether one exists.

It remains to show how to construct (Ĥ, X): We fix an ordering of the
free variables X of ϕ. Next, starting from H, for every i ∈ [`], let xi1, . . . x

i
ci

be the ordered neighbors of vertices in Yi in G. We then add an atom
(xi1, . . . x

i
ci) ∈ Êi to H. In the end, we delete all quantified variables from H

along with all tuples that contain a quantified variable and denote the re-
sulting structure as Ĥ. Now it can be easily verified that

#Hom(H, X → G) = #Hom(Ĥ, X → Ĝ) .

We summarize the reduction:

(1) Given (H, X) and G, construct Ĝ by performing at most ` · |G|dss(H,X)

checks, using the oracle.

(2) Construct H.

(3) Query the oracle to obtain #Hom(Ĥ, X → Ĝ) and output the result.

This can be done in FPT time as the dominating star size of ∆ is bounded.
For the same reason, the arity of H is bounded by a constant. Furthermore,
there is a computable function t such that the size of every oracle query is
bounded by t(|(H, X)|) · poly(|G|) and the parameter of every oracle query
is bounded by t(|(H, X)|). �

The following classification subsumes Theorem 6.6 in the general case of
logical signatures with bounded arity.

6.5. Generalization to Structures 171

Theorem 6.58 (Counting answers to conjunctive queries). Let ∆ be
a recursively enumerable class of minimal conjunctive queries over arbitrary
signatures with bounded arity.

(1) If the treewidth of ∆ and contract(∆) is bounded, then #Hom(∆) is
polynomial-time computable.

(2) If the treewidth of ∆ is unbounded and the treewidth of contract(∆) is
bounded, then #Hom(∆) is W[1]-equivalent.

(3) If the treewidth of contract(∆) is unbounded and the dominating star
size of ∆ is bounded, then #Hom(∆) is #W[1]-equivalent.

(4) If the dominating star size of ∆ is unbounded, then #Hom(∆) is
#W[2]-hard. In particular, given a formula δ with

dss(δ) ≥ max{3, arity(δ)} ,

then computing #Hom(δ → ?) cannot be done in time O(ndss(δ)−ε) for
any ε > 0 unless SETH fails.

(5) If additionally the linked matching number of ∆ is unbounded, then
#Hom(∆) is #A[2]-equivalent.

Furthermore, the classification remains true if ∆ is a family of quantum
queries, with the exception that the queries in the first case might only be
fixed parameter tractable.

Proof. We have that (1), (2), and #W[1]-hardness in (3) follow from [31].
#W[1]-easiness in (3) follows from Theorem 6.57. (4) and hardness in (5)
hold as we can apply the corresponding results for the Gaifman graphs (The-
orem 6.22 and Theorem 6.30) and then reduce to the primal structures via
Lemma 6.49. In particular, the condition

dss(δ) ≥ max{3, arity(δ)}

in (4) is necessary as the reduction in Lemma 6.49 takes time narity(δ). After
that, we can reduce color-prescribed homomorphisms to uncolored homo-
morphisms completely analogously as we did for graphs (Chapter 6.2.1).
#A[2]-easiness follows from the fact that the general problem of counting
answers to conjunctive queries is easy for #A[2] by definition. Finally, the
extension to quantum graphs holds by the complexity monotonicity prop-
erty, which follows by a straight-forward adaption of the proof of Lemma 6.38
for structures. Alternatively, the original but more involved version of Chen
and Mengel [32] can be applied. �

172 Chapter 6: Existential First-order Formulas

Now transforming universal and existential positive formulas, possibly with
inequalities and non-monotone constraints over the free variables, to a quan-
tum query can also be done completely analogously as for graphs, proving
Theorem 6.5 and Theorem 6.7 in the general case. We point out that, in case
of conjunctive queries with inequalities over the free variables, the criterion
for a query to be contained in the support of the linear combination can be
stated in terms of vertex contractions along matroid flats similar to the case
of graphs (see Theorem 6.41).

Corollary 6.59. The classification of Theorem 6.58 applies to all recur-
sively enumerable families ∆ of universal and existential positive formulas of
bounded arity that might contain inequalities and non-monotone constraints
over the free variables. In particular, if ∆ is a set of conjunctive queries with
inequalities over the free variables, the criteria for the classification can be
stated explicitly as in Theorem 6.41.

Chapter 7

Conclusions and Future
Research

Quantum graphs and the complexity monotonicity property of computing
linear combinations of homomorphism numbers have been shown to be a
powerful framework for the parameterized and exact complexity analysis
of counting problems. As we have seen, they do not only yield significantly
simpler proofs of existing dichotomy results, but also new exhaustive and
mostly explicit classifications for parameterized counting problems whose
complexity has not or only very partially been resolved with prior methods.

Now let us go back to one of the original motivations for the study of
the parameterized complexity of counting problems. The idea was to use
parameterization as a possible relaxation of problems that are intractable
in the classical sense. From this algorithmic point of view, the results of
this work are quite negative: By the complexity monotonicity property, a
parameterized counting problem is hard whenever an equivalent expression
as homomorphism counting problem from quantum graphs with constituents
of unbounded treewidth can be found. For many problems in this thesis,
this induces only very few non-trivial tractability results.

Consider for example the problem #IndSub(Φ) for bipartite monotone
graph properties Φ. The main result of Chapter 5.2 states that there are no
non-trivial fixed-parameter tractable cases under ETH and thus completely
rules out parameterization as a relaxation that yields efficient algorithms.
Furthermore, any significant improvement over brute-force is impossible,
unless ETH fails.

What can be done about problems like #IndSub(Φ)? We conjecture
that approximate counting might be a very fruitful approach. Let us give
some evidence for this claim: Jerrum and Meeks proved the existence of
what is called a fixed-parameter tractable randomized approximation scheme
(FPTRAS) for #IndSub(Φ) if Φ is the property of being connected [79].

174 Chapter 7: Conclusions and Future Research

This is a particular interesting result as, by Chapter 5.1, the quantum graph
expressing of the number of connected induced subgraphs of size k contains
the clique of size k as a coefficient. In contrast, the number of cliques of
size k can most likely not be approximated up to a constant factor by an
FPT algorithm as this would solve the decision version Clique. However,
the latter is known to not admit an FPT algorithm unless ETH fails [33,
34]. Consequently, complexity monotonicity fails for approximate counting
and hence none of the reductions from #Clique in this thesis rules out
approximation algorithms.

For this reason, we suggest the combination of parameterization and
approximation for intractable counting problems that avoid improvements
if only one of the former is applied. Indeed, there have been some results
in this field, such as the approximation algorithm for counting subgraphs
with bounded treewidth due to Arvind and Raman [6], the approximation
algorithm for counting even and odd subgraphs due to Jerrum and Meeks[81]
and the method of “Extensor-coding” due to Brand, Dell and Husfeldt [15].
A more systematic study of parameterized randomization, including some
implications for the structural complexity of approximate counting is due to
Montoya and Müller [103] (see also [57, Chapter 32.7]). However, beyond
these results, not much is known.

Appendix A

Proof of Lemma 4.11:
Counting Subtrees of a Tree

The aim of this chapter is to prove Lemma 4.11, i.e., that counting locally
injective homomorphisms is #P-hard and thus not solvable in polynomial
time under standard assumptions. We start by giving an introduction to
classical counting complexity which was established by Valiant in his seminal
work about the complexity of computing the permanent [128]. A (non-
parameterized) counting problem is a function F : {0, 1}∗ → N. The class
of all counting problems solvable in polynomial time is called FP. On the
other hand, the notion of intractability is #P-hardness. #P is the class
of all counting problems reducible1 to #SAT, the problem of computing
the number of satisfying assignments of a given CNF formula. A counting
problem F is #P-hard if there exists a polynomial-time Turing reduction
from #SAT to F , that is, an algorithm with oracle access to F that solves
#SAT in polynomial time. Toda [126] (see also [71, Chapter F.1]) proved
that

PH ⊆ P#P ,

where PH is the Polynomial-Time Hierarchy (cf. [71, Chapter 3.2]) and P#P

is the class of all languages that can be decided in polynomial time if provided
oracle access to #SAT. As NP ⊆ PH and the inclusion is assumed to be strict,
this indicates that #P-hard problems are even harder than NP-complete
problems.

For the proof of Lemma 4.11, we will first show #P-hardness of the
following intermediate problem: Given two trees T1, T2, compute the number
#Sub(T1 → T2) of subtrees of T2 that are isomorphic to T1. We call this
problem #Sub(T , T).

1(Many-one) reductions in counting complexity differ slightly from many-one reductions
in the decision world. However, for the purpose of this chapter we only need Turing
reductions. We recommend Chapter 6.2 in [71] to the interested reader.

176 Chapter A: Proof of Lemma 4.11: Counting Subtrees of a Tree

Figure A.1: Trees Tid5 (left) and TB (right).

Lemma A.1. #Sub(T , T) is #P-hard.

Related results are #P-hardness for counting all subtrees of a given graph
due to Jerrum [78] or even counting all subtrees of a given tree due to
Goldberg and Jerrum [70]. As the number of non-isomorphic trees with n
vertices is not bounded by a polynomial in n, we do not know how to reduce
directly from those problems. Instead we use a construction quite similar
to the “skeleton” graph in the construction of Goldberg and Jerrum [70] to
reduce from the problem of computing the permanent.

Given a quadratic matrix A with elements (ai,j)i,j∈[n] the permanent of A
is defined by

perm(A) :=
∑

π∈Symn

n∏
i=1

ai,π(i) ,

where Symn is the symmetric group with n elements.

Theorem A.2 ([128]). Computing the permanent is #P-hard even when
restricted to matrices with entries from {0, 1}.

Proof (Proof of Lemma A.1). We reduce from computing the permanent of
matrices with entries from {0, 1}. Given a quadratic matrix A of size n, we
construct a tree TA as follows:

1. For every entry ai,j we create a vertex vi,j and add edges {vi,j , vi+1,j}
for every i ∈ [n− 1] and j ∈ [n].

2. Whenever ai,j = 1 we create a vertex bi,j and add edges {bi,j , vi,j}.

3. For every column cj we create a vertices uj , wj , xj , yj , zj and add edges
{uj , v1,j}, {vn,j , wj},{wj , xj},{wj , yj} and {wj , zj}.

4. Finally, we create a vertex r and add edges {r, uj} for all j ∈ [n]. In
what follows, we call r the root.

177

We give an example in Figure A.1 for the matrix

B :=


1 0 1 0 0
0 1 0 1 1
1 0 1 0 0
0 1 0 1 0
0 1 0 0 1

 .

