Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-26995
Titel: Learning to segment in images and videos with different forms of supervision
Verfasser: Khoreva, Anna
Sprache: Englisch
Erscheinungsjahr: 2017
SWD-Schlagwörter: Bildsegmentierung
Segmentierung
Freie Schlagwörter: Image segmentation
Video segmentation
Deep learning
Weakly-supervised learning
Semantic labelling
Instance segmentation
Tracking
Object boundary detection
DDC-Sachgruppe: 004 Informatik
Dokumentart : Dissertation
Kurzfassung: Much progress has been made in image and video segmentation over the last years. To a large extent, the success can be attributed to the strong appearance models completely learned from data, in particular using deep learning methods. However, to perform best these methods require large representative datasets for training with expensive pixel-level annotations, which in case of videos are prohibitive to obtain. Therefore, there is a need to relax this constraint and to consider alternative forms of supervision, which are easier and cheaper to collect. In this thesis, we aim to develop algorithms for learning to segment in images and videos with different levels of supervision. First, we develop approaches for training convolutional networks with weaker forms of supervision, such as bounding boxes or image labels, for object boundary estimation and semantic/instance labelling tasks. We propose to generate pixel-level approximate groundtruth from these weaker forms of annotations to train a network, which allows to achieve high-quality results comparable to the full supervision quality without any modifications of the network architecture or the training procedure. Second, we address the problem of the excessive computational and memory costs inherent to solving video segmentation via graphs. We propose approaches to improve the runtime and memory efficiency as well as the output segmentation quality by learning from the available training data the best representation of the graph. In particular, we contribute with learning must-link constraints, the topology and edge weights of the graph as well as enhancing the graph nodes - superpixels - themselves. Third, we tackle the task of pixel-level object tracking and address the problem of the limited amount of densely annotated video data for training convolutional networks. We introduce an architecture which allows training with static images only and propose an elaborate data synthesis scheme which creates a large number of training examples close to the target domain from the given first frame mask. With the proposed techniques we show that densely annotated consequent video data is not necessary to achieve high-quality temporally coherent video segmentation results. In summary, this thesis advances the state of the art in weakly supervised image segmentation, graph-based video segmentation and pixel-level object tracking and contributes with the new ways of training convolutional networks with a limited amount of pixel-level annotated training data.
In der Bild- und Video-Segmentierung wurden im Laufe der letzten Jahre große Fortschritte erzielt. Dieser Erfolg beruht weitgehend auf starken Appearance Models, die vollständig aus Daten gelernt werden, insbesondere mit Deep Learning Methoden. Für beste Performanz benötigen diese Methoden jedoch große repräsentative Datensätze für das Training mit teuren Annotationen auf Pixelebene, die bei Videos unerschwinglich sind. Deshalb ist es notwendig, diese Einschränkung zu überwinden und alternative Formen des überwachten Lernens in Erwägung zu ziehen, die einfacher und kostengünstiger zu sammeln sind. In dieser Arbeit wollen wir Algorithmen zur Segmentierung von Bildern und Videos mit verschiedenen Ebenen des überwachten Lernens entwickeln. Zunächst entwickeln wir Ansätze zum Training eines faltenden Netzwerkes (convolutional network) mit schwächeren Formen des überwachten Lernens, wie z.B. Begrenzungsrahmen oder Bildlabel, für Objektbegrenzungen und Semantik/Instanz- Klassifikationsaufgaben. Wir schlagen vor, aus diesen schwächeren Formen von Annotationen eine annähernde Ground Truth auf Pixelebene zu generieren, um ein Netzwerk zu trainieren, das hochwertige Ergebnisse ermöglicht, die qualitativ mit denen bei voll überwachtem Lernen vergleichbar sind, und dies ohne Änderung der Netzwerkarchitektur oder des Trainingsprozesses. Zweitens behandeln wir das Problem des beträchtlichen Rechenaufwands und Speicherbedarfs, das der Segmentierung von Videos mittels Graphen eigen ist. Wir schlagen Ansätze vor, um sowohl die Laufzeit und Speichereffizienz als auch die Qualität der Segmentierung zu verbessern, indem aus den verfügbaren Trainingsdaten die beste Darstellung des Graphen gelernt wird. Insbesondere leisten wir einen Beitrag zum Lernen mit must-link Bedingungen, zur Topologie und zu Kantengewichten des Graphen sowie zu verbesserten Superpixeln. Drittens gehen wir die Aufgabe des Objekt-Tracking auf Pixelebene an und befassen uns mit dem Problem der begrenzten Menge von dicht annotierten Videodaten zum Training eines faltenden Netzwerkes. Wir stellen eine Architektur vor, die das Training nur mit statischen Bildern ermöglicht, und schlagen ein aufwendiges Schema zur Datensynthese vor, das aus der gegebenen ersten Rahmenmaske eine große Anzahl von Trainingsbeispielen ähnlich der Zieldomäne schafft. Mit den vorgeschlagenen Techniken zeigen wir, dass dicht annotierte zusammenhängende Videodaten nicht erforderlich sind, um qualitativ hochwertige zeitlich kohärente Resultate der Segmentierung von Videos zu erhalten. Zusammenfassend lässt sich sagen, dass diese Arbeit den Stand der Technik in schwach überwachter Segmentierung von Bildern, graphenbasierter Segmentierung von Videos und Objekt-Tracking auf Pixelebene weiter entwickelt, und mit neuen Formen des Trainings faltender Netzwerke bei einer begrenzten Menge von annotierten Trainingsdaten auf Pixelebene einen Beitrag leistet.
Link zu diesem Datensatz: urn:nbn:de:bsz:291-scidok-ds-269954
hdl:20.500.11880/26936
http://dx.doi.org/10.22028/D291-26995
Erstgutachter: Schiele, Bernt
Tag der mündlichen Prüfung: 20-Dez-2017
SciDok-Publikation: 17-Jan-2018
Fakultät: MI - Fakultät für Mathematik und Informatik
Fachrichtung: SE - Max-Planck-Institut für Informatik
Fakultät / Institution:MI - Fakultät für Mathematik und Informatik

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
thesis.pdfPhD thesis61,4 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons