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ABSTRACT

Much progress has been made in image and video segmentation over the last years.
To a large extent, the success can be attributed to the strong appearance models
completely learned from data, in particular using deep learning methods. However,
to perform best these methods require large representative datasets for training with
expensive pixel-level annotations, which in case of videos are prohibitive to obtain.
Therefore, there is a need to relax this constraint and to consider alternative forms of
supervision, which are easier and cheaper to collect. In this thesis, we aim to develop
algorithms for learning to segment in images and videos with different levels of
supervision.

First, we develop approaches for training convolutional networks with weaker
forms of supervision, such as bounding boxes or image labels, for object boundary
estimation and semantic/instance labelling tasks. We propose to generate pixel-
level approximate groundtruth from these weaker forms of annotations to train
a network, which allows to achieve high-quality results comparable to the full
supervision quality without any modifications of the network architecture or the
training procedure.

Second, we address the problem of the excessive computational and memory
costs inherent to solving video segmentation via graphs. We propose approaches
to improve the runtime and memory efficiency as well as the output segmentation
quality by learning from the available training data the best representation of the
graph. In particular, we contribute with learning must-link constraints, the topology
and edge weights of the graph as well as enhancing the graph nodes - superpixels -
themselves.

Third, we tackle the task of pixel-level object tracking and address the problem
of the limited amount of densely annotated video data for training convolutional
networks. We introduce an architecture which allows training with static images
only and propose an elaborate data synthesis scheme which creates a large number
of training examples close to the target domain from the given first frame mask. With
the proposed techniques we show that densely annotated consequent video data
is not necessary to achieve high-quality temporally coherent video segmentation
results.

In summary, this thesis advances the state of the art in weakly supervised image
segmentation, graph-based video segmentation and pixel-level object tracking and
contributes with the new ways of training convolutional networks with a limited
amount of pixel-level annotated training data.
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ZUSAMMENFASSUNG

In der Bild- und Video-Segmentierung wurden im Laufe der letzten Jahre große
Fortschritte erzielt. Dieser Erfolg beruht weitgehend auf starken Appearance Models,
die vollständig aus Daten gelernt werden, insbesondere mit Deep Learning Meth-
oden. Für beste Performanz benötigen diese Methoden jedoch große repräsentative
Datensätze für das Training mit teuren Annotationen auf Pixelebene, die bei Videos
unerschwinglich sind. Deshalb ist es notwendig, diese Einschränkung zu über-
winden und alternative Formen des überwachten Lernens in Erwägung zu ziehen,
die einfacher und kostengünstiger zu sammeln sind. In dieser Arbeit wollen wir
Algorithmen zur Segmentierung von Bildern und Videos mit verschiedenen Ebenen
des überwachten Lernens entwickeln.

Zunächst entwickeln wir Ansätze zum Training eines faltenden Netzwerkes
(convolutional network) mit schwächeren Formen des überwachten Lernens, wie z.B.
Begrenzungsrahmen oder Bildlabel, für Objektbegrenzungen und Semantik/Instanz-
Klassifikationsaufgaben. Wir schlagen vor, aus diesen schwächeren Formen von
Annotationen eine annähernde Ground Truth auf Pixelebene zu generieren, um ein
Netzwerk zu trainieren, das hochwertige Ergebnisse ermöglicht, die qualitativ mit
denen bei voll überwachtem Lernen vergleichbar sind, und dies ohne Änderung der
Netzwerkarchitektur oder des Trainingsprozesses.

Zweitens behandeln wir das Problem des beträchtlichen Rechenaufwands und
Speicherbedarfs, das der Segmentierung von Videos mittels Graphen eigen ist.
Wir schlagen Ansätze vor, um sowohl die Laufzeit und Speichereffizienz als auch
die Qualität der Segmentierung zu verbessern, indem aus den verfügbaren Train-
ingsdaten die beste Darstellung des Graphen gelernt wird. Insbesondere leisten
wir einen Beitrag zum Lernen mit must-link Bedingungen, zur Topologie und zu
Kantengewichten des Graphen sowie zu verbesserten Superpixeln.

Drittens gehen wir die Aufgabe des Objekt-Tracking auf Pixelebene an und
befassen uns mit dem Problem der begrenzten Menge von dicht annotierten Videod-
aten zum Training eines faltenden Netzwerkes. Wir stellen eine Architektur vor, die
das Training nur mit statischen Bildern ermöglicht, und schlagen ein aufwendiges
Schema zur Datensynthese vor, das aus der gegebenen ersten Rahmenmaske eine
große Anzahl von Trainingsbeispielen ähnlich der Zieldomäne schafft. Mit den
vorgeschlagenen Techniken zeigen wir, dass dicht annotierte zusammenhängende
Videodaten nicht erforderlich sind, um qualitativ hochwertige zeitlich kohärente
Resultate der Segmentierung von Videos zu erhalten.

Zusammenfassend lässt sich sagen, dass diese Arbeit den Stand der Technik
in schwach überwachter Segmentierung von Bildern, graphenbasierter Segmentier-
ung von Videos und Objekt-Tracking auf Pixelebene weiter entwickelt, und mit
neuen Formen des Trainings faltender Netzwerke bei einer begrenzten Menge von
annotierten Trainingsdaten auf Pixelebene einen Beitrag leistet.
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1I N T R O D U C T I O N

The human vision system is remarkable at extracting and analyzing visual
information. In a blink of an eye, humans are able to fully analyze a scene
and separate all the components present. Computer vision can be seen as a

field that aims to give a similar, if not better, capability to a machine or computer to
translate the set of pixels into useful information.

In computer vision the human ability of visual grouping has been studied as
"segmentation", the partitioning of an image or a video sequence into sets of pixels
that correspond to "objects" or parts of objects. The grouping process is usually based
on bottom up cues such as similarity of pixels in appearance and motion as well as
top down input derived from semantic knowledge of objects. Segmentation plays an
important role and emerges in many application areas in computer vision, such as
scene understanding, activity recognition, video summarization and indexing, and
digital entertainment. Even though segmenting image or video data is one of the
most basic and long standing problems, it remains far from being solved effectively.

One of the main difficulties in visual grouping is the problem of high variability.
A computer vision system is required to generalize well across objects with large
variations in appearance, shape, viewpoint, illumination and occlusion. In addition,
visual data can be intrinsically ambiguous and cluttered. When doing image or
video segmentation humans use much more knowledge than just relying on color
information of pixels and can easily generalize from observing a set of objects
to recognizing objects that have never been seen before. Trainable methods have
proven to be particularly effective for segmentation as they can model some of this
knowledge. However, to perform best they require large-scale and domain-specific
databases for training.

Deep learning approaches are among trainable methods that have become the
de-facto technique in image and video segmentation. Their recent and incredible
performance improvements are enabled by significant increase of available training
data and faster computing hardware. Compared to preceding approaches, deep
networks require less engineering and can learn most components directly from data
with fewer assumptions. However, one of their major downsides is their ever growing
hunger for more training data. These models typically require pixel-level annotations
during training. Acquiring such data is an expensive and time-consuming process.
Therefore there is a need to relax this constraint and to consider alternative forms of
supervision which are cheaper and faster to obtain.

Throughout this thesis, we aim to develop algorithms to tackle several image and
video segmentation problems with different levels of supervision. In the first part of
the thesis we address the problem of using weak supervision for image segmentation.
Instead of training deep networks with full supervision using expensive pixel-
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2 chapter 1. introduction

level object mask annotations we propose to use weak annotations, in the form of
bounding boxes (i.e., coarse object locations) or image-level labels (i.e., information
about which object classes are present), which are far easier to collect. We consider
three closely related tasks: object boundary detection (Chapter 3) - since object
boundaries can be used to aid to improve the mask estimation of the object; semantic
labelling and instance segmentation (Chapters 4 – 5).

The remaining two parts of the thesis consider a broader domain of video
segmentation. In the second part we tackle the problem of learning video segmentation
via graphs. Given the large amount of pixels/superpixels in a video, graph-based
approaches tend to be slow and have a large memory footprint. Consequently, to
improve efficiency some approaches consider building a graph only over neighboring
frames instead of the whole video volume. However, these methods have difficulties
capturing long range relationships and ensuring globally consistent segmentation.
In contrast, we propose to improve the runtime complexity and memory efficiency
as well as the output quality by learning from the available training data the best
representation of the graph. We contribute the integration of the learned must-link
constraints (Chapter 6), the strategies to learn the topology and edge weights of
the graph (Chapter 7) and to the enhancement of the graph nodes, superpixels,
themselves (Chapter 8). The proposed techniques help to improve the scalability of
graph-based methods as well as enable improved segmentation of long videos.

The third part of the thesis is focused on pixel-level object tracking via deep networks.
In the literature this task is frequently referred to as semi-supervised video object
segmentation. Given a first frame with the object mask annotation, the goal is to
accurately segment the same instance in future video frames. Pixel-level object
tracking can be difficult to approach via deep learning methods, since in contrast to
images a large body of densely, pixel-wise annotated video data is not available for
training. We address this limitation by introducing a network architecture which
allows training with static images only (Chapter 9) and by generating synthetic data
for training from the given first frame annotation (Chapter 10). With the proposed
techniques we show that densely annotated consequent video data is not necessary
to achieve high-quality temporally coherent video segmentation results.

The rest of this chapter is organized as follows. First we discuss the main chal-
lenges towards solving the aforementioned tasks and our contributions to address
them in Section 1.1. Next, we provide an outline of the thesis in Section 1.2.

1.1 contributions of the thesis

As discussed above, this thesis focuses on three research directions: image segmenta-
tion with weaker forms of supervision, graph-based video segmentation and pixel-level object
tracking. Essentially, all three directions are concerned with correctly delineating
object masks with different levels of supervision during training and test time. In the
following we detail the challenges towards these tasks, as well as the contributions
this thesis makes to address them.
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1.1.1 Image segmentation with weaker forms of supervision

The first target of the thesis is segmenting images without relying on expensive
dense pixel-level annotations for training convolutional neural networks (CNNs,
convnets). Specifically we want to address weakly-supervised semantic and instance
segmentation problems (Chapters 4 – 5) as well as the related task of object boundary
detection (Chapter 3). Even in the fully supervised case, segmenting an object is a
difficult task, as apart from recognizing and localizing the object, the goal is also to
delineate correctly object boundaries. We start with defining the main challenges for
image segmentation via convnets as well as the challenges for training a network
with weaker forms of supervision.

1.1.1.1 Challenges

Expensive pixel-level annotations. To provide supervision for image segmenta-
tion or object boundary detection one need to exhaustively delineate all the objects
of interest in the image. Such pixel-level mask annotations are costly and do not
scale well, becoming a bottleneck to approach new categories of objects that have not
been targeted by the existing image datasets. In order to make the training of new
object classes affordable, and/or to increase the capacity of the CNN models, there
is a requirement in approaches that can work with weaker forms of supervision.

Reduced spatial resolution. Recently fully convolutional networks (FCNs) have
shown remarkable results for image segmentation. However, these approaches
have limitation of low-resolution prediction. Multiple stages of spatial pooling
and convolution strides significantly reduce the final image prediction, losing the
finer image structure. A popular approach is to employ DenseCRF post-processing
(Krähenbühl and Koltun, 2011) with tuned parameters to refine the network output.
This allows to recover small image details that the network might have missed and to
better localize object boundaries. Albeit, it is known that DenseCRF is quite sensitive
to its parameters and without tuning can easily worsen results.

Imbalanced datasets. Image datasets are often imbalanced, i.e., most training
samples belong to a few majority classes, while the minority classes only contain
a scarce amount of instances. Furthermore, objects can occur at different scales
making per-pixel class distribution even more skewed. Without handling the data
imbalance convolutional models tend to be biased toward the majority classes with
poor accuracy for the minority classes. This issue is even more present while training
a weakly-supervised model as the system is very susceptible to strong inter-class
co-occurrences.

Full extent of the object. In order to keep the annotation cost low, recent work
considers to employ image labels as the main form of supervision. Image labels
provide a constraint on the desired output: if the label is present at least one pixel
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in the image must be assigned to that label, if the label is absent no pixel should
have that label. However, the object in the image is rarely a single pixel. Therefore
learning the full object extent just from images and their labels is a difficult problem.
To enforce larger output region size, some prior knowledge is commonly used, e.g.
shape or appearance priors.

Noise in the weakly-supervised data. Box-level annotations are cheaper to get
but less precise than pixel-level masks. Thus the problem of supervision with
bounding boxes can be seen as an issue of input label noise. Intuitively, a large
number of images with box annotations should provide enough information to
understand which part of the box belongs to the object and which to background.
However, even though the existing semantic image datasets are large-scale they
do not cover all possible appearance variations of certain semantic categories. In
addition, as mentioned above, these datasets usually have a skewed distribution of
classes. Therefore, the network has troubles to de-noise the input during training
and thus to output correct predictions at test time. The convnet training might
benefit from some de-noising strategy of given box annotations, increasing the ratio
of correctly labelled pixels (trading off lower recall for higher precision).

1.1.1.2 Contributions

The following summarizes the contributions for learning to segment images with weaker
forms of supervision.

The first contribution is introducing the task of weakly supervised object-specific
boundary detection. To the best of our knowledge there is no previous work
attempting to learn object boundaries in a weakly supervised fashion, using just
bounding box supervision. In Chapter 3 we show on several boundary estimation
benchmarks (BSDS (Arbeláez et al., 2011), Pascal VOC12 (Everingham et al., 2015),
MS COCO (Lin et al., 2014), and SBD (Hariharan et al., 2011)) that good results can
be obtained without the need of instance-wise object boundary annotations and on
some benchmarks performance of the fully supervised state of the art is reached.

The second contribution is an approach for generating approximate pixel-level
groundtruth for training the network given bounding boxes. We utilize box annota-
tions to generate an initial guess of the object masks with the help of classic computer
vision techniques, elaborately fusing box-driven figure-ground segmentation (Rother
et al., 2004), object proposals (Pont-Tuset and Gool, 2015) and/or unsupervised
image segmentation (Felzenszwalb and Huttenlocher., 2004). To reduce the noise
in the generated training labels we introduce the concept of ignore labels: when
in doubt of assigning the label to the pixel we mark it as “ignore” and do not use
it during the training. We show that, when properly used, “old-school” computer
vision methods are a source of surprisingly effective supervision for convnet training.
The proposed approach is effectively employed to address closely akin tasks of
object boundary detection in Chapter 3 and semantic and instance segmentation in
Chapter 4. We demonstrate that the state-of-the-art quality can be reached when
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properly generating training labels from bounding boxes, instead of modifying the
convnet training procedure as done in previous work (Dai et al., 2015a; Papandreou
et al., 2015). To the best of our knowledge, we are the first to address the weakly
supervised instance segmentation task.

The third contribution is exploring recursive training of convnets for weakly
supervised semantic labelling, where convnet predictions of the previous training
round are used as supervision for the next round. The recursive training is enhanced
by de-noising the convnet outputs using information provided from the annotated
boxes and object priors. We analyze how to reach good quality results via recursive
training and discuss the limitations of the approach (Chapter 4).

The fourth contribution is an effective method for training the semantic segment-
ation network from image-level annotations. Image labels alone can provide the
location of discriminative object regions (“object seeds”), but learning the full object
extent is challenging. For feeding the object extent we employ a class-agnostic weakly
supervised saliency model as an additional source of information. By combining cues
from the seeds and saliency the proposed Guided Segmentation network (Chapter 5)
achieves state-of-the-art performance. In addition, we compare the effectiveness of
different seed methods for the task and analyze the importance of saliency towards
the final quality.

Overall, with weaker forms of supervision we are able to achieve high-quality
results for image segmentation, reaching comparable quality to the fully supervised
regime.

1.1.2 Video segmentation via graphs

Next we address a broader domain - more specifically, videos. Video segmentation is
far less researched compared to image segmentation due to increased computational
complexity and the inherent difficulties such as camera-motion, occlusions, non-rigid
deformations, changes in illumination and perspective.

Given a video sequence the aim is to generate a hierarchical segmentation,
grouping regions in space and time with coherent appearance and motion. This can
be seen as a first step to interpret the video content and thus can be employed as
the base of higher-level computer vision tasks, such as semantic video segmentation,
object tracking, scene understanding, and activity recognition.

Modeling video segmentation as a graph partitioning problem has shown to be
effective. The graph is constructed over the whole video sequence, where the nodes
represent pixels or superpixels, and the edges encode the spatio-temporal structure.
Then usually spectral clustering is employed as a partitioning method. However, a
few challenges arise when addressing video segmentation via graphs.

1.1.2.1 Challenges

Superpixels as graph nodes. Graph based video segmentation often relies on
having high quality superpixels as graph nodes to compute features and affinities.
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The motivation to employ superpixels as pre-processing stage is two-fold. First, a
desirable reduction of the computational complexity is achieved since the number of
graph nodes is lowered by several orders of magnitude. And second, a richer and
more powerful per-frame representation can be defined than would not be possible
over pixels alone.