We claim that for all quadratic matrices A of size n ≥ 5 with entries from
the set {0, 1} it holds that

perm(A) = #Sub(Tidn → TA) ,

where idn is the quadratic matrix of size n with 1s on the diagonal and 0s
everywhere else. In the following we write v for a vertex in TA and v′ for a
vertex in Tidn . To prove the claim we first observe that whenever a subtree
of TA is isomorphic to Tidn , the root r′ of Tidn has to be mapped to the root r
of TA by the isomorphism as the roots are the only vertices with degree n
(which is why we needed n ≥ 5 as every other vertex has degree ≤ 4).
It follows that the vertices u′1, . . . , u

′
n of Tidn are mapped to the vertices

u1, . . . , un of TA which induces a permutation on n elements, that is, an
element π ∈ Symn.

We will now partition the subtrees of TA isomorphic to Tidn by those
permutations and write #Sub(Tidn → TA)[π] for the number of subtrees
that induce π. Now fix π and consider a subtree that induces π. It holds
that for all j ∈ [n] the vertex w′j has to be mapped to wπ(j) as those are the
only vertices with degree exactly 4 and furthermore, the vertices x′j , y

′
j , z
′
j

have to be mapped to xπ(j), yπ(j), zπ(j) (possibly permuted but the subtree
of TA is the same). Now v′i,i is adjacent to b′i,i for each i ∈ [n] and thus vi,π(i)

has to be adjacent to bi,π(i), that is ai,π(i) = 1. If this is not the case then
there is no subtree that induces partition π. Furthermore there is at most
one subtree isomorphic to Tidn inducing π because the image is enforced by
the vertices r′, w′j and v′i,i for all i, j ∈ [n]. Consequently

#Sub(Tidn → TA)[π] = 1 ,

if for all i ∈ [n] it holds that ai,π(i) = 1, and otherwise

#Sub(Tidn → TA)[π] = 0 .

Hence #Sub(Tidn → TA)[π] =
∏n
i=1 ai,π(i) and therefore

perm(A) =
∑

π∈Symn

n∏
i=1

ai,π(i) =
∑
π∈Sn

#Sub(Tidn → TA)[π] = #Sub(Tidn → TA) .

Now the reduction works as follows: If the input matrix A has size ≤ 4
we brute-force the output and otherwise we compute #Sub(Tidn → TA) with
the oracle for #Sub(T , T). �

178 Chapter A: Proof of Lemma 4.11: Counting Subtrees of a Tree

The proof of Lemma 4.11 relies on the fact that locally injective homomor-
phisms from a tree to a tree are embeddings.

Proof (of Lemma 4.11). It is a well-known fact that a locally injective ho-
momorphism h from a tree T1 to a tree T2 is (fully) injective. To see this,
assume that there are vertices v and u in T1 that are mapped to the same
vertex in T2. As T1 is a tree there exists exactly one path

v = w0, w1, . . . , w`, w`+1 = u

between v and u in T1. It holds that ` ≥ 1 as otherwise v and u would be
adjacent and hence h(u) = h(v) would have a self-loop in T2 which is im-
possible. As h is locally injective we have that h(v) 6= h(w2), hence u 6= w2,
and as h is edge-preserving there are edges {h(v), h(w1)} and {h(w1), h(w2)}
and a path from h(w2) to h(w`+1) = h(u) = h(v) in T2. This induces a cycle
and contradicts the fact that T2 is a tree.

Therefore #Emb(T1 → T2) = #Li-Hom(T1 → T2). By Fact 2.9, we have
that for all H and G the following is true

#Sub(H → G) =
#Emb(H → G)

#Aut(H)
.

If H is a tree then H is planar and thus #Aut(H) can be computed in
polynomial time [98, 74]. Therefore #P-hardness of #Li-Hom(T) follows
by reducing from #Sub(T , T), which is hard by Lemma A.1: Given trees T1

and T2 we obtain #Li-Hom(T1 → T2) by querying the oracle and compute
#Aut(T1) in polynomial time. Finally, we output

#Li-Hom(T1 → T2)

#Aut(T1)
=

#Emb(T1 → T2)

#Aut(T1)
= #Sub(T1 → T2) .

�

Appendix B

Modular Counting of
Induced Subgraphs

In this part of the appendix, we show that our main result of Chapter 5.2
(Theorem 5.48) can easily be extended to counting modulo a fixed prime:

Theorem B.1. Let p be a prime number, Φ be a computable graph property
and let K be the set of all prime powers t = pk such that Φ(IS2t) 6= Φ(Kt,t).
If K is infinite then ModpIndSub(Φ) is ModpW[1] hard. If additionally K
is dense then it cannot be solved in time f(k) · no(k) for any computable
function f unless ETH fails. This holds true even if the input graphs to
ModpIndSub(Φ) are restricted to be bipartite.

Here ModpIndSub(Φ) asks, given G and k, to compute the number of in-
duced subgraphs with k vertices in G that satisfy Φ modulo p. The param-
eterized complexity class ModpW[1] is defined by the problem of, given G
and k, deciding whether the number of k-cliques in G is 0 modulo p, which
is complete for the class (see [13] for p = 2 and Chapter 1.2.2 in [39] for the
general case).

First of all, we point out that the modular counting version of The-
orem 5.33 follows as corollary from the above theorem in the same way
Theorem 5.33 follows from Theorem 5.48. For the proof of Theorem B.1 we
will first establish the following matrix to be invertible; this fact is crucial
for the color-prescribed variant of complexity monotonicity.

Lemma B.2. Let H be a graph and let M be a quadratic matrix of size
2|E(H)| such that the rows and columns are identified by the subsets of edges
of H. Furthermore assume that the entries of M are given by

M(S, T) := #cp-Hom(H[S]→ H[T]) .

Then M is non-singular. This holds true even if M is considered as a matrix
over Zp, that is, the field with p elements. In the latter case, the entries are
taken modulo p.

180 Chapter B: Modular Counting of Induced Subgraphs

Proof. We fix any linear extension . of the subset inclusion relation on
E(H) and order the columns and rows of M accordingly. We claim that
M is triangular. To see this we first observe that M(S, S) = 1 for every S,
given by the identity homomorphism from H[S] to H[S] which is, of course,
color-prescribed. Now consider M(S, T) for some T 6= S with T . S. It
follows that there exists an edge {u, v} in S\T since. linearly extends subset
inclusion. Now assume that there exists a color-prescribed homomorphism h
from H[S] to H[T]. By color-prescribedness we have that h(u) = u and
h(v) = v, contradicting the fact that h is a homomorphism and {u, v} /∈ T .
Hence M(S, T) = 0 and, consequently, M is triangular. �

Furthermore, we rely on the following fact stating that all required reduc-
tions in Chapter 5.2 work as well in the case of counting modular a prime
number.

Fact B.3. Let p be a fixed prime number. Then Lemma 5.45 and 5.47
remain true when counting is done modulo p if the graph H is restricted to
be Kt,t for some prime power t = pk.

The only two non-trivial observations required to verify Fact B.3 are, first,
that χ̂(Φ,Kt,t) 6= 0 mod p whenever Φ(Kt,t[∅]) 6= Φ(Kt,t) (Lemma 5.36)
and, second, that complexity monotonicity (Lemma 5.42) holds for compu-
tation modulo p as well, since non-singularity of the matrix M in the proof
is given by Lemma B.2 even in case the entries of M are considered to be
elements of Zp. The last ingredient for the proof of Theorem B.1, in par-
ticular for hardness under ETH, requires a method of isolating cliques that
works in the parameterized setting. This is given by the following result of
Williams et al.

Lemma B.4 (Lemma 2.1 in [137]). Let p ≥ 2 be an integer, G,H be
undirected graphs. Let G′ be a random induced subgraph of G such that each
vertex is taken with probability 1/2, independently. If there is at least one
induced H in G, the number of induced H in G′ is not a multiple of p with
probability at least 2−|H|.

Proof (of Theorem B.1). The proof is most similar to the proof of the tight
lower bound under ETH in Theorem 5.48. We start our reduction from
the problem of finding a clique of size k. In case K is dense and we aim
to establish the ETH hardness result, we perform the following two initial
steps before the main reduction:

1. Given G and k, we construct a graph Ĝ such that G contains a clique
of size k if and only if Ĝ contains a clique of size ` where k ≤ ` ≤ ck
for some overall constant c. The details of the construction are given
in the proof of Theorem 5.48.

181

2. We use Lemma B.4 to isolate an `-clique in Ĝ, assuming there is any,
with high probability.

For the main part of the reduction we then first apply the reduction from
counting cliques to counting color-prescribed homomorphisms from the bi-
clique as given by Lemma 5.49. In particular, this reduction is parsimo-
nious. Finally, we proceed from this point on precisely as in the proof of
Theorem 5.48, the correctness of which follows by Fact B.3.

We conclude by pointing out that, in case the randomized construction of
Lemma B.4 was used, we can perform probability amplification by repeating
the final algorithm 2k times to end up in a constant success probability. �

182 Chapter B: Modular Counting of Induced Subgraphs

Appendix C

Normalization for #A[2]

In this chapter, we prove that the problem of counting answers to graphical
conjunctive queries is #A[2]-equivalent. This result can be seen as a counting
analogue of the Normalization Theorem of the A-Hierarchy due to Flum and
Grohe [65, Chapter 8]. While most of their reductions directly translate
to the counting version, one major step can be drastically simplified using
the framework of quantum queries, namely the reduction from existential
positive formulas to conjunctive queries.

After establishing the normalization result, we are going to show #A[2]-
hardness of #cp-Hom(Grates) for some specific class Grates of all grates.
This latter result is the starting point for our reduction in Chapter 6.3.5.

C.1 Hardness for Graphs without Self-Loops

We consider the problem of counting answers to arbitrary conjunctive queries
over the signature of graphs. The main difficulty when proving #A[2]-
hardness of this problem is that the defining problem #p-MC(Π1) of #A[2]
talks about first-order formulas in Π1 which may contain relations of un-
bounded arity, and which may contain equalities and negations (cf. [65,
Chapter 14]). Recall that until now, every set Φ of first-order formulas was
assumed to have a constant bound on the arity of every signature of every
formula in Φ and furthermore, that no formula in Φ contains equalities. In
this subsection (and only in this subsection), we need to omit those restric-
tions. Given a class Φ of first-order formulas, we write Φ[r] for the subset
of Φ that contains only formulas over signatures of arity at most r. We
write Φ[GRAPHS] for the set of formulas in Φ that are over the signature
of graphs and that do not “include” self-loops, that is, Ezz is not allowed
as an atom for any variable z. In particular, we abuse notation and assume
that the input graphs to #p-MC(CQ[GRAPHS]) do not contain self-loops
as well. Furthermore, we let CQ= be the set of all conjunctive queries that
may contain equalities and CQ be the subset without equalities.

184 Chapter C: Normalization for #A[2]

Remark C.1. The problem #p-MC(CQ[GRAPHS]) is precisely the prob-
lem #Hom(G) where G is the set of all conjunctive queries over the signature
of graphs without self-loops.