Superpixels are the starting point for graph partitioning and directly impact
the final segmentation quality. Good superpixels for video segmentation should
have a good temporal consistency to make matching across time easier and give
a high boundary recall to avoid incorrect merges of pixels in the pre-processing
stage. Ideally superpixels should form semantic regions and the number of extracted
superpixels per-frame should be as few as possible to accelerate overall computation
as well as to reduce the chances of segmentation errors. Thus designing a good
superpixel method is key for high-quality video segmentation results.

Graph construction. Constructing the graph is a crucial step for ensuring the
performance for graph-based video segmentation methods. However, there have
been limited efforts for building effective graphs. The most common method is to
form edges between superpixels in a certain spatio-temporal neighbourhood and
to estimate the edge weights using the combination of different cues such as color,
motion and texture. This approach is clearly suboptimal as it does not explore the
available training data to ensure the best topological structure of the graph and
affinities for the task at hand.

Efficient partitioning. As mentioned above spectral clustering is a common choice
of a partitioning method for graph-based approaches, which has proven to be
successful for the task (Fragkiadaki and Shi, 2012; Ochs et al., 2014; Keuper and Brox,
2016; Galasso et al., 2014). Spectral methods convince by their globalization effect and
their ability to include long-range connections. Albeit, one of the important limitation
of spectral techniques is the excessive computational and memory costs. The limits
are particularly clear in the case of high-resolution long video sequences (Galasso
et al., 2013), restricting the large-scale applicability of spectral methods. This results
in the need of constructing smaller and/or sparser graphs in order to be able to
process the video with available computational resources.

Learning from available training data. The other difficulty for video segmentation
via spectral clustering is learning from the training data. While often a labeled
dataset is available, a systematic learning of the affinities used to construct the
graph is arduous. In particular, the optimization of the minimizer which yields the
segmentation is out of reach, as solving for the clustering objective (normalized cut)
itself is a NP-hard problem and its relaxation is non-convex. Therefore a common
practice is to just validate a few model parameters (Galasso et al., 2012; Maire and
Yu, 2013). This refrains video segmentation methods employing spectral clustering
to profit from the available annotated video data.
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1.1.2.2 Contributions

In the following we present the contributions of the thesis for the learning to segment
videos via graphs.

The first contribution is learning and integration of must-link constraints into
graph-based video segmentation. Must-link constraints specify that two nodes
should be assigned into one cluster. By learning must-link constraints we leverage
the available training data in order to avoid undesired solutions in graph partitioning.
It also allows reducing the size of the problem, while preserving the original objective
for all partitions satisfying the must-links. Experimentally, we show that learned
must-link constraints improve the efficiency and, in most cases, performance of the
considered graph-based video segmentation methods. See Chapter 6 for details.

The second contribution is a graph construction method for video segmentation.
We propose to learn both the edge topology and weights of the graph, leveraging
the existing training data for video segmentation. We employ different classifiers
for learning the affinities between the graph nodes - superpixels - based on their
spatial and temporal distance, and then alter the graph structure by selecting the
most confident edges according to the scores of learned classifiers. Learning the
graph helps to improve both performance as well as efficiency without changing the
graph partitioning method, see Chapter 7.

The third contribution is improved superpixels for graph-based video segmenta-
tion. We provide an analysis of the effectiveness of different superpixel methods for
video segmentation. Experimentally, we demonstrate that boundary-based super-
pixels are more suitable for the task, as they are more likely to form semantic regions
compared to classical superpixel techniques. As the quality of boundary-based
superpixels depends directly on the quality of the initial boundary estimates, we
propose to improve boundaries by combining image cues with object-level cues,
and merging them with temporal cues. By enhancing boundary estimation in video
frames, we improve per-frame superpixels, and thus the final video segmentation
quality. For details see Chapter 8.

1.1.3 Pixel-level object tracking via CNNs

Pixel-level object tracking, also referred to as semi-supervised video object segment-
ation, aims to output the mask of an object throughout a video sequence given
its groundtruth segmentation in the first frame. Recently, deep learning based
approaches have shown good performance for this task. They often utilize fully
convolutional networks (FCNs) designed for image segmentation by processing the
video on a frame-by-frame basis. However, when moving from images to video new
challenges emerge.
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1.1.3.1 Challenges

Lack of large-scale annotated video data. Superior performance of CNNs is usu-
ally enabled by the availability of large-scale annotated datasets. However, pixel-level
object tracking can be difficult to approach via convnets, since labelling videos at
the pixel level is a laborious task, and the cost of creating a sufficiently large body of
densely, pixel-wise annotated video data for training is usually prohibitive. Several
video object segmentation datasets exist: DAVIS17 (Pont-Tuset et al., 2017), You-
TubeObjects (Jain and Grauman, 2014), FBMS (Ochs et al., 2014), and SegTrackv2

(Li
et al., 2013). However, all of them are relatively small-scale in terms of number of
videos (up to 150 videos), particularly in comparison with existing image segment-
ation datasets (∼300k images in MS-COCO (Lin et al., 2014)). Not all of them are
densely annotated (e.g. every 10th frame in YouTubeObjects and every 20th frame in
FBMS), making integration of temporal context during training harder. Plus each of
them contains different types of object annotations (e.g. moving objects in FBMS,
10 semantic categories in YouTubeObjects without separating instances of the same
class, single salient object in SegTrackv2

), making it difficult to combine them to train
a network. Thus there is a demand to relax the constraint of relying on consequent
video data with pixel-level annotations for training.

Problem of domain shift. It has been shown that given test domain, both for
image and video data, that the performance of the segmenter highly depends on
the domain it was trained on (Hoffman et al., 2016; Chen et al., 2017b). However, the
problem of domain shift is much more severe for videos than for images. Humans
might follow different approaches when capturing the scene with a video camera
compared to taking a photo. In images the objects tend to be fully in focus, while
videos usually have objects coming in and out of the frame, being truncated or fully
occluded by distractors. Also the distance at which objects are captured varies much
more in videos than in images. Differences in compression schemes, color contrast
as well as the proficiency of the videographer can affect the quality of the video. All
these factors makes the appearance diversity much higher in video data.

Furthermore, in contrast to static images, video frames are temporally coherent.
Frames close in time often contain nearly identical samples of the same objects,
whereas in image datasets such repetitions rarely occur. As the space of possible
appearance variations is very large, each video dataset, being biased to its own
specific setting, can cover it only partially. Therefore, when testing on one video
dataset and training on another, performance can be surprisingly poor under domain
shifts that appear mild to humans. For good performance one should collect a broad
range of videos capturing all possible aspects expected to appear and/or being as
close as possible to the test domain.

Encoding temporal context. Compared to static images, videos are a richer source
of information. A single video often shows multiple views of an object, its vari-
ous deformations and articulation states. Plus videos also capture the motion of
the objects which enables a better segmentation from the background. However,
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modelling temporal information in videos is a very challenging problem, especially
when CNN-based supervised learning is used. Videos pose both technical and
representational challenges.

From a computational perspective, CNNs require a long training time to effect-
ively optimize the millions of parameters of the model. This difficulty is further
compounded when extending the connectivity in temporal dimension as the net-
work must process not just one image but multiple video frames at a time. The
computational demands are even worse for pixel-level predictions in videos, as the
memory load is dramatically increased.

Besides, it is also unclear how to extend successfully convnet architectures for
image processing to video data, capturing well the inherent dynamics without
loosing spatial resolution. Some works have proposed to use recurrent neural
networks (RNNs) (Siam et al.) or their variants, such as long short term memory
(LSTM) (Kalchbrenner et al., 2016; Fayyaz et al.) or gated recurrent unit (GRU)
(Tokmakov et al., 2017b) networks. However, employing RNNs introduces a large
number of additional parameters. Consequently, these methods need much more
densely annotated video data for training which is quite costly to obtain. Thus,
it is highly desirable, to develop architectures that can learn from video volumes
without the cost of additional training data or model complexity. Some methods
propose to use 3D convolutions to incorporate spatial and temporal information
(Varol et al., 2016; Tran et al., 2015). However, it is not clear if temporal dimension
can be processed in a similar manner as the spatial, as the presence of scene and
camera motion makes association of the pixels difficult. Therefore, the use of fixed-
sized spatio-temporal receptive fields may not be the ideal solution, particularly
for segmentation task. Overall, encoding temporal information in CNNs for video
segmentation still stays an open problem.

Object view changes over time. In pixel-level object tracking the goal is to seg-
ment an object in a video, for which the only available piece of information is its
segmentation mask in the first frame. For a human this is usually a very simple task
and the limited amount of information in the first frame is more than enough to
track the object. Changes in appearance and camera viewpoint, shape variations,
occlusions or similar looking instances do not pose a significant challenge as humans
are able to leverage strong objectness and semantic priors as well as distinguish
the unique discriminative parts of the target object. However, for the convnets for
each new frame labelling pixels as object/non-object of interest is a challenging task.
During training the network can learn a notion of objectness, but during test time
it does not know which of the multiple possible objects in the video sequence it
should segment. The challenge is then: how to inform the network which instance to
segment? The ground truth mask of the first frame can provide to the network the in-
formation about the specific appearance of the object of interest. But the appearance
can change dramatically over time due to illumination changes or dis-occlusions as
well as the object shape, and its original location in the frame can alter. The network
might not adapt well to these drastic changes, causing the loss of the object or the
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drift of the mask.

1.1.3.2 Contributions

Here we discuss the contributions of the thesis for the learning to track objects in videos
via CNNs.

The first contribution is approaching video object segmentation as guided instance
segmentation. In Chapter 9 we propose to use a pixel labelling convnet for frame-by-
frame segmentation, utilizing the object mask from the previous frame to enable the
temporal context. For each video frame the convnet is guided towards the object
of interest by feeding in the previous frame mask estimate as an additional input
channel to the network. The extra mask channel is meant to inform the network
which instance to segment by providing its approximate location and shape in the
current frame. Then the task of the network is to refine the provided rough estimate
of the object mask based on the content of the current frame. In this way we only
need to consider one RGB frame at a time along with the previous frame binary
mask. This allows to avoid using expensive densely annotated video data for training
and enables training the convnet with static images only.

The second contribution is online fine-tuning on the given first frame annotation
of the test video. Using augmented versions of this single frame groundtruth we
fine-tune the model to become more specialized for the specific object instance at
hand. The network learns to capture the appearance of the object of interest and to
ignore the background. This step has shown to be very effective (see Chapter 9) for
pixel-level object tracking, as it allows to easily adapt to new objects and scenes and
to mitigate the problem of domain shift.

The third contribution is an integration of motion cues into the pixel-level object
tracking convnet. Fusing the appearance and motion cues allows to better exploit
the information inherent to video and enables the model to segment well both static
and moving objects. For this we propose to employ optical flow magnitude as an
additional input channel to the network. When the object is moving relative to
background, the flow magnitude provides a very reasonable estimate of the object
mask, giving complementary information to the RGB image. We show in Chapter 10

that integrating optical flow provides consistent improvement of the performance
across different video object segmentation benchmarks.

The fourth contribution is a novel data synthesis technique which allows to
reduce the dependence on large video and image datasets for training the tracking
convnet. To ensure a sufficient amount of training samples close to the test video
we propose to synthesize training data using the given first frame image and its
annotation mask. The aim is to produce a large set of reasonably realistic images
which capture plausible variations in future video frames, and thus is, by design,
close to the test video. We call this synthesis strategy lucid data dreaming (see
Chapter 10). Employing the lucid dream images for training allows to achieve
high-quality tracking results without requiring external data (neither images with
mask annotations nor annotated videos) and hence to avoid the problem of the
domain shift.
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The fifth contribution is showing that training a convnet for object tracking
can be done with only few annotated frames. In the extreme case, with only a
single annotated frame and zero pre-training, competitive tracking results can be
obtained. Our experiments in Chapter 10 indicate that increasing the number of
training images does not always improve the resulting quality of the tracker and
using training samples close to the test domain is more effective than adding more
training data from related domains. This changes the mindset regarding how much
general objectness knowledge is required to approach pixel-level object tracking
task, and more broadly how much annotated data is required to train a convnet
depending on the task at hand.

1.2 outline of the thesis

In this section we summarize each chapter of the thesis. In addition, we also indicate
the respective publications and collaborations with other researches.

The first part of the thesis (Chapters 3 – 5) focuses on image segmentation
with weaker forms of supervision, while the second (Chapters 6 – 8) and the third
(Chapters 9 – 10) parts contributes to video segmentation via graphs or convnets
respectively.

Chapter 2: Related work. In this chapter we review the related work on image and
video segmentation, as well as other related topics. We analyze the relations of
previous and subsequent works to the research presented in this thesis.

Chapter 3: Weakly Supervised Object Boundaries. This chapter presents weakly
supervised approach for object boundary detection, which can be employed
in image and video segmentation to correctly delineate the object mask. We
propose to detect class-specific object boundaries using only bounding box
supervision by generating pixel-level approximate groundtruth to train a
detector. We show that high-quality object boundaries can be obtained by
employing box annotations alone.

The content of this chapter corresponds to the CVPR 2016 publication: “Weakly
Supervised Object Boundaries” (Khoreva et al., 2016b), which was accepted as
a Spotlight (9.7% acceptance rate). Anna Khoreva was the lead author of this
paper. Mohamed Omran contributed with the implementation and training of
the HED boundary detector.

Chapter 4: Weakly Supervised Instance and Semantic Segmentation. In this chap-
ter we explore learning instance and semantic segmentation from bounding
boxes. Starting from box annotations we show how standard computer vision
techniques can be used to generate approximate segmentation annotation.
We use the learned boundaries from Chapter 3 to improve the object mask
estimation from bounding boxes. With the proposed technique we not only
outperform competitive weakly supervised methods, but also get close to the
performance of methods with full supervision.
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The content of this chapter corresponds to the CVPR 2017 publication: “Simple
Does It: Weakly Supervised Instance and Semantic Segmentation” (Khoreva
et al., 2017a). Anna Khoreva was the lead author of this paper. Jan Hosang
contributed with the instance segmentation experiments with DeepMask in
Section 4.5.

Chapter 5: Exploiting Saliency for Segmentation from Image Labels. This chapter
presents a semantic segmentation approach using only image label supervision.
We show how to obtain the full extent of the object by employing a saliency
model as an additional source of information.

The content of this chapter corresponds to the CVPR 2017 publication: “Exploit-
ing Saliency for Object Segmentation from Image Level Labels” (Oh et al., 2017).
Seong Joon Oh was the lead author of this paper. Anna Khoreva contributed
the model for weakly supervised saliency segmentation and corresponding
experiments, as well as overall discussion.

Chapter 6: Learning Must-Link Constraints for Video Segmentation. In this chap-
ter we propose how to learn and integrate must-link constraints into graph-
based video segmentation. We demonstrate that the integration of learned
must-link constraints allows to reduce the computational load for graph parti-
tioning as well as improve the overall video segmentation quality.

The content of this chapter corresponds to the GCPR 2014 publication: “Learn-
ing Must-Link Constraints for Video Segmentation Based on Spectral Cluster-
ing” (Khoreva et al., 2014). Anna Khoreva was the lead author of this paper.

Chapter 7: Classifier Based Graph Construction. The chapter investigates how to
construct a better graph for video segmentation. We propose to learn both
the edge topology and weights of the graph by means of a classifier over
superpixel features. Addressing the graph construction helps to achieve better
performance without altering the graph partitioning or the underlying features.

The content of this chapter corresponds to the CVPR 2015 publication: “Classi-
fier Based Graph Construction for Video Segmentation” (Khoreva et al., 2015).
Anna Khoreva was the lead author of this paper.

Chapter 8: Improved Image Boundaries for Video Segmentation. In this chapter
we focus on better superpixels for video segmentation. We analyze the existing
superpixel methods and show that superpixels extracted from boundaries
achieve the best performance. To obtain better superpixels we propose to
improve boundary estimation via fusion of image and time domain cues. By
employing superpixels generated from better boundaries we observe consistent
improvement across different video segmentation approaches, including the
method proposed in Chapter 7.

The content of this chapter corresponds to the ECCV 2016 Workshops publica-
tion: “Improved Image Boundaries for Better Video Segmentation” (Khoreva
et al., 2016a). Anna Khoreva was the lead author of this paper.
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Chapter 9: Learning Video Object Segmentation from Static Images. This chapter
presents an approach to semi-supervised video object segmentation via con-
vnets. Instead of relying on densely annotated video data we propose to train a
video segmentation network using static images only. We treat the problem as
a guided instance segmentation and process the video per-frame. The temporal
context is enabled by using the guidance from the previous frame mask as an
additional input channel to the network. To learn the specific appearance of the
target object we fine-tune the model per-video for a small number of iterations.

The content of this chapter corresponds to the CVPR 2017 publication: “Learn-
ing Video Object Segmentation from Static Images” (Perazzi et al., 2017), which
was accepted as a Spotlight (8% acceptance rate). This paper is based on collab-
oration with Disney Research and ETH Zurich, Switzerland. Anna Khoreva
and Federico Perazzi contributed equally to the paper.