We are ready to prove the following normalization lemma for #A[2].

Lemma C.2 (Normalization for #A[2]). We have that

#p-MC(Π1) ≤T
fpt #p-MC(CQ[GRAPHS]) .

Proof. We construct a sequence of reductions:

Claim C.3. #p-MC(Π1) ≤T
fpt #p-MC(Σ1).

Proof. Let

ϕ = x1 . . . xk∀y1 . . . ∀y` : ψ

be a formula in Π1 such that ψ is quantifier free — note that x1, . . . , xk
denote the free variables of ψ — and let G be a structure over the same
signature as ϕ. Furthermore, let n = #V (G).

We define ϕ′ ∈ Σ1 as follows:

ϕ′ = x1 . . . xk∃y1 . . . ∃y` : ¬ψ .

Now it can easily be verified that #ϕ(G) = nk −#ϕ′(G). This induces the
reduction. �

Claim C.4. #p-MC(Σ1) ≤T
fpt #p-MC(Σ+

1 [GRAPHS]), where Σ+
1 is the set

of all existential positive formulas.

Proof. Flum and Grohe proved the following sequence of reductions for every
odd t ≥ 1 in the decision realm (see [65, Chapter 8] and [63]):

p-MC(Σt) ≤T
fpt p-MC(Σ+

t) ≤T
fpt p-MC(Σ+

t [2]) ≤T
fpt p-MC(Σ+

t [GRAPHS]) .

A close look reveals that all of the above constructions work as well in the
counting world, in particular for t = 1. �

Claim C.5. #p-MC(Σ+
1 [GRAPHS]) ≤T

fpt #p-MC(CQ=[GRAPHS]).

Proof. Every formula ϕ ∈ Σ+
1 [GRAPHS] is an existential-positive formula.

Hence we can express ϕ as a quantum query over the same signature as
in Theorem 6.42. We then use the oracle for #p-MC(CQ=[GRAPHS]) to
compute every term in the linear combination. �

Claim C.6. #p-MC(CQ=[GRAPHS]) ≤T
fpt #p-MC(CQ[GRAPHS]).

C.2. Counting Vertex Sets matching to a Clique 185

Proof. An equality z1 = z2 in a conjunctive query can easily be simulated
by substituting every occurrence of z2 by z1 and removing the equality af-
terwards. If the substitution leads to self-loops we can just output zero, as
the input graphs do not contain such. �

This concludes the proof of the normalization lemma. �

The proof of Claim C.5 is considerably easier than its analogue in the deci-
sion world as we were able to make use of the framework of quantum graphs.
The proof of Claim C.3 actually shows that #p-MC(Π1) and #p-MC(Σ1)
are interreducible from which we conclude the following.

Corollary C.7. All problems considered in Chapter 6 and the current chap-
ter are #A[2]-easy.

C.2 Counting Vertex Sets matching to a Clique

Let Γ be the class of the following conjunctive queries

γk := x1 . . . xk∃y1 . . . ∃yk :
k∧
i=1

Exiyi ∧
∧

1≤i<j≤k
Eyiyj

Recall that G is the set of all conjunctive queries over the signature of
graphs without self-loops. Using Remark C.1 and Corollary C.7, we can
state Lemma C.2 in terms of #Hom as follows.

Corollary C.8. The problem #Hom(G) is #A[2]-equivalent.

In Chapter 6.2.1 we proved that #cp-Hom(∆) reduces to #Hom(∆) when-
ever ∆ contains only minimal queries. The next lemma states that the
reverse direction holds unconditionally.

Lemma C.9. Let (H,X) be a graphical conjunctive query. Then there is
an algorithm A with oracle access to #cp-Hom(H,X → ?) that computes
#Hom(H,X → ?). Furthermore A runs in time O(f(|H,X|) · nO(1)) for
some computable function f .

Proof. Given a graph G for which we want to compute #Hom(H,X → G),
we construct an H-colored graph G′ as follows:

We first copy the vertex set V (G) exactly #V (H) times and color the
copies according to the vertices of H. If we write v(G′) for the set of vertices
in G′ whose color is v ∈ V (G), Hence the vertices of G′ are partitioned by

P = {v(G′) | v ∈ V (H)} .

186 Chapter C: Normalization for #A[2]

Now let {u, v} be an edge of H. Then, for every a ∈ u(H ′) and b ∈ v(H ′)
we add the edge {a, b} to G′ if and only if (the initial vertices) a and b have
been adjacent in G.

Note that this reduction yields indeed a H-colored graph, except for
the case that G contains no edge. In this case, however, we can compute
the number #Hom(H,X → G) by brute-force in linear time in |V (G)|.
Otherwise, it can easily be verified that

#Hom(H,X → G) = #cp-Hom(H,X → G′) . �

The next lemma is required as a starting point for the reduction in
Chapter 6.3.5. The proof is a straight-forward application of the minor
reduction of Chapter 6.2.1.

Lemma C.10. #cp-Hom(Γ) is #A[2]-hard.

Proof. Given γ2k, we can contract yi to xi for i = 1, . . . , k and then delete
xk+1, . . . , x2k. The resulting minor is the conjunctive query with k free vari-
ables and k quantified variables containing every edge between two vertices.
It can easily be seen that every query with ≤ k free and ≤ k quantified
variables is a minor of this query. Hence, by Lemma 6.10 and Corollary C.8,
we have that #cp-Hom(Γ) is #A[2]-hard. �

C.3 Proof of Lemma 6.26: Hardness for Grates

In what follows we formally prove the reduction required for Lemma 6.26.

Lemma C.11. Let ωk be the k-grate. Then there exists an algorithm A
with oracle access to #cp-Hom(ωk → ?) that computes #cp-Hom(γk → ?).
Furthermore A runs in time O(k2 ·n2), where n is the number of vertices of
the input graph.

Proof. We modify the construction in the proof of Lemma 2.45 which was
based on existing hardness proofs for variants of the grid tiling problem
(cf. [45, Chapt. 14.4.1] and [39, Problem 1.12]).

Let (Hγ , X) be the query graph of γk. Without loss of generality we
assume that the k free variables of γk are labeled x0

k−1, x
1
k−2, . . . , x

k−1
0 , that

the k quantified variables of γk are labeled y0
k−1, y

1
k−2, . . . , y

k−1
0 and that the

atoms of γk are of the form Eyijx
i
j . Then it is well-defined to write (Hω, X)

for the query graph of ωk, i.e., the free variables coincide. Furthermore
we have that the quantified variables of γk are a subset of the quantified
variables of ωk. In particular it holds that V (Hγ) ⊆ V (Hω). While we give
a formal construction of the reduction in the remainder of the proof, we
encourage the reader to first consider the example in Figure C.1 to get an
intuition.

C.3. Proof of Lemma 6.26: Hardness for Grates 187

1

2

3

a

b

c

(1, 1)

(2, 2)

(3, 3)

(1, 2)

(2, 3)

(1, 3)

a

b

c

y0(G)

y1(G)

y2(G)

x0(G)

x1(G)

x2(G)

y20(G′)

y11(G′)

y02(G′)

x20(G′)

x11(G′)

x02(G′)

y0
1(G′)

y1
0(G′)

y00(G′)

Figure C.1: Illustration of the construction of G′ for k = 3. The graph G (left)
is γ3-colored and the mapping a = {x02 7→ α, x11 7→ β, x20 7→ γ} is contained in
cp-Hom(Hγ , X → G). The graph G′ (right) is ω3-colored and a is contained in
cp-Hom(Hω, X → G) as well.

Now let G be a γk-colored graph for which we want to compute the number
#cp-Hom(Hγ , X → G). Moreover we let EY (G) denote the subset of edges
of G that connect two vertices colored with quantified variables of γk. We
construct a ωk-colored graph G′ as follows:

1. For every pair i, j with i+ j = k−1 we add the vertices in xij(G) to G′

and preserve the color.

2. For every pair i, j with i + j = k − 1 and for every vertex u ∈ yij(G)
we add the vertex (u, u) to G′ and preserve its color.

3. For every edge {u, v} ∈ E(G) such that u is colored with yij and v is

colored with xi
′
j′ for some i, j, i′, j′, we add the edge {(u, u), v} to G′.

4. For every pair i, j with i+ j < k − 1 we add vertices

{(u, u′) | {u, u′} ∈ EY (G)} ,

and color them with yij . Note that this yields two vertices (u, u′)
and (u′, u) for every edge {u, u′} between vertices that are colored
with quantified variables in G.

5. For every pair i, j with i+j < k and j < k−1, we add an edge between
(u, u′) ∈ yij(G′) and (v, v′) ∈ yij+1(G′) if and only if u = v.

6. Similarly, for every pair i, j with i + j < k and i < k − 1, we add
an edge between (u, u′) ∈ yij(G

′) and (v, v′) ∈ yi+1
j (G′) if and only

if u′ = v′.

188 Chapter C: Normalization for #A[2]

Now G′ is ωk-colored and we claim that

Claim C.12. cp-Hom(Hγ , X → G) = cp-Hom(Hω, X → G′).

Proof. For the first direction let a : X → V (G) in cp-Hom(Hγ , X → G). We
write v(G) for the set of vertices in G that have color v. As a can be extended
to a homomorphism h that satisfies h(v) ∈ v(G) for all v ∈ V (HM), it holds
that a(xij) ∈ xij(G) for every pair i, j with i+ j = k− 1. Now let uij = h(yij)
for every pair i, j with i+ j = k− 1. A homomorphism h′ : V (Hω)→ V (G′)
is constructed as follows.

(1) h′ coincides with h (or a, respectively) on X,

(2) h′(yij) = (uij , u
i
j) for every pair i, j with i+ j = k − 1, and

(3) h′(yij) = (h(yij+1), h(yi+1
j)) for every pair i, j with i+ j < k − 1.

Note that Step (3) is well-defined as the image of vertices in Hγ correspond-
ing to quantified variables is a clique (of size k) in G, because otherwise h
would be no homomorphism. By construction of G′ it holds that h′ is a
homomorphism satisfying h′(v) ∈ v(G′) for every v ∈ V (Hω). Hence we
have that a ∈ cp-Hom(Hω, X → G′).

For the other direction let a : X → V (G′) in cp-Hom(Hω, X → G′)
and let h′ : V (Hω) → V (G′) be the homomorphism extending a satisfying
that h′(v) ∈ v(G′) for every v ∈ V (Hω). Now let (uij , u

i
j) = h′(yij) for

every pair i, j with i + j = k − 1. A homomorphism h : V (Hγ) → V (G) is
constructed as follows.

(1) h coincides with h′ (or a, respectively) on X, and

(2) h(yij) = uij for every pair i, j with i+ j = k − 1.