Chapter 10: Lucid Data Dreaming for Object Tracking. In this chapter we propose
to reduce the dependence on large image (as in Chapter 9) and video pixel-level
annotated datasets for training the mask tracking convnet. We introduce a
data synthesis method, which creates a large number of training examples
from the first annotated frame. This approach allows to reach competitive
performance even when training from only a single annotated frame. We
demonstrate experimentally that using a larger training set is not automatically
better, and that for the tracking task a smaller training set that is closer to the
target domain is more effective.

The content of this chapter partially corresponds to the CVPR 2017 Workshops
online publication: “Lucid Data Dreaming for Object Tracking” (Khoreva et al.,
2017b). This work is based on a collaboration with Google Research and the
Computer Vision Group at the University of Freiburg. Anna Khoreva was the
lead author of this paper. Eddy Ilg contributed with the FlowNet2.0 model for
optical flow estimation. The proposed approach to pixel-level object tracking
has taken the second place in the 2017 DAVIS Challenge on Video Object
Segmentation.

Chapter 11: Conclusions and future perspectives. In this chapter we summarize
the thesis and discuss possible future research directions for image and video
segmentation.





2R E L AT E D W O R K

Both image and video segmentation have a long history of research. In this
chapter we give an overview of related work, focusing on the directions
explored in this thesis, and discuss differences and similarities to the methods

proposed in this work.
This chapter is organized as follows. We first present recent work on object

boundary detection in Section 2.1, which often is used to improve the quality of
image and video segmentation (see Chapters 4 and 6-8). Section 2.2 considers work
on semantic image segmentation with different forms of supervision. Section 2.3
discusses recent advances on instance segmentation. Section 2.4 goes into details
about work on fully automatic and human-guided video segmentation.

2.1 object boundary detection

First we will give an overview over recent work on object boundary detection. In
the following we distinguish two types of boundaries: generic and class-specific
object boundaries. Generic boundary detection methods aim to detect external and
internal edges of “things” and “stuff”. However, some perception studies (Kourtzi
and Kanwisher, 2001; Hsieh et al., 2010) suggest that humans employ object-level
reasoning when judging if a particular pixel is a boundary. Therefore there is a
need to detect class-specific object boundaries - external object boundaries of certain
semantic classes, which are more consistent with humans reasoning. Both types of
boundaries can be used to aid a number of high-level vision tasks, in particular for
image (Kirillov et al., 2017; Kokkinos, 2016) and video segmentation (Galasso et al.,
2012; Yi and Pavlovic, 2015).

2.1.1 Generic boundaries

Early methods for generic boundary detection are based on a fixed prior model of
what constitutes a boundary, e.g. the Sobel detector (Kittler, 1983), zero-crossings
(Marr and Hildreth, 1980), and the widely adopted Canny detector (Canny, 1986).

Modern methods leverage machine learning to push performance, enabled by
the existence of manually annotated datasets, e.g. BSDS (Arbeláez et al., 2011). A
range of techniques have been proposed, from well crafted features and simple
classifiers (Statistical Edges (Coughlan et al., 2003), Pb (Martin et al., 2004), gPb
(Arbeláez et al., 2011)) to powerful decision trees over fixed features (Sketch Tokens
(Lim et al., 2013), SE (Dollár and Zitnick, 2015), OEF (Hallman and Fowlkes, 2015)),
and recently to end-to-end learning via Convolutional Neural Networks (CNNs,

15
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convnets) (N4-Fields (Ganin and Lempitsky, 2014), DeepContour (Shen et al., 2015),
DeepEdge (Bertasius et al., 2015a), HFL (Bertasius et al., 2015b), HED (Xie and Tu,
2015)).

Convnets for boundary detection are usually pre-trained on large classification
datasets, so as to be initialized with reasonable features, and then trained on bound-
ary datasets (Arbeláez et al., 2011; Hariharan et al., 2011). The more sophisticated the
model, the more data is needed to learn it.

N4-Fields (Ganin and Lempitsky, 2014) rely on dictionary learning and the use
of a nearest neighbor algorithm within a CNN framework to predict contours. Deep-
Contour (Shen et al., 2015) learns deep features using shape information. DeepEdge
(Bertasius et al., 2015a) and HFL (Bertasius et al., 2015b) use features generated
by pre-trained CNNs to regress contours, showing that object-level information
provides powerful cues for boundary detection. HED (Xie and Tu, 2015) proposes an
end-to-end framework to boost the efficiency and accuracy of contour detection, by
combining multi-scale and multi-level visual responses from the intermediate layers
of a network. Kokkinos (2016) build upon Xie and Tu (2015), improving the results
by a careful design of the loss function, a multi-resolution architecture, additional
training data and globalization.

Other than pure boundary detection methods, to improve or to generate closed
contours segmentation techniques, such as gPb-owt-ucm (Arbeláez et al., 2011), F&H
(Felzenszwalb and Huttenlocher., 2004), MCG (Pont-Tuset et al., 2016), and COB
(Maninis et al., 2017), can also be used.

A few works have addressed unsupervised detection of generic boundaries (Isola
et al., 2014; Li et al., 2015). PMI (Isola et al., 2014) detects boundaries by modeling
them as statistical anomalies amongst all local image patches, reaching competitive
performance without the need for training. Li et al. (2015) propose to train edge
detectors using motion boundaries obtained from a large corpus of video data in
place of human supervision. Both approaches reach similar detection performance.

Several works have proposed to make use of the learned boundaries to improve
higher-level tasks, such as semantic image labelling (Bertasius et al., 2015b; Kokkinos,
2016; Bertasius et al., 2016; Chen et al., 2016a) or instance segmentation (Kirillov et al.,
2017; Hayder et al., 2017). In Chapters 6-8 we employ boundary detection to extract
superpixels and to estimate a pairwise affinity for graph-based video segmentation.
In Chapter 4 we employ pair-wise terms based on the learned boundaries to improve
the estimation of the object mask via GrabCut (Rother et al., 2004).

2.1.2 Class-specific object boundaries

In many applications, there is an interest to focus on boundaries with high-level
semantics for specific object classes. The class-specific object boundary detectors are
then trained or tuned to the classes of interest. This problem is more recent and
relatively unexplored.

Hariharan et al. (2011) introduced the SBD dataset to measure for this task
over the 20 pascal categories.Hariharan et al. (2011) propose to re-weight generic
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boundaries using the activation regions of a detector. Uijlings and Ferrari (2015)
propose to train class-specific boundary detectors, and weighted them at test time
according to an image classifier. Premachandran et al. (2017) introduced the PASCAL
Boundaries dataset, a class-agnostic semantic boundary dataset with annotations
between 459 semantic classes, including both foreground objects and different types
of background. To solve the task they propose a multi-scale convnet-based class-
agnostic semantic boundary detector.

In Chapter 3 we introduce a method to detect object-specific boundaries using
only bounding box supervision, without using expensive boundary annotations.
Multiple works have addressed weakly supervised learning for object localization
(Oquab et al., 2015; Cao et al., 2015), object detection (Prest et al., 2012; Wang et al.,
2014a), or semantic labelling (Vezhnevets et al., 2011; Xu et al., 2015; Pinheiro and
Collobert, 2015). To the best of our knowledge there is no previous work attempting
to learn object boundaries in a weakly supervised fashion, using just bounding box
supervision.

2.2 semantic segmentation

Semantic segmentation requires understanding an image at pixel level, where each
pixel in the image is assigned to a certain semantic class. Apart from recognizing
the object, the goal is also to delineate the boundaries of each object and output
dense pixel-wise predictions. The accuracy of semantic segmentation models strongly
correlates with the amount of available training data. Collecting and annotating pixel-
wise data has become a bottleneck. This problem has raised interest in exploring
different means of weaker forms of supervision and investigating what is the minimal
supervision needed to reach quality comparable to the fully supervised case.

2.2.1 Fully supervised semantic labelling

Even when pixel-level annotations are provided (fully supervised case), the task of
semantic labelling is far from being solved (Everingham et al., 2015; Lin et al., 2014;
Hariharan et al., 2011).

Most of the successful semantic labelling methods developed in the previous
decade rely on hand-crafted features combined with flat classifiers, such as decision
forests (Shotton et al., 2008), boosting (Shotton et al., 2009; Tu and Bai, 2010) or
support vector machines (Fulkerson et al., 2009). Major improvements have been
achieved by integrating richer information from context (Carreira et al., 2012; George,
2015) and structured prediction techniques (Krähenbühl and Koltun, 2011; Gould
et al., 2009; He et al., 2004; Ladicky et al., 2009; Carreira and Sminchisescu, 2012),
though the performance of these methods has always been restricted by the limited
power of the features and relatively shallow models.