Now it can easily be seen that h is indeed a homomorphism: There must be
an edge between every pair of vertices h(yij) and h(yi

′
j′) for i+j = i′+j′ = k−1

as otherwise there would be no path through the half-grid in G′ connecting
vertices (uij , u

i
j) and (ui

′
j′ , u

i′
j′). Hence a ∈ cp-Hom(Hγ , X → G). �

We conclude that A just constructs G′ from G, which takes time O(k2 · n2),
and then queries the oracle for G′. �

Proof (of Lemma 6.26). Follows by #A[2]-hardness of #cp-Hom(Γ) as given
by Lemma C.10 and the reduction given by Lemma C.11. �

Bibliography

[1] Amir Abboud, Karl Bringmann, Holger Dell, and Jesper Nederlof. More conse-
quences of falsifying SETH and the orthogonal vectors conjecture. In Proceed-
ings of the 50th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 253–266, 2018.
doi:10.1145/3188745.3188938.

[2] Amir Abboud, Karl Bringmann, Danny Hermelin, and Dvir Shabtay. Seth-
Based Lower Bounds for Subset Sum and Bicriteria Path. In Proceedings of
the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2019, San Diego, California, USA, January 6-9, 2019, pages 41–57, 2019.
doi:10.1137/1.9781611975482.3.

[3] Shreeram S. Abhyankar. Lectures on algebra. Vol. I. World Scientific Publishing
Co. Pte. Ltd., Hackensack, NJ, 2006. doi:10.1142/9789812773449.

[4] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases.
Addison-Wesley, 1995. URL: http://webdam.inria.fr/Alice/.

[5] Stefan Arnborg, Derek G. Corneil, and Andrzej Proskurowski. Complexity of Find-
ing Embeddings in a k-Tree. SIAM J. on Algebraic Discrete Methods, 8(2):277–284,
1987. doi:10.1137/0608024.

[6] Vikraman Arvind and Venkatesh Raman. Approximation Algorithms for Some Pa-
rameterized Counting Problems. In Algorithms and Computation, 13th International
Symposium, ISAAC 2002 Vancouver, BC, Canada, November 21-23, 2002, Proceed-
ings, pages 453–464, 2002. doi:10.1007/3-540-36136-7“˙40.

[7] Miriam Backens. A Complete Dichotomy for Complex-Valued Holantc. In
45th International Colloquium on Automata, Languages, and Programming,
ICALP 2018, July 9-13, 2018, Prague, Czech Republic, pages 12:1–12:14, 2018.
doi:10.4230/LIPIcs.ICALP.2018.12.

[8] Nikhil Bansal and Ryan Williams. Regularity Lemmas and Combinatorial Algo-
rithms. Theory of Computing, 8(1):69–94, 2012. doi:10.4086/toc.2012.v008a004.

[9] Alexander I. Barvinok. Combinatorics and Complexity of Partition Functions, vol-
ume 30 of Algorithms and combinatorics. Springer, 2016. doi:10.1007/978-3-319-
51829-9.

[10] Umberto Bertelè and Francesco Brioschi. Nonserial dynamic programming. Aca-
demic Press, 1972.

[11] M.R. Best, Peter van Emde Boas, and Hendrik W. Lenstra Jr. A sharpened version
of the Aanderaa-Rosenberg conjecture. Stichting Mathematisch Centrum. Zuivere
Wiskunde, ZW 30/74:1–20, 1974.

[12] Norman Biggs. Algebraic graph theory. Cambridge Mathematical Li-
brary. Cambridge University Press, Cambridge, second edition, 1993.
doi:10.1017/CBO9780511608704.

http://dx.doi.org/10.1145/3188745.3188938
http://dx.doi.org/10.1137/1.9781611975482.3
http://dx.doi.org/10.1142/9789812773449
http://webdam.inria.fr/Alice/
http://dx.doi.org/10.1137/0608024
http://dx.doi.org/10.1007/3-540-36136-7_40
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.12
http://dx.doi.org/10.4086/toc.2012.v008a004
http://dx.doi.org/10.1007/978-3-319-51829-9
http://dx.doi.org/10.1007/978-3-319-51829-9
http://dx.doi.org/10.1017/CBO9780511608704

190 Bibliography

[13] Andreas Björklund, Holger Dell, and Thore Husfeldt. The Parity of Set Systems
Under Random Restrictions with Applications to Exponential Time Problems. In
Automata, Languages, and Programming - 42nd International Colloquium, ICALP
2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part I, pages 231–242, 2015.
doi:10.1007/978-3-662-47672-7“˙19.

[14] Hans L. Bodlaender. A Linear-Time Algorithm for Finding Tree-
Decompositions of Small Treewidth. SIAM J. Comput., 25(6):1305–1317,
1996. doi:10.1137/S0097539793251219.

[15] Cornelius Brand, Holger Dell, and Thore Husfeldt. Extensor-coding. In Pro-
ceedings of the 50th Annual ACM SIGACT Symposium on Theory of Comput-
ing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 151–164, 2018.
doi:10.1145/3188745.3188902.

[16] Cornelius Brand, Holger Dell, and Marc Roth. Fine-Grained Dichotomies
for the Tutte Plane and Boolean #CSP. Algorithmica, 81(2):541–556, 2019.
doi:10.1007/s00453-018-0472-z.

[17] Cornelius Brand and Marc Roth. Parameterized Counting of Trees, Forests and
Matroid Bases. In Computer Science - Theory and Applications - 12th International
Computer Science Symposium in Russia, CSR 2017, Kazan, Russia, June 8-12,
2017, Proceedings, pages 85–98, 2017. doi:10.1007/978-3-319-58747-9“˙10.

[18] Glen E. Bredon. Introduction to compact transformation groups, volume 46. Aca-
demic press, 1972.

[19] Graham R. Brightwell and Peter Winkler. Note on Counting Eulerian Circuits.
CoRR, cs.CC/0405067, 2004. URL: https://arxiv.org/abs/cs/0405067v1.

[20] Jin-Yi Cai, Zhiguo Fu, Heng Guo, and Tyson Williams. A Holant Dichotomy: Is
the FKT Algorithm Universal? In IEEE 56th Annual Symposium on Foundations
of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages
1259–1276, 2015. doi:10.1109/FOCS.2015.81.

[21] Jin-Yi Cai, Sangxia Huang, and Pinyan Lu. From Holant to #CSP and
Back: Dichotomy for Holantc Problems. Algorithmica, 64(3):511–533, 2012.
doi:10.1007/s00453-012-9626-6.

[22] Jin-yi Cai and Pinyan Lu. Holographic algorithms: From art to science. J. Comput.
Syst. Sci., 77(1):41–61, 2011. doi:10.1016/j.jcss.2010.06.005.

[23] Jin-Yi Cai, Pinyan Lu, and Mingji Xia. Holographic Algorithms with Matchgates
Capture Precisely Tractable Planar #CSP. SIAM J. Comput., 46(3):853–889, 2017.
doi:10.1137/16M1073984.

[24] Jin-Yi Cai, Pinyan Lu, and Mingji Xia. Dichotomy for Real Holantc Problems.
In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages 1802–
1821, 2018. doi:10.1137/1.9781611975031.118.

[25] Liming Cai and David W. Juedes. On the existence of subexponential parameter-
ized algorithms. J. Comput. Syst. Sci., 67(4):789–807, 2003. doi:10.1016/S0022-
0000(03)00074-6.

[26] Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. The Complexity of
Satisfiability of Small Depth Circuits. In Parameterized and Exact Computation, 4th
International Workshop, IWPEC 2009, Copenhagen, Denmark, September 10-11,
2009, Revised Selected Papers, pages 75–85, 2009. doi:10.1007/978-3-642-11269-
0“˙6.

[27] Amit Chakrabarti, Subhash Khot, and Yaoyun Shi. Evasiveness of Subgraph
Containment and Related Properties. SIAM J. Comput., 31(3):866–875, 2001.
doi:10.1137/S0097539700382005.

http://dx.doi.org/10.1007/978-3-662-47672-7_19
http://dx.doi.org/10.1137/S0097539793251219
http://dx.doi.org/10.1145/3188745.3188902
http://dx.doi.org/10.1007/s00453-018-0472-z
http://dx.doi.org/10.1007/978-3-319-58747-9_10
https://arxiv.org/abs/cs/0405067v1
http://dx.doi.org/10.1109/FOCS.2015.81
http://dx.doi.org/10.1007/s00453-012-9626-6
http://dx.doi.org/10.1016/j.jcss.2010.06.005
http://dx.doi.org/10.1137/16M1073984
http://dx.doi.org/10.1137/1.9781611975031.118
http://dx.doi.org/10.1016/S0022-0000(03)00074-6
http://dx.doi.org/10.1016/S0022-0000(03)00074-6
http://dx.doi.org/10.1007/978-3-642-11269-0_6
http://dx.doi.org/10.1007/978-3-642-11269-0_6
http://dx.doi.org/10.1137/S0097539700382005

191

[28] Ashok K. Chandra and Philip M. Merlin. Optimal Implementation of Conjunctive
Queries in Relational Data Bases. In Proceedings of the 9th Annual ACM Symposium
on Theory of Computing, May 4-6, 1977, Boulder, Colorado, USA, pages 77–90,
1977. doi:10.1145/800105.803397.

[29] Chandra Chekuri and Julia Chuzhoy. Polynomial Bounds for the Grid-Minor The-
orem. J. ACM, 63(5):40:1–40:65, 2016. doi:10.1145/2820609.

[30] Chandra Chekuri and Anand Rajaraman. Conjunctive query containment revis-
ited. Theoretical Computer Science, 239(2):211–229, 2000. doi:10.1016/S0304-
3975(99)00220-0.

[31] Hubie Chen and Stefan Mengel. A Trichotomy in the Complexity of Counting
Answers to Conjunctive Queries. In 18th International Conference on Database
Theory, ICDT 2015, March 23-27, 2015, Brussels, Belgium, pages 110–126, 2015.
doi:10.4230/LIPIcs.ICDT.2015.110.

[32] Hubie Chen and Stefan Mengel. Counting Answers to Existential Positive
Queries: A Complexity Classification. In Proceedings of the 35th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2016,
San Francisco, CA, USA, June 26 - July 01, 2016, pages 315–326, 2016.
doi:10.1145/2902251.2902279.

[33] Jianer Chen, Benny Chor, Mike Fellows, Xiuzhen Huang, David W. Juedes, Iyad A.
Kanj, and Ge Xia. Tight lower bounds for certain parameterized NP-hard problems.
Inf. Comput., 201(2):216–231, 2005. doi:10.1016/j.ic.2005.05.001.

[34] Jianer Chen, Xiuzhen Huang, Iyad A. Kanj, and Ge Xia. Strong computational lower
bounds via parameterized complexity. J. Comput. Syst. Sci., 72(8):1346–1367, 2006.
doi:10.1016/j.jcss.2006.04.007.