More recent works employ the top convolutional layers of a pre-trained CNN
(Krizhevsky et al., 2012; Simonyan and Zisserman, 2015) as feature representations
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(Girshick et al., 2014; Caesar et al., 2015; Dai et al., 2015b; Hariharan et al., 2014;
Mostajabi et al., 2015; Sharma et al., 2015; Farabet et al., 2013). These features
can represent the bounding box around the object (Caesar et al., 2015; Girshick
et al., 2014) or respect the object shape (Dai et al., 2015b; Hariharan et al., 2014;
Mostajabi et al., 2015; Sharma et al., 2015; Farabet et al., 2013). Another approach
using recurrent neural networks (Pinheiro and Collobert, 2014) merges several low
resolution predictions to output a full resolution prediction. These techniques are
already an improvement over hand-crafted features but their ability to correctly
delineate objects is poor.

The fully convolutional networks (FCNs) for semantic image segmentation intro-
duced by Long et al. (2015) have proven to be particularly effective for the task and
have given rise to a wide range of segmentation research using end-to-end training.
Long et al. (2015) transformed fully-connected layers of a CNN into convolutional
layers, enabling dense pixel-wise classification using CNN architectures that were
pre-trained on ImageNet, such as VGG (Simonyan and Zisserman, 2015).

However, the repeated combination of pooling and down-sampling at consecutive
layers of the networks originally designed for image classification results in output
feature maps at significantly reduced spatial resolution and poorly localized object
boundaries. Pooling operations are highly desirable for recognizing objects in images,
as it increases the size of the receptive field and makes the network robust against
small translations in the image, but when applied to segmentation they significantly
decrease localization performance.

To overcome this problem and obtain a pixel-accurate segmentation various
strategies have been proposed. Most of them build upon classification architectures
such as VGG (Simonyan and Zisserman, 2015) or ResNet (He et al., 2016). Some
approaches (Chen et al., 2015; Liu et al., 2015; Long et al., 2015) extract features from
intermediate layers via skip-layer connections, allowing information to propagate
directly from early, high-resolution layers to deeper layers. To reduce the pooling
factor of the pre-trained network, methods of Chen et al. (2016b) and Yu and Koltun
(2016) use atrous convolution, also known as dilated convolution.

Noh et al. (2015) and Hong et al. (2015) propose an encoder/decoder network.
The encoder computes low-dimensional feature representations via a sequence of
pooling and convolution operations. The decoder, stacked on top of the encoder, then
learns an upscaling of these low-dimensional features via subsequent unpooling
and deconvolution operations (Zeiler et al., 2011). Similarly to Noh et al. (2015),
Badrinarayanan et al. (2015) re-use the pooling indices from the encoder and learn
extra convolutional layers to densify the feature responses. Ronneberger et al.
(2015) add skip connections from the encoder features to the corresponding decoder
activations.

An alternative approach is to apply post-processing smoothing operations to
the output of a CNN in order to obtain more consistent predictions (Krähenbühl
and Koltun, 2011; Kolmogorov and Zabih, 2004; Barron and Poole, 2015). Most
commonly, conditional random fields (CRF) (Krähenbühl and Koltun, 2011) are
applied on the network output to capture long range dependencies between pixels
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(Chen et al., 2016b, 2015; Kokkinos, 2016; Lin et al., 2016c). Further improvements
have been shown in Schwing and Urtasun (2015) and Zheng et al. (2015) by jointly
training both the CRF and CNN components. Jampani et al. (2016b) propose to learn
bilateral convolutions, while Chandra and Kokkinos (2016) and Vemulapalli et al.
(2016) combine gaussian CRF with CNN. Yu and Koltun (2016) and Liu et al. (2017)
employ cascade of several extra convolutional layers to gradually capture long range
context information.

Several works (Zhao et al., 2016; Chen et al., 2016b; Liu et al., 2015; Ghiasi and
Fowlkes, 2016) employ spatial pyramid pooling to capture objects at multiple scales.
Spatial pyramid pooling probes an incoming feature map with filters or pooling
operations at multiple rates and multiple effective fields-of-views, thus capturing
context in different ranges. Ghiasi and Fowlkes (2016) employ multi-scale predic-
tions via a Laplacian pyramid reconstruction network to successively improve the
boundary adherence. The image-level features are exploited in the work of Liu et al.
(2015) for global context information. Zhao et al. (2016) perform spatial pooling at
several grid scales via a pyramid scene parsing network. Chen et al. (2016b) propose
atrous spatial pyramid pooling (ASPP), where parallel atrous convolution layers
with different rates capture multi-scale information. Most recently, Chen et al. (2017a)
propose to augment the ASPP module with image-level features encoding global
context and further boosting performance.

Lin et al. (2016b) propose a multi-path refinement network that exploits all the
information available along the down-sampling process to enable high-resolution
predictions using long-range residual connections. Pohlen et al. (2017) exploit a
ResNet-like architecture that combines multi-scale context with pixel-level accuracy
by using two processing streams, one that is processed at full resolution and another
that performs down-sampling operations.

All these approaches achieve state-of-the-art performance but require expensive
large-scale pixel-level annotations for training. To make the training for new object
classes more affordable, there is a need to relax the requirement of high-quality
pixel-level annotations. In Chapter 4 and Chapter 5 we explore weaker forms of
supervision for semantic segmentation. For comparison with previous work, we
base our experiments on the popular DeepLab (Chen et al., 2015, 2016b) architecture.

2.2.2 Weakly supervised semantic labelling

In order to keep annotation cost low, recent work has explored different forms of
supervision for semantic labelling: image labels (Pathak et al., 2015b; Papandreou
et al., 2015; Pinheiro and Collobert, 2015; Wei et al., 2015; Kolesnikov and Lampert,
2016b; Durand et al., 2017), prior meta-information (Pathak et al., 2015a), points/clicks
(Bearman et al., 2015), scribbles (Xu et al., 2015; Lin et al., 2016a), bounding boxes (Dai
et al., 2015a; Papandreou et al., 2015), class-agnostic segmentation masks (Chaudhry
et al., 2017) and masks from other classes (Hong et al., 2016), web-crawled images
(Jin et al., 2017; Wei et al., 2015) and videos (Hong et al., 2017; Tokmakov et al., 2016).
(Dai et al., 2015a; Papandreou et al., 2015; Hong et al., 2015; Souly et al., 2017) also
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consider the case where a fraction of images are fully supervised. Xu et al. (2015)
propose a framework to handle different types of annotations.

Bounding box supervision. In Chapter 4 we focus on box level annotations for
semantic labelling of objects. The closest related work are thus (Dai et al., 2015a;
Papandreou et al., 2015). BoxSup (Dai et al., 2015a) uses a recursive training procedure,
where the supervision during training the convnet is object segment proposals and
the updated network in turn improves the segments used for training. WSSL
(Papandreou et al., 2015) employs an expectation-maximisation algorithm with a bias
to enable the network to estimate the foreground regions.

Both BoxSup and WSSL propose new ways to train convnets under weak super-
vision. Similar to our method in Chapter 4, both of the approaches build upon the
DeepLab network (Chen et al., 2015). However, there are a few differences in the
network architecture. WSSL employs 2 different variants of the DeepLab architecture
with small and large receptive field of view (FOV) size. For each experiment WSSL
evaluates both architectures and reports the best result obtained. BoxSup uses their
own implementation of DeepLab with a small FOV. In our approach we employ the
DeepLab architecture with a large FOV.

More importantly and in contrast to BoxSup and WSSL, in Chapter 4 we show
that one can reach better results without modifying the training procedure, compared
to the fully supervised case, by instead carefully generating input labels for training
from the bounding box annotations.

Image label supervision. In Chapter 5 we employ image labels as the main form
of supervision for semantic labelling. Initial work approached this problem by adapt-
ing multiple-instance learning (Pathak et al., 2015b) and expectation-maximization
techniques (Papandreou et al., 2015; Hou et al., 2016) to the semantic labelling case.
Without additional priors only poor results are obtained. Using superpixels to
inform about the object shape helps (Pinheiro and Collobert, 2015; Xu et al., 2015)
and so does using priors on the object size (Pathak et al., 2015a). Kolesnikov and
Lampert (2016b) carefully use a CRF (Krähenbühl and Koltun, 2011) to propagate
the seeds across the image during training, while Qi et al. (2016) exploit segment
proposals (Pont-Tuset et al., 2016) for this.