[35] Yijia Chen, Marc Thurley, and Mark Weyer. Understanding the Complexity of In-
duced Subgraph Isomorphisms. In Automata, Languages and Programming, 35th
International Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Pro-
ceedings, Part I: Tack A: Algorithms, Automata, Complexity, and Games, pages
587–596, 2008. doi:10.1007/978-3-540-70575-8“˙48.

[36] Julia Chuzhoy. Excluded Grid Theorem: Improved and Simplified. In Proceed-
ings of the Forty-Seventh Annual ACM on Symposium on Theory of Comput-
ing, STOC 2015, Portland, OR, USA, June 14-17, 2015, pages 645–654, 2015.
doi:10.1145/2746539.2746551.

[37] Julia Chuzhoy and Zihan Tan. Towards Tight(er) Bounds for the Excluded Grid
Theorem. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019,
pages 1445–1464, 2019. doi:10.1137/1.9781611975482.88.

[38] Bruno Courcelle. Graph Rewriting: An Algebraic and Logic Approach. In Handbook
of Theoretical Computer Science, Volume B: Formal Models and Sematics (B), pages
193–242. Elsevier Science, 1990.

[39] Radu Curticapean. The simple, little and slow things count: On parameterized
counting complexity. PhD thesis, Saarland University, 2015. URL: http://scidok.
sulb.uni-saarland.de/volltexte/2015/6217/.

[40] Radu Curticapean. Block interpolation: A framework for tight exponential-
time counting complexity. Inf. Comput., 261(Part):265–280, 2018.
doi:10.1016/j.ic.2018.02.008.

[41] Radu Curticapean, Holger Dell, and Dániel Marx. Homomorphisms are a good basis
for counting small subgraphs. In Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June
19-23, 2017, pages 210–223, 2017. doi:10.1145/3055399.3055502.

http://dx.doi.org/10.1145/800105.803397
http://dx.doi.org/10.1145/2820609
http://dx.doi.org/10.1016/S0304-3975(99)00220-0
http://dx.doi.org/10.1016/S0304-3975(99)00220-0
http://dx.doi.org/10.4230/LIPIcs.ICDT.2015.110
http://dx.doi.org/10.1145/2902251.2902279
http://dx.doi.org/10.1016/j.ic.2005.05.001
http://dx.doi.org/10.1016/j.jcss.2006.04.007
http://dx.doi.org/10.1007/978-3-540-70575-8_48
http://dx.doi.org/10.1145/2746539.2746551
http://dx.doi.org/10.1137/1.9781611975482.88
http://scidok.sulb.uni-saarland.de/volltexte/2015/6217/
http://scidok.sulb.uni-saarland.de/volltexte/2015/6217/
http://dx.doi.org/10.1016/j.ic.2018.02.008
http://dx.doi.org/10.1145/3055399.3055502

192 Bibliography

[42] Radu Curticapean, Holger Dell, and Marc Roth. Counting Edge-Injective Homo-
morphisms and Matchings on Restricted Graph Classes. In 34th Symposium on The-
oretical Aspects of Computer Science, STACS2017, March 8-11, 2017, Hannover,
Germany, pages 25:1–25:15, 2017. doi:10.4230/LIPIcs.STACS.2017.25.

[43] Radu Curticapean and Dániel Marx. Complexity of Counting Subgraphs: Only the
Boundedness of the Vertex-Cover Number Counts. In 55th IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2014, Philadelphia, PA, USA, October
18-21, 2014, pages 130–139, 2014. doi:10.1109/FOCS.2014.22.

[44] Radu Curticapean and Dániel Marx. Tight conditional lower bounds for count-
ing perfect matchings on graphs of bounded treewidth, cliquewidth, and genus. In
Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 1650–1669,
2016. doi:10.1137/1.9781611974331.ch113.

[45] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx,
Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms.
Springer, 2015. doi:10.1007/978-3-319-21275-3.

[46] Vı́ctor Dalmau and Peter Jonsson. The complexity of counting homomor-
phisms seen from the other side. Theor. Comput. Sci., 329(1-3):315–323, 2004.
doi:10.1016/j.tcs.2004.08.008.

[47] Holger Dell, Thore Husfeldt, Dániel Marx, Nina Taslaman, and Martin Wahlen.
Exponential Time Complexity of the Permanent and the Tutte Polynomial. ACM
Trans. Algorithms, 10(4):21:1–21:32, 2014. doi:10.1145/2635812.

[48] Holger Dell, Marc Roth, and Philip Wellnitz. Counting Answers to Existential
Questions. In 46th International Colloquium on Automata, Languages, and Pro-
gramming, ICALP 2019, July 9-12, 2019, Patras, Greece., pages 113:1–113:15, 2019.
doi:10.4230/LIPIcs.ICALP.2019.113.

[49] Holger Dell, Marc Roth, and Philip Wellnitz. Counting Answers to Existential
Questions. CoRR, abs/1902.04960, 2019. URL: http://arxiv.org/abs/1902.04960,
arXiv:1902.04960.

[50] Josep Dı́az, Maria J. Serna, and Dimitrios M. Thilikos. Counting H-colorings of
partial k-trees. Theor. Comput. Sci., 281(1-2):291–309, 2002. doi:10.1016/S0304-
3975(02)00017-8.

[51] Reinhard Diestel, Tommy R. Jensen, Konstantin Yu. Gorbunov, and Carsten
Thomassen. Highly Connected Sets and the Excluded Grid Theorem. J. Comb.
Theory, Ser. B, 75(1):61–73, 1999. doi:10.1006/jctb.1998.1862.

[52] Julian Dörfler, Marc Roth, Johannes Schmitt, and Philip Wellnitz. Counting In-
duced Subgraphs: An Algebraic Approach to #W[1]-hardness. In 44th International
Symposium on Mathematical Foundations of Computer Science, MFCS 2019, August
26-30, 2019, Aachen, Germany, to appear, 2019.

[53] Julian Dörfler, Marc Roth, Johannes Schmitt, and Philip Wellnitz. Count-
ing Induced Subgraphs: An Algebraic Approach to #W[1]-hardness.
CoRR, abs/1904.10479, 2019. URL: https://arxiv.org/abs/1904.10479,
arXiv:1904.10479.

[54] Rodney G. Downey and Michael R. Fellows. Fixed parameter tractability and com-
pleteness. In Complexity Theory: Current Research, Dagstuhl Workshop, February
2-8, 1992, pages 191–225, 1992.

[55] Rodney G. Downey and Michael R. Fellows. Fixed-Parameter Tractability
and Completeness I: Basic Results. SIAM J. Comput., 24(4):873–921, 1995.
doi:10.1137/S0097539792228228.

http://dx.doi.org/10.4230/LIPIcs.STACS.2017.25
http://dx.doi.org/10.1109/FOCS.2014.22
http://dx.doi.org/10.1137/1.9781611974331.ch113
http://dx.doi.org/10.1007/978-3-319-21275-3
http://dx.doi.org/10.1016/j.tcs.2004.08.008
http://dx.doi.org/10.1145/2635812
http://dx.doi.org/10.4230/LIPIcs.ICALP.2019.113
http://arxiv.org/abs/1902.04960
http://arxiv.org/abs/1902.04960
http://dx.doi.org/10.1016/S0304-3975(02)00017-8
http://dx.doi.org/10.1016/S0304-3975(02)00017-8
http://dx.doi.org/10.1006/jctb.1998.1862
https://arxiv.org/abs/1904.10479
http://arxiv.org/abs/1904.10479
http://dx.doi.org/10.1137/S0097539792228228

193

[56] Rodney G. Downey and Michael R. Fellows. Fixed-Parameter Tractability and
Completeness II: On Completeness for W[1]. Theor. Comput. Sci., 141(1&2):109–
131, 1995. doi:10.1016/0304-3975(94)00097-3.

[57] Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Com-
plexity. Texts in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-
1.

[58] Arnaud Durand and Stefan Mengel. Structural Tractability of Counting of So-
lutions to Conjunctive Queries. Theory Comput. Syst., 57(4):1202–1249, 2015.
doi:10.1007/s00224-014-9543-y.

[59] Martin E. Dyer, Leslie Ann Goldberg, and Mark Jerrum. An approximation
trichotomy for Boolean #CSP. J. Comput. Syst. Sci., 76(3-4):267–277, 2010.
doi:10.1016/j.jcss.2009.08.003.

[60] Allan L. Edmonds. Introduction to Transformation Groups. 2010.

[61] Jack Edmonds. Paths, Trees, and Flowers. Canadian Journal of Mathematics,
17:449–467, 1965. doi:10.4153/CJM-1965-045-4.

[62] Jiŕı Fiala and Jan Kratochv́ıl. Locally constrained graph homomorphisms - struc-
ture, complexity, and applications. Computer Science Review, 2(2):97–111, 2008.
doi:10.1016/j.cosrev.2008.06.001.

[63] Jörg Flum and Martin Grohe. Fixed-Parameter Tractability, Defin-
ability, and Model-Checking. SIAM J. Comput., 31(1):113–145, 2001.
doi:10.1137/S0097539799360768.

[64] Jörg Flum and Martin Grohe. The Parameterized Complexity of Counting Problems.
SIAM J. Comput., 33(4):892–922, 2004. doi:10.1137/S0097539703427203.

[65] Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theo-
retical Computer Science. An EATCS Series. Springer, 2006. doi:10.1007/3-540-
29953-X.

[66] Markus Frick and Martin Grohe. Deciding first-order properties of
locally tree-decomposable structures. J. ACM, 48(6):1184–1206, 2001.
doi:10.1145/504794.504798.

[67] François Le Gall. Powers of tensors and fast matrix multiplication. In International
Symposium on Symbolic and Algebraic Computation, ISSAC 2014, Kobe, Japan,
July 23-25, 2014, pages 296–303, 2014. doi:10.1145/2608628.2608664.

[68] Jiawei Gao, Russell Impagliazzo, Antonina Kolokolova, and Ryan Williams. Com-
pleteness for First-Order Properties on Sparse Structures with Algorithmic Appli-
cations. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-
19, pages 2162–2181, 2017. doi:10.1137/1.9781611974782.141.

[69] M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

[70] Leslie A. Goldberg and Mark Jerrum. Counting Unlabelled Subtrees of a Tree is
#P-complete. LMS Journal of Computation and Mathematics, 3:117–124, 2000.
doi:10.1112/S1461157000000243.

[71] Oded Goldreich. Computational Complexity - A Conceptual Perspective. Cambridge
University Press, 2008.