Most methods compared propose each a new procedure to train a semantic la-
belling convnet. One exception is the work of Shimoda and Yanai (2016) which shows
competitive performance by using an improved form of guided back-propagation
(Springenberg et al., 2015). Recognizing the ill-posed nature of the problem, Koles-
nikov and Lampert (2016a) and Saleh et al. (2016) propose to collect user-feedback
as additional information to guide the training of a segmentation convnet. Instead
of collecting extra cues from human annotators, Hong et al. (2017), Jin et al. (2017)
and Tokmakov et al. (2016) propose to take advantage of data available from the
web. Jin et al. (2017) exploit web images to build a pipeline to automatically generate
segmentation masks for each class and then train a network using these masks. Hong
et al. (2017) and Tokmakov et al. (2016) use web videos as an additional source of



2.3 instance segmentation 21

training data, since temporal dynamics in video offers rich information to distinguish
objects from background and estimate their shapes more accurately. Souly et al.
(2017) employ Generative Adversarial Networks (GANs) in semi-supervised learning
for semantic segmentation to leverage available image-labeled data and additional
synthetic data to improve the fully supervised methods.

Employing attention maps has been shown to improve weakly supervised se-
mantic segmentation (Roy and Todorovic, 2017; Wei et al., 2017). Roy and Todorovic
(2017) model visual attention maps using the rectified Gaussian distribution, res-
ulting in an improved spatial smoothness of attention maps per object class. Wei
et al. (2017) propose an adversarial erasing scheme in order to obtain better attention
maps which in turn provide better cues for the training.

The closest related work to the method proposed in Chapter 5 are Wei et al. (2015)
and Chaudhry et al. (2017), which also use saliency as a cue to improve weakly
supervised semantic segmentation. However, there are a number of differences
to the approach proposed in Chapter 5. In contrast to our work, Wei et al. (2015)
use a curriculum learning to expose the segmentation convnet with simple images
(single object category), and later with more complex ones (multiple objects).For
saliency they use a manually crafted class-agnostic method, while we use a deep
learning based one, which provides better cues. Their training procedure uses ∼40k
additional images of the classes of interest crawled from the web; we do not use
such class-specific external data. Compared to the work of Wei et al. (2015) we
report significantly better results, showing in better light the potential of saliency as
additional information to guide weakly supervised semantic object labelling.

Most recently, Chaudhry et al. (2017) have proposed to combine saliency and
attention maps to boost performance. They use fully convolutional attention maps
to localize the class-specific regions and a hierarchical approach to discover the
class-agnostic salient regions to estimate the extent of the object. These two cues are
then combined to obtain pixel-level class-specific approximate groundtruth to train a
segmentation network. In contrast to the approach proposed in Chapter 5, they use
additional supervision in the form of class-agnostic segmentation masks to train a
saliency detector and employ a more powerful ResNet architecture (He et al., 2016).

The seminal work of Vezhnevets et al. (2011) proposed to use “objectness” maps
from bounding boxes to guide the semantic segmentation task. By using bounding
boxes, these maps end up being diffuse; in contrast, saliency maps in Chapter
5 provide sharper object boundaries, thus giving better information to guide the
semantic labeller.

2.3 instance segmentation

In contrast to instance agnostic semantic labelling that groups pixels by object class,
instance segmentation groups pixels by object instances. Instance segmentation is a
challenging task because it requires the correct detection of all objects in an image
while also precisely segmenting each instance.

Many instance segmentation approaches employ object proposals (Pont-Tuset
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and Gool, 2015; Hosang et al., 2015). Some methods first rely on detecting individual
objects (Girshick et al., 2014; Dai et al., 2016c; Girshick, 2015; Ren et al., 2015), for
which a segmentation mask is then produced. Given a bounding box (e.g. selected
by a detector), GrabCut (Rother et al., 2004) variants can be used to obtain an instance
segmentation, e.g. (Lempitsky et al., 2009; Cheng et al., 2015a; Taniai et al., 2015; Tang
et al., 2015; Yu et al., 2015; Xu et al., 2017).

Earlier methods (Dai et al., 2015b; Hariharan et al., 2014, 2015) make use of bottom-
up segments (Pont-Tuset et al., 2016; Uijlings et al., 2013; Krähenbühl and Koltun,
2015, 2014). Hariharan et al. (2014) employ Fast-RCNN bounding boxes (Girshick,
2015) and builds a multi-stage pipeline to extract CNN features and segment the
object. This framework was later improved by the use of Hypercolumn features
(Hariharan et al., 2015) and the utilization of a fully convolutional network (FCN) to
encode class-specific shape priors (Li et al., 2016a). Arnab and Torr (2016) further
reason about multiple object proposals to handle occlusions where single objects are
split into multiple disconnected patches.

DeepMask (Pinheiro et al., 2015) and follow-up works (Pinheiro et al., 2016; Dai
et al., 2016a) learn to generate segment proposals using deep CNNs, which are then
classified by Fast-RCNN (Girshick, 2015) and refined to achieve better segmentation
boundaries. Similarly, Dai et al. (2016b) propose a complex multiple-stage cascade
that predicts instance masks from bounding-box proposals and semantically labels
the masks in sequence. Zagoruyko et al. (2016) use a modified R-CNN model
(Girshick et al., 2014) to propose instance bounding boxes, followed by further
refinement to obtain instance level object masks. Ultimately, these approaches suffer
from the fact that they predict a binary mask within the bounding box proposals,
making the system slower and less accurate.

Li et al. (2017c) propose to combine the object detection approach of Dai et al.
(2016c) and the segment proposals of Dai et al. (2016a) for fully convolutional instance
segmentation (FCIS), predicting a set of position-sensitive output channels fully
convolutionally. These channels simultaneously address object boxes, masks and
semantic classes, making the system fast. However, this approach might experience
errors and forged edges on overlapping instances. Bai and Urtasun (2017) combine
intuitions from the classical watershed transform and deep learning to produce an
energy map of the image where object instances are represented as energy basins.
This method has constant runtime regardless of the number of object instances.

Most recently, Mask-RCNN (He et al., 2017) extends Faster-RCNN (Ren et al.,
2015) by adding a branch for predicting segmentation masks on each Region of
Interest (RoI) in parallel with the existing branch for classification and bounding
box regression. The mask branch is a small FCN applied to each RoI, predicting an
object mask in a pixel-to-pixel manner. The parallel prediction makes the system
simpler and more flexible.

In Chapter 4 we explore weakly supervised training of an instance segmentation
convnet. To the best of our knowledge there is no previous work on predicting object
masks in a weakly supervised fashion. We use DeepMask (Pinheiro et al., 2015) as a
reference implementation for this task. In addition we re-purpose the DeepLabv2
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network (Chen et al., 2016b), originally designed for semantic segmentation, for the
instance segmentation task.

2.4 video segmentation

By partitioning video volume into groups of objects or regions which are coherent
in appearance and motion, video segmentation delivers the first step to interpret
the video content and thus has shown to be helpful in diverse computer vision
tasks, such as semantic video segmentation (as pre-segmentation) (Dai et al., 2015b),
activity recognition (by computing features on voxels) (Taralova et al., 2014), or scene
understanding (Jain et al., 2013).

In recent years, video segmentation has received significant attention, with great
progress on fully automatic methods (Ochs et al., 2014; Yi and Pavlovic, 2015; Xiao and
Lee, 2016; Jain et al., 2017; Tokmakov et al., 2017b), human-guided mask propagation
techniques (Tsai et al., 2016; Maerki et al., 2016; Nagaraja et al., 2015; Caelles et al.,
2017b), and interactive methods (Jain and Grauman, 2016; Spina and Falcão, 2016;
Wang et al., 2014b).

2.4.1 Fully automatic methods

Fully automatic or unsupervised video segmentation methods assume no human
input on the video during test time. A variety of techniques have been proposed for
automatic video segmentation in the past decade. They can be grouped into several
categories.

Graph partitioning methods. Video segmentation can be approached as a cluster-
ing or graph partitioning problem, under various choices for basic data units: pixels,
superpixels/supervoxels, and point trajectories.

The use of graphs is long established in video segmentation (Grundmann et al.,
2010; Fragkiadaki and Shi, 2012; Ochs et al., 2014; Galasso et al., 2014). Graph-based
video segmentation techniques consist of three main steps: 1. feature computation
among pairs of pixels/superpixels/point trajectories; 2. graph construction according
to the spatio-temporal neighborhood of the pixels/superpixels or long-term traject-
ories and edge weight estimation based on the computed features; 3. partitioning
of the graph with spatio-temporal clustering. Previous work has used a variety
of features (Brox and Malik, 2010; Galasso et al., 2012; Palou and Salembier, 2013),
proposed various graph partitioning algorithms (Brox and Malik, 2010; Grundmann
et al., 2010; Yi and Pavlovic, 2015), focused on the unary and pairwise terms of the
graph (Galasso et al., 2014) and addressed the graph construction (Ren and Malik,
2003; Turaga et al., 2009; Khoreva et al., 2015) itself.