[72] Heng Guo, Chao Liao, Pinyan Lu, and Chihao Zhang. Zeros of Holant problems:
locations and algorithms. In Proceedings of the Thirtieth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January
6-9, 2019, pages 2262–2278, 2019. doi:10.1137/1.9781611975482.137.

http://dx.doi.org/10.1016/0304-3975(94)00097-3
http://dx.doi.org/10.1007/978-1-4471-5559-1
http://dx.doi.org/10.1007/978-1-4471-5559-1
http://dx.doi.org/10.1007/s00224-014-9543-y
http://dx.doi.org/10.1016/j.jcss.2009.08.003
http://dx.doi.org/10.4153/CJM-1965-045-4
http://dx.doi.org/10.1016/j.cosrev.2008.06.001
http://dx.doi.org/10.1137/S0097539799360768
http://dx.doi.org/10.1137/S0097539703427203
http://dx.doi.org/10.1007/3-540-29953-X
http://dx.doi.org/10.1007/3-540-29953-X
http://dx.doi.org/10.1145/504794.504798
http://dx.doi.org/10.1145/2608628.2608664
http://dx.doi.org/10.1137/1.9781611974782.141
http://dx.doi.org/10.1112/S1461157000000243
http://dx.doi.org/10.1137/1.9781611975482.137

194 Bibliography

[73] Rudolf Halin. S-functions for graphs. J. Geom., 8(1-2):171–186, 1976.

[74] John E. Hopcroft and Robert E. Tarjan. A V2 Algorithm for Determining Isomor-
phism of Planar Graphs. Inf. Process. Lett., 1(1):32–34, 1971. doi:10.1016/0020-
0190(71)90019-6.

[75] Sangxia Huang and Pinyan Lu. A Dichotomy for Real Weighted Holant Problems.
Computational Complexity, 25(1):255–304, 2016. doi:10.1007/s00037-015-0118-3.

[76] Russell Impagliazzo and Ramamohan Paturi. On the Complexity of k-SAT. J.
Comput. Syst. Sci., 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

[77] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which Problems Have
Strongly Exponential Complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001.
doi:10.1006/jcss.2001.1774.

[78] Mark Jerrum. Counting Trees in a Graph is #P-Complete. Inf. Process. Lett.,
51(3):111–116, 1994. doi:10.1016/0020-0190(94)00085-9.

[79] Mark Jerrum and Kitty Meeks. The parameterised complexity of counting con-
nected subgraphs and graph motifs. J. Comput. Syst. Sci., 81(4):702–716, 2015.
doi:10.1016/j.jcss.2014.11.015.

[80] Mark Jerrum and Kitty Meeks. Some Hard Families of Parameterized Counting
Problems. TOCT, 7(3):11:1–11:18, 2015. doi:10.1145/2786017.

[81] Mark Jerrum and Kitty Meeks. The parameterised complexity of counting even and
odd induced subgraphs. Combinatorica, 37(5):965–990, 2017. doi:10.1007/s00493-
016-3338-5.

[82] Mark Jerrum and Alistair Sinclair. Approximating the Permanent. SIAM J. Com-
put., 18(6):1149–1178, 1989. doi:10.1137/0218077.

[83] Mark Jerrum and Alistair Sinclair. The Markov Chain Monte Carlo Method: An
Approach to Approximate Counting and Integration. In Dorit S. Hochbaum, editor,
Approximation Algorithms for NP-hard Problems, pages 482–520. PWS Publishing
Co., Boston, MA, USA, 1997. URL: http://dl.acm.org/citation.cfm?id=241938.
241950.

[84] Jakob Jonsson. Simplicial Complexes of Graphs, volume 1928 of Lecture Notes in
Mathematics. Springer, Berlin, Heidelberg, 2008. doi:10.1007/978-3-540-75859-4.

[85] Jeff Kahn, Michael E. Saks, and Dean Sturtevant. A topological approach to eva-
siveness. Combinatorica, 4(4):297–306, 1984. doi:10.1007/BF02579140.

[86] Richard M. Karp. Reducibility Among Combinatorial Problems. In Proceedings
of a symposium on the Complexity of Computer Computations, held March 20-22,
1972, at the IBM Thomas J. Watson Research Center, Yorktown Heights, New York,
USA, pages 85–103, 1972. URL: http://www.cs.berkeley.edu/%7Eluca/cs172/
karp.pdf .

[87] Pieter W. Kasteleyn. The statistics of dimers on a lattice: I. The number of
dimer arrangements on a quadratic lattice. Physica, 27(12):1209–1225, 1961.
doi:10.1016/0031-8914(61)90063-5.

[88] Pieter W. Kasteleyn. Dimer Statistics and Phase Transitions. Journal of Mathe-
matical Physics, 4(2):287–293, 1963. doi:10.1063/1.1703953.

[89] Ken-ichi Kawarabayashi and Yusuke Kobayashi. Linear min-max relation be-
tween the treewidth of H-minor-free graphs and its largest grid. In 29th
International Symposium on Theoretical Aspects of Computer Science, STACS
2012, February 29th - March 3rd, 2012, Paris, France, pages 278–289, 2012.
doi:10.4230/LIPIcs.STACS.2012.278.

http://dx.doi.org/10.1016/0020-0190(71)90019-6
http://dx.doi.org/10.1016/0020-0190(71)90019-6
http://dx.doi.org/10.1007/s00037-015-0118-3
http://dx.doi.org/10.1006/jcss.2000.1727
http://dx.doi.org/10.1006/jcss.2001.1774
http://dx.doi.org/10.1016/0020-0190(94)00085-9
http://dx.doi.org/10.1016/j.jcss.2014.11.015
http://dx.doi.org/10.1145/2786017
http://dx.doi.org/10.1007/s00493-016-3338-5
http://dx.doi.org/10.1007/s00493-016-3338-5
http://dx.doi.org/10.1137/0218077
http://dl.acm.org/citation.cfm?id=241938.241950
http://dl.acm.org/citation.cfm?id=241938.241950
http://dx.doi.org/10.1007/978-3-540-75859-4
http://dx.doi.org/10.1007/BF02579140
http://www.cs.berkeley.edu/%7Eluca/cs172/karp.pdf
http://www.cs.berkeley.edu/%7Eluca/cs172/karp.pdf
http://dx.doi.org/10.1016/0031-8914(61)90063-5
http://dx.doi.org/10.1063/1.1703953
http://dx.doi.org/10.4230/LIPIcs.STACS.2012.278

195

[90] Tsampikos Kottos and Uzy Smilansky. Periodic Orbit Theory and Spectral
Statistics for quantum graphs. Annals of Physics, 274(1):76 – 124, 1999.
doi:https://doi.org/10.1006/aphy.1999.5904.

[91] Miroslaw Kowaluk, Andrzej Lingas, and Eva-Marta Lundell. Counting and Detect-
ing Small Subgraphs via Equations. SIAM J. Discrete Math., 27(2):892–909, 2013.
doi:10.1137/110859798.

[92] Richard E. Ladner. On the structure of polynomial time reducibility. J. ACM,
22(1):155–171, 1975. doi:10.1145/321864.321877.

[93] Serge Lang. Algebra (3. ed.). Addison-Wesley, 1993.

[94] Alexander Leaf and Paul D. Seymour. Tree-width and planar minors. J. Comb.
Theory, Ser. B, 111:38–53, 2015. doi:10.1016/j.jctb.2014.09.003.

[95] László Lovász. Large Networks and Graph Limits, volume 60 of Colloquium Pub-
lications. American Mathematical Society, 2012. URL: http://www.ams.org/
bookstore-getitem/item=COLL-60.

[96] Frank H. Lutz. Some Results Related to the Evasiveness Conjecture. J. Comb.
Theory, Ser. B, 81(1):110–124, 2001. doi:10.1006/jctb.2000.2000.

[97] Dániel Marx, Paul D. Seymour, and Paul Wollan. Rooted grid mi-
nors. Journal of Combinatorial Theory, Series B, 122:428–437, 2017.
doi:10.1016/j.jctb.2016.07.003.

[98] Rudolf Mathon. A Note on the Graph Isomorphism Counting Problem. Inf. Process.
Lett., 8(3):131–132, 1979. doi:10.1016/0020-0190(79)90004-8.

[99] Stephen B. Maurer. Matrix Generalizations of Some Theorems on Trees, Cycles and
Cocycles in Graphs. SIAM Journal on Applied Mathematics, 30(1):143–148, 1976.
doi:10.1137/0130017.

[100] Catherine McCartin. Parameterized counting problems. Ann. Pure Appl. Logic,
138(1-3):147–182, 2006. doi:10.1016/j.apal.2005.06.010.

[101] Kitty Meeks. The challenges of unbounded treewidth in parameterised sub-
graph counting problems. Discrete Applied Mathematics, 198:170–194, 2016.
doi:10.1016/j.dam.2015.06.019.

[102] Carl A. Miller. Evasiveness of graph properties and topological fixed-point the-
orems. Foundations and Trends in Theoretical Computer Science, 7(4):337–415,
2013. doi:10.1561/0400000055.

[103] Juan Andrés Montoya and Moritz Müller. Parameterized Random Complexity. The-
ory Comput. Syst., 52(2):221–270, 2013. doi:10.1007/s00224-011-9381-0.

[104] Jaroslav Nešetřil. Homomorphisms of derivative graphs. Discrete Mathematics,
1(3):257–268, 1971. doi:10.1016/0012-365X(71)90014-8.

[105] Jaroslav Nešetřil and Svatopluk Poljak. On the complexity of the subgraph problem.
Commentationes Mathematicae Universitatis Carolinae, 26(2):415–419, 1985.

[106] Robert Oliver. Fixed-point sets of group actions on finite acyclic complexes. Com-
mentarii Mathematici Helvetici, 50(1):155–177, 1975. doi:10.1007/BF02565743.

[107] James G. Oxley. Matroid theory. Oxford University Press, 1992.

[108] Viresh Patel and Guus Regts. Deterministic Polynomial-Time Approximation
Algorithms for Partition Functions and Graph Polynomials. SIAM J. Comput.,
46(6):1893–1919, 2017. doi:10.1137/16M1101003.

[109] Mihai Patrascu and Ryan Williams. On the Possibility of Faster SAT Algorithms.
In Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA 2010, Austin, Texas, USA, January 17-19, 2010, pages 1065–1075,
2010. doi:10.1137/1.9781611973075.86.

http://dx.doi.org/https://doi.org/10.1006/aphy.1999.5904
http://dx.doi.org/10.1137/110859798
http://dx.doi.org/10.1145/321864.321877
http://dx.doi.org/10.1016/j.jctb.2014.09.003
http://www.ams.org/bookstore-getitem/item=COLL-60
http://www.ams.org/bookstore-getitem/item=COLL-60
http://dx.doi.org/10.1006/jctb.2000.2000
http://dx.doi.org/10.1016/j.jctb.2016.07.003
http://dx.doi.org/10.1016/0020-0190(79)90004-8
http://dx.doi.org/10.1137/0130017
http://dx.doi.org/10.1016/j.apal.2005.06.010
http://dx.doi.org/10.1016/j.dam.2015.06.019
http://dx.doi.org/10.1561/0400000055
http://dx.doi.org/10.1007/s00224-011-9381-0
http://dx.doi.org/10.1016/0012-365X(71)90014-8
http://dx.doi.org/10.1007/BF02565743
http://dx.doi.org/10.1137/16M1101003
http://dx.doi.org/10.1137/1.9781611973075.86

196 Bibliography

[110] J. Scott Provan and Michael O. Ball. The Complexity of Counting Cuts and of Com-
puting the Probability that a Graph is Connected. SIAM J. Comput., 12(4):777–788,
1983. doi:10.1137/0212053.

[111] Bruce A. Reed. Tree Width and Tangles: A New Connectivity Measure and Some
Applications, pages 87–162. London Mathematical Society Lecture Note Series.
Cambridge University Press, 1997. doi:10.1017/CBO9780511662119.006.

[112] Ronald L. Rivest and Jean Vuillemin. On Recognizing Graph Properties from Ad-
jacency Matrices. Theor. Comput. Sci., 3(3):371–384, 1976. doi:10.1016/0304-
3975(76)90053-0.

[113] Neil Robertson and Paul D. Seymour. Graph minors. III. Planar tree-width. J.
Comb. Theory, Ser. B, 36(1):49–64, 1984. doi:10.1016/0095-8956(84)90013-3.

[114] Neil Robertson and Paul D. Seymour. Graph minors. II. Algorithmic Aspects of
Tree-Width. J. Algorithms, 7(3):309–322, 1986. doi:10.1016/0196-6774(86)90023-
4.

[115] Neil Robertson and Paul D. Seymour. Graph minors. V. Excluding a planar graph.
J. Comb. Theory, Ser. B, 41(1):92–114, 1986. doi:10.1016/0095-8956(86)90030-4.

[116] Neil Robertson, Paul D. Seymour, and Robin Thomas. Quickly Excluding a Planar
Graph. J. Comb. Theory, Ser. B, 62(2):323–348, 1994. doi:10.1006/jctb.1994.1073.

[117] Arnold L. Rosenberg. On the Time Required to Recognize Proper-
ties of Graphs: A Problem. SIGACT News, 5(4):15–16, October 1973.
doi:10.1145/1008299.1008302.

[118] Gian-Carlo Rota. On the foundations of combinatorial theory I. Theory of
Möbius functions. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete,
2(4):340–368, 1964.

[119] Marc Roth. Counting Restricted Homomorphisms via Möbius Inversion over
Matroid Lattices. In 25th Annual European Symposium on Algorithms,
ESA 2017, September 4-6, 2017, Vienna, Austria, pages 63:1–63:14, 2017.
doi:10.4230/LIPIcs.ESA.2017.63.

[120] Marc Roth and Johannes Schmitt. Counting induced subgraphs: A Topological
Approach to #W[1]-hardness. In 13th International Symposium on Parameterized
and Exact Computation, IPEC 2018, August 20-24, 2018, Helsinki, Finland, pages
24:1–24:14, 2018. doi:10.4230/LIPIcs.IPEC.2018.24.

[121] Alexander D. Scott and Gregory B. Sorkin. Linear-programming design and analysis
of fast algorithms for Max 2-CSP. Discrete Optimization, 4(3-4):260–287, 2007.
doi:10.1016/j.disopt.2007.08.001.

[122] Neil Sloane. The On-Line Encyclopedia of Integer Sequences. URL: http://oeis.org.
2019.

[123] Paul A. Smith. Fixed-point theorems for periodic transformations. American
Journal of Mathematics, 63(1):1–8, 1941. URL: https://www.jstor.org/stable/
2371271.

[124] Richard P. Stanley. Enumerative Combinatorics: Volume 1. Cambridge University
Press, 2011.

[125] Harold N. V. Temperley and Michael E. Fisher. Dimer problem in sta-
tistical mechanics-an exact result. The Philosophical Magazine: A Jour-
nal of Theoretical Experimental and Applied Physics, 6(68):1061–1063, 1961.
doi:10.1080/14786436108243366.

[126] Seinosuke Toda. PP is as Hard as the Polynomial-Time Hierarchy. SIAM J. Com-
put., 20(5):865–877, 1991. doi:10.1137/0220053.

http://dx.doi.org/10.1137/0212053
http://dx.doi.org/10.1017/CBO9780511662119.006
http://dx.doi.org/10.1016/0304-3975(76)90053-0
http://dx.doi.org/10.1016/0304-3975(76)90053-0
http://dx.doi.org/10.1016/0095-8956(84)90013-3
http://dx.doi.org/10.1016/0196-6774(86)90023-4
http://dx.doi.org/10.1016/0196-6774(86)90023-4
http://dx.doi.org/10.1016/0095-8956(86)90030-4
http://dx.doi.org/10.1006/jctb.1994.1073
http://dx.doi.org/10.1145/1008299.1008302
http://dx.doi.org/10.4230/LIPIcs.ESA.2017.63
http://dx.doi.org/10.4230/LIPIcs.IPEC.2018.24
http://dx.doi.org/10.1016/j.disopt.2007.08.001
https://www.jstor.org/stable/2371271
https://www.jstor.org/stable/2371271
http://dx.doi.org/10.1080/14786436108243366
http://dx.doi.org/10.1137/0220053

197

[127] Salil P. Vadhan. The Complexity of Counting in Sparse, Regular, and Planar Graphs.
SIAM J. Comput., 31(2):398–427, 2001. doi:10.1137/S0097539797321602.

[128] Leslie G. Valiant. The Complexity of Computing the Permanent. Theor. Comput.
Sci., 8:189–201, 1979. doi:10.1016/0304-3975(79)90044-6.

[129] Leslie G. Valiant. The Complexity of Enumeration and Reliability Problems. SIAM
J. Comput., 8(3):410–421, 1979. doi:10.1137/0208032.

[130] Leslie G. Valiant. Holographic Algorithms. SIAM J. Comput., 37(5):1565–1594,
2008. doi:10.1137/070682575.

[131] Tatyana van Aardenne-Ehrenfest and Nicolaas G. de Bruijn. Circuits and trees in
oriented linear graphs. Simon Stevin : Wis- en Natuurkundig Tijdschrift, 28:203–
217, 1951.

[132] Alan J. Weir. The Sylow subgroups of the symmetric groups. Proc. Amer. Math.
Soc., 6:534–541, 1955. doi:10.2307/2033425.

[133] Dominic J.A. Welsh. Matroid theory. Courier Corporation, 2010.

[134] Ryan Williams. A new algorithm for optimal 2-constraint satisfac-
tion and its implications. Theor. Comput. Sci., 348(2-3):357–365, 2005.
doi:10.1016/j.tcs.2005.09.023.

[135] Ryan Williams. Non-uniform ACC circuit lower bounds. In Proceedings of the 26th
Annual IEEE Conference on Computational Complexity, CCC 2011, San Jose, Cal-
ifornia, USA, June 8-10, 2011, pages 115–125, 2011. doi:10.1109/CCC.2011.36.

[136] Ryan Williams. Faster decision of first-order graph properties. In Joint Meeting of
the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and
the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS), CSL-LICS ’14, Vienna, Austria, July 14 - 18, 2014, pages 80:1–80:6, 2014.
doi:10.1145/2603088.2603121.

[137] Virginia Vassilevska Williams, Joshua R. Wang, Richard Ryan Williams, and
Huacheng Yu. Finding Four-Node Subgraphs in Triangle Time. In Proceed-
ings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2015, San Diego, CA, USA, January 4-6, 2015, pages 1671–1680, 2015.
doi:10.1137/1.9781611973730.111.

[138] Virginia Vassilevska Williams and Ryan Williams. Finding, Minimizing, and
Counting Weighted Subgraphs. SIAM J. Comput., 42(3):831–854, 2013.
doi:10.1137/09076619X.

[139] Virginia Vassilevska Williams and Ryan Williams. Subcubic Equivalences Be-
tween Path, Matrix, and Triangle Problems. J. ACM, 65(5):27:1–27:38, 2018.
doi:10.1145/3186893.

[140] Mingji Xia, Peng Zhang, and Wenbo Zhao. Computational complexity of counting
problems on 3-regular planar graphs. Theor. Comput. Sci., 384(1):111–125, 2007.
doi:10.1016/j.tcs.2007.05.023.

[141] Thomas Zaslavsky. The Möbius function and the characteristic polynomial. Com-
binatorial geometries, 29:114–138, 1987.

http://dx.doi.org/10.1137/S0097539797321602
http://dx.doi.org/10.1016/0304-3975(79)90044-6
http://dx.doi.org/10.1137/0208032
http://dx.doi.org/10.1137/070682575
http://dx.doi.org/10.2307/2033425
http://dx.doi.org/10.1016/j.tcs.2005.09.023
http://dx.doi.org/10.1109/CCC.2011.36
http://dx.doi.org/10.1145/2603088.2603121
http://dx.doi.org/10.1137/1.9781611973730.111
http://dx.doi.org/10.1137/09076619X
http://dx.doi.org/10.1145/3186893
http://dx.doi.org/10.1016/j.tcs.2007.05.023

198 Bibliography

Index

(H,X)/e, see conjunctive query contraction
(H/σ,X/σ), see quotient query
Ck, see cycle
D(Φ), see decision tree complexity
G/e, see contraction
G[E], see edge-subgraph
G[V], see induced subgraph
H-coloring, 35, 117
H/ρ

partition ρ of V (H), see quotient graph
subset ρ ⊆ V (H)2, 60

Kk, see clique
Kt,t, see biclique
Mk, see matching
Pk, see path
Sk, see subdivided star
Wn, see windmill
#A[1], 126

#A[1]-easy, 126
#A[1]-equivalent, 126
#A[1]-hard, 126

#A[2], 126, 183–188
#A[2]-easy, 126, 185
#A[2]-equivalent, 126, 130, 131, 146–

150, 155, 171, 185
#A[2]-hard, 126, 147, 186, 188

#W[1], 21
#W[1]-easy, 21, 97, 126, 130, 142, 169
#W[1]-equivalent, 21, 31, 45, 56, 61,

66, 70–72, 93, 95, 97, 106, 131,
141–143, 150, 155, 171

#W[1]-hard, 21, 23, 78, 90, 91, 99, 109,
127, 140

#W[2], 22
#W[2]-easy, 22
#W[2]-equivalent, 22
#W[2]-hard, 22, 130, 131, 143–146, 150,

155, 171
#P, 175–178
#cf-Hom(∆), 135
#cf-Hom(H), 39
#Clique, 19, 21, 23, 35, 100

#cp-Hom(∆), 132
#cp-Hom(H), 35
#cp-IndSub(Φ), 117
#DomSet, 19, 22, 23, 128, 144
#EdgeInj(H), 71, 73
#Hom(∆), 132, 140, 150, 155, 169, 171
#Hom(H), 19, 30–42
#IndSub(Φ), 94, 106, 109
#IndSub(H), 93
#Li-Hom(H), 65
#PartInj(H), 60, 61
#p-MC(Φ), 45, 126, 131
#Sub(H), 51, 56
#Trees, 70
#VertexForests, 70
#VC, 19
#WeightedEdgeInj(H), 86
∆[Φ, k], see graph complex
∆Γ, see fixed-point complex
Πt, 45
Σt, 45
Symk, see symmetric group
W[1], 127, 131, 140–141, 150, 155, 171
Zk, 28, 103
Aut(H), see automorphism group
cf-Hom(H,X → G), see partial colorful ho-

momorphism
cf-Hom(H → G), 39
Clique, 127
∼=, see conjunctive query isomorphism
cp-Hom(H,X → G), see partial color-prescribed

homomorphism
cp-Hom(H → G), 35
EdgeInj(H → G), 71
EI-Part(H), see edge-injective partition
`-connected set, 146, 149
Emb(H → G), 18
EΦ
k , 97
≤T

fpt, see parameterized Turing reduction
γ[Φ, k], 97
�k, see grid
χ̂(Φ, H), see alternating enumerator

200 Index

Hom(H,X → G), see partial homomorphism
Hom(H → G), 18
IndSub(H → G), 18
IndSub(Φ, k → G), 94
', see isomorphism
Li-Hom(H → G), 65
I(H, I), see inequality graph
L(G), see line graph
K[Φ], 96
Aut(H,X), 136
µL, see Möbius function
O(s), see orbit
PartInj(H, I,X → G), 156
PartInj(H, I → G), 60
∼, see conjunctive query equivalence
Spasm(H, I), see spasm
S(s), see stabilizer
StrEmb(H → G), 18
Sub(H → G), 18
τ , see signature
×H , see H-colored graph tensor product
ζ, see zeta transformation

alternating enumerator, 110, 111, 119
anti-hole, 95, 105, 106
atom, 44
automorphism, 18, 132, 167, 169, 178
automorphism group, 18, 39, 111

biclique, 14, 75, 109, 113, 122

clique, 14, 67, 75, 122
complexity monotonicity, 55, 62, 155

H-colored, 95, 118
conjunctive query, 45, 126–150, 165, 170

contract, 140, 150, 155, 171
contraction, 133, 186
equivalence, 132, 154, 167, 168
isomorphism, 167
linear combinations thereof, see quan-

tum query
minimal, 132, 167, 168
minor, 133, 149, 186
quotient, see quotient query
renaming equivalence, 151, 154
renaming minimal, 151
with inequalities, 156–158

contraction, 16, 38
core, 167

augmented, 168
counting problem, 19
cycle, 14, 86, 95, 105, 106

decision tree, 101

algorithm, 101
complexity, 101

dense set, 97, 109
dominating set, 19
dominating star size, 128, 130, 141, 143,

150, 155, 171

embedding, 18, 26, 98, 175
linear combinations thereof, 67

endomorphism, 17, 132, 167, 169
ETH, 22, 23, 68, 94, 95, 99, 106, 109
Euler characteristic, 29, 30
evasive, 101, 103
evasiveness conjecture, 94, 102
Excluded-Grate-Theorem, 149
Excluded-Grid-Theorem, 17, 42, 147
Exponential Time Hypothesis, see ETH

first-order formula, 44
existential, 45, 131, 158–161, 163
negation normal form, 45
non-monotone constraints, 128, 131, 161–

165
positive, 45, 131, 163

with inequalities, 158–161
prenex normal form, 45
primitive positive, see conjunctive query
quotient, 160, 164
universal, 45, 131, 158–161, 163
with inequalities, 128, 131, 163

fixed-parameter tractable, 20, 51, 61, 66,
71–72, 96, 97, 131, 155

FPT algorithm, 20
fixed-point complex, 30, 103
flat, 25, 27, 62
FPT, see fixed-parameter tractable

Gaifman graph, 43, 127, 165–166, 169
graph, 13

H-colored graph, see H-coloring
c-edge-connected, 107
acyclic, 14
bipartite, 77, 95, 109, 110, 122
complete, see clique
complete bipartite, see biclique
connected, 14, 94
edge-transitive, 29, 95, 111
p-edge-transitive, 109, 111, 113, 120

inequality graph, 62
labeled, 97
linear combination thereof, see quan-

tum graph
quotient, see quotient graph
scorpion, 102

Index 201

tensor product, 14, 53–55, 155
H-colored, 118

vertex-transitive, 29, 114
with inequalities, 60

graph complex, 101, 103, 105, 107
graph property, 94

edge-monotone, 96, 102, 105, 106, 110
monotone, 96, 107, 110
trivial, 96

graphic matroid, 25, 62, 157
graphical conjunctive query, 131–150, 183
grate, 146, 147, 149, 183, 186
grid, 17, 35, 146, 148
grid interpolation, see polynomial interpo-

lation
grid tiling, 35, 186
group action, 28, 30, 39, 99, 103, 111

transitive, 29, 111, 112

hereditary graph class, 71
homomorphic core, see core
homomorphic equivalence, 152, 167, 168
homomorphism, 17–18, 26, 30–42, 48, 52

color-prescribed, 35, 117
colorful, 39
edge-injective, 59, 71–91

edge-weighted, 86
linear combinations thereof, see quan-

tum graph
partially injective, 59–70

linear combinations thereof, 68
locally injective, 65, 175

Inclusion-exclusion, 27, 40, 98, 119, 160–162
isomorphism, 18, 167

Kronecker product, 13, 28

lattice, 24
geometric, see lattice of flats

lattice of flats, 25, 27, 49, 62, 157
line graph, 80
linked matching number, 129, 130, 146, 149,

150, 155, 171

Möbius function, 26, 27, 49, 64, 98, 157
Möbius inversion, 26, 62, 63, 73, 98, 157
matching, 14, 52, 67, 77

linked, 146
matroid, 24, 27, 29

closure, 24, 158
graphic, see graphic matroid
matroid flat, see flat
matroid lattice, see lattice of flats

rank, 24, 65
minor, 15, 37, 38, 42

minor mapping, 16, 148
multivariate polynomial interpolation, see

polynomial interpolation

NBC Theorem, 27, 50, 62, 65, 158
node-well-linked set, 146, 148

orbit, 28, 30, 39, 99, 103, 104
Orbit-Stabilizer-Theorem, 29, 40, 99, 111

parameterization, 19
parameterized counting problem, 19
parameterized Turing reduction, 20
partial homomorphism, 132

color-prescribed, 132, 185
colorful, 135
linear combination thereof, see quan-

tum query
partially injective, 156

partially ordered set, see poset
partition, 25

edge-injective, 72
partition lattice, 25, 49, 73, 98
path, 14, 86
permanent, 176
polynomial interpolation, 27, 41
poset, 24, 25

quantum graph, 47–57, 61, 71, 73, 94, 97
constituent, 47
support, 47
with inequalities, 67–70

quantum query, 151–165, 172
quotient graph, 26, 49, 60, 98

without self-loops, see spasm
quotient query, 156

reduced Euler characteristic, 30, 94, 101,
103, 105, 107

separation, 146, 148
SETH, 22, 23, 128, 129, 144, 150, 155, 171
signature, 43, 163, 165
simplex, 29
simplicial complex, 29, 30, 94

Γ-simplicial complex, 30
dimension, 29
fixed-point, see fixed-point complex
simplicial graph complex, see graph com-

plex
spasm, 60
stabilizer, 29, 40, 99

202 Index

strict star size, see dominating star size
strong embedding, 18, 98
Strong Exponential Time Hypothesis, see

SETH
structure, 43, 165–172

complementary, 43
homomorphism, 43
substructure, 43

subdivided star, 75
subgraph, 14, 48, 50, 52, 96, 175

edge-subgraph, 14, 96
induced subgraph, 14, 75, 93–124
subgraph embedding, see embedding

Sylow subgroup, 111
Sylow theorems, 111
symmetric group, 99, 176

tangle, 148
tree, 14, 66, 175–178
tree decomposition, 15, 31

nice, 31, 32
treewidth, 15, 31–42, 50, 61, 95, 140, 150,

155, 171
triangle packing, 75

Vandermonde matrix, 28
vertex cover, 19
vertex cover number, 51, 56

weak, 72

wedge, 75
wedge packing, 75
windmill, 65, 75

zeta transformation, 25, 26, 62, 63

	Introduction
	Counting Problems
	Parameterized Counting Complexity Theory
	Quantum Graphs

	Overview, Contributions and Techniques

	Preliminaries
	Mathematical Notations
	Graphs
	Treewidth and Graph Minors
	Homomorphisms, Embeddings and Induced Subgraphs

	Computational Counting
	Parameterized Counting Complexity
	Fine-Grained Complexity Theory

	Combinatorial and Algebraic Methods
	Matroids
	Möbius Inversion and Inclusion-Exclusion
	Multivariate Polynomial Interpolation
	Transformation Groups and Simplicial Complexes

	A Classification for Counting Homomorphisms
	First-Order Logic

	Quantum Graphs
	Basic Definitions
	Linear Combinations of Homomorphisms
	Matchings and Triangles
	Complexity Monotonicity

	Constrained Homomorphisms
	Partially Injective Homomorphisms
	Locally Injective Homomorphisms
	Quantum Graphs with Inequalities

	Edge-Injective Homomorphisms
	An Implicit Exhaustive Classification
	Hereditary Graph Classes
	Edge-Disjoint Paths and Cycles

	Induced Subgraphs
	A Topological Approach to Hardness
	Simplicial Graph Complexes and Evasiveness

	An Algebraic Approach to Hardness
	Alternating Enumerators of p-Edge-Transitive Graphs

	Existential First-order Formulas
	The #A-Hierarchy
	Conjunctive Queries
	Graphical Conjunctive Queries and Colorings

	Classifying Graphical Conjunctive Queries
	Query Classes that are Polynomial-time
	Query Classes that are W[1]-equivalent
	Query Classes that are #W[1]-equivalent
	Query Classes that are #W[2]-hard
	Query Classes that are #A[2]-equivalent
	A Pentachotomy-Theorem

	Quantum Queries
	Complexity Monotonicity revisited
	Conjunctive Queries with Inequalities
	Positive Formulas with Inequalities
	Non-monotone Constraints over Free Variables

	Generalization to Structures
	Reduction from the Gaifman Graph
	Equivalence of Conjunctive Queries
	The Generalized Classification Theorem

	Conclusions and Future Research
	Proof of Lemma 4.11: Counting Subtrees of a Tree
	Modular Counting of Induced Subgraphs
	Normalization for #A[2]
	Hardness for Graphs without Self-Loops
	Counting Vertex Sets matching to a Clique
	Proof of Lemma 6.26: Hardness for Grates

	Bibliography
	Index