Grundmann et al. (2010) employ a greedy agglomerative clustering algorithm
that merges two adjacent superpixels if their color difference is smaller than the
internal variance of each superpixel. Granularity of the segmentation is controlled
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by adding a parameter to the internal variance. However, they only focus on color
information and do not make use of spatio-temporal structure. A streaming version
of Grundmann et al. (2010) was introduced in Xu et al. (2012), which provides similar
performance, but at a fraction of the cost by using overlapping temporal windows of
the video to optimize the segmentation.

Galasso et al. (2013) do greedy matching of superpixels by propagating labels
from the source frame over time via optical flow. This “simple” method obtains
competitive performance on the VSB100 benchmark (Galasso et al., 2013). However,
the quality of propagated labels typically decays due to flow estimation errors as the
distance from the source frame increases. Another limitation is that this segmentation
propagation approach cannot introduce new objects as the label set is fixed based on
the source frame and does not contain a label corresponding to a new object.

Robust temporal structure can be extracted by long term motion cues in the form
of dense trajectories which are derived using dense optical flow in order to get the
final pixel-level segmentation (Lezama et al., 2011; Brox and Malik, 2010; Ochs et al.,
2014; Fragkiadaki and Shi, 2012; Sundaram et al., 2010). These methods analyze
motion over longer periods, as such long term analysis is able to decrease the intra-
object variance of motion relative to the inter-object variance and propagate motion
information to frames in which the object remains static. For this, Lezama et al.
(2011) grouped pixels with coherent motion computed via long-range motion vectors
from the past and future frames. Similarly, the work of Brox and Malik (2010) offers
a framework for trajectory-based video segmentation through building an affinity
matrix between pairs of trajectories. In Fragkiadaki and Shi (2012) discontinuities of
embedding density between spatially neighboring trajectories were detected. Ochs
and Brox (2012) and Elhamifar and Vidal (2009) propose to incorporate higher order
motion models. Most of these techniques employ the spectral clustering paradigm
to generate segmentations, while Keuper et al. (2015) and Keuper (2017) have shown
the advantages of casting the motion trajectory segmentation as a minimum cost
multicut problem.

In general, these methods assume homogeneity of motion over the entire object
and therefore experience difficulties when different parts of an object exhibit non-
homogeneous motion patterns. This problem is amplified with the absence of a
strong object prior. Moreover, these approaches require careful selection of a suitable
model especially for the trajectory clustering process, which often comes with high
computation complexity (Lee et al., 2011). Nevertheless, the long trajectories offer a
good cue for inferring long range temporal structure in a video.

Galasso et al. (2012) aggregate a set of pairwise affinities in color, optical flow, long
trajectory correspondences and adjacent object boundary. With aggregated pairwise
affinities, spectral clustering is adopted to infer segment labels. Spectral clustering is
one of the standard graph partitioning techniques for video segmentation.

Spectral methods, stemming from the seminal work of Shi and Malik (2000) and
Ng et al. (2001), have received much attention from the theoretical viewpoint (von
Luxburg, 2007; Hein and Bühler, 2010), and proven to be successful for video seg-
mentation (Fragkiadaki and Shi, 2012; Ochs et al., 2014; Khoreva et al., 2015; Keuper
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and Brox, 2016; Galasso et al., 2014). Spectral clustering is suitable due to its ability
to include long-range affinities (Galasso et al., 2012; Sundaram and Keutzer, 2011)
and its global view on the problem (Fowlkes and Malik, 2004), providing balanced
solutions. However, one of the important limitations of spectral methods is its large
computational demand. The large demands of spectral techniques (Sundaram and
Keutzer, 2011; Galasso et al., 2012) are particularly clear in the case of high-quality
video datasets, such as VSB100 (Galasso et al., 2013), limiting their current large-scale
applicability.

In Chapter 6, we propose to integrate must-link constraints to overcome this
limitation. This allows to reduce the size of the problem, while preserving the original
optimization objective for all partitions satisfying the must-link constraints. Galasso
et al. (2014) propose another way to reduce the size of the graph by incorporating a
reweighing scheme, such that the resulting segmentation is equivalent to that of the
full graph. The equivalence is considered in terms of the normalized cut and of its
spectral clustering relaxation. This graph reduction allows reducing runtime and
memory consumption.

While graph reduction techniques have been explored and various graph partition
algorithms have been proposed, surprisingly little attention has been devoted on how
to construct a graph to obtain the best video segmentation performance. In Chapter 7

we argue that constructing the underlying graph is a crucial step for best performance
of graph-based methods and focus on learning the graph topology as well as the
edge weights. By learning the graph, without changes to the graph partitioning
method, we improve the results of Galasso et al. (2014), while significantly reducing
its runtime, as the learnt graph is much sparser.

While most of the above methods employ superpixels, to the best of our know-
ledge, none of them examines the quality of the respective superpixels for graph-
based video segmentation. The graph nodes - superpixels - are the starting point for
unary and pairwise terms, and thus directly impact the final segmentation quality.
In Chapter 8 we propose to thoroughly analyze and advance superpixel methods in
the context of video segmentation. We show that superpixels extracted from bound-
aries perform best, and that boundary estimation can be significantly improved via
appearance and motion cues. With superpixels generated from better boundaries we
observe consistent improvement for different video segmentation methods (Galasso
et al., 2013, 2014; Khoreva et al., 2015).

The main limitation of these clustering approaches is their lack of an explicit
notion of object appearance. With only low-level bottom-up information they tend
to over-segment videos. While this can be a useful intermediate step for some
recognition tasks in video, the extracted segments might not directly correspond
to objects, making it non-trivial to obtain video object segmentation from this
intermediate result.

Object proposal methods. These group of methods focus on generating accurate
spatio-temporal tubes of binary masks which are well aligned around the boundaries
of the object appearing in the video (Wu et al., 2015; Jain et al., 2014; Fragkiadaki
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et al., 2015; Oneata et al., 2014; Banica et al., 2013; Li et al., 2013; Xiao and Lee, 2016).
Banica et al. (2013) compute multiple segment proposals per frame and link them

across frames using appearance similarity. The method in Li et al. (2013) iteratively
refine a model to track an object over the video, where the model is initialized with
regions from the first frame and hence can experience drifting. Oneata et al. (2014)
produce multiple video segments by deleting image boundaries that do not exhibit
high flow strength and is upper-bounded by the static boundary detector.

Jain et al. (2014) developed an extension of the image segment proposal method
of Uijlings et al. (2013) to videos to obtain object proposals. They compute spatio-
temporal proposal regions from an independent motion evidence map, which es-
timates for each pixel in each frame the likelihood that its motion is different from
the dominant motion. While this approach is effective to segment objects that are in
motion with respect to the background, it does not provide a mechanism to recover
objects that are static in the scene.

Fragkiadaki et al. (2015) propose to segment moving objects in videos by ranking
spatio-temporal segment proposals according to “moving objectness”, i.e. how likely
they are to contain a moving object. They generate a set of region proposals in
each frame using multiple segmentations on optical flow and static boundaries
and filter them by rejecting segments on static background or obvious under- or
over-segmentations. The filtered proposals are extended to spatio-temporal tubes
using dense point trajectories to recover static segments. Then the tubes are ranked
using a moving objectness detector.

In the work of Wu et al. (2015) image segment proposals are generated and
tracked using learned appearance models. Forward tracking and backtracking
schemes are used to track segments starting from every frame and through complete
occlusions. Xiao and Lee (2016) first generate a set of spatio-temporal bounding
box proposals, and then a space-time GrabCut approach is used to generate per
frame segments. They first discover an object’s easy instances, and then gradually
detect harder instances in temporally-adjacent frames. This allows adaptation to the
object’s changing appearance over time.

Several methods (Faktor and Irani, 2014; Wang et al., 2015b; Ma and Latecki, 2012;
Papazoglou and Ferrari, 2013; Zhang et al., 2013) focused on producing a pixel-wise
segmentation of the dominant object in video, both in appearance and motion. These
methods first estimate a segment (Papazoglou and Ferrari, 2013; Wang et al., 2015b)
or segments (Lee et al., 2011; Zhang et al., 2013), which potentially correspond(s) to
the foreground object, and then learn foreground/background appearance models.
The learned models are then integrated with other cues, e.g., saliency maps (Wang
et al., 2015b), pairwise constraints (Papazoglou and Ferrari, 2013; Zhang et al., 2013),
object shape estimates (Lee et al., 2011), to compute the final object segmentation.
Alternatives approaches have used long-range interactions between distinct parts of
the video to overcome noisy initializations in low-quality videos (Faktor and Irani,
2014), and occluder/occluded relations to obtain a layered segmentation (Taylor
et al., 2015).

The main drawbacks of the proposal based techniques are their high computa-
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tional cost associated with proposal generation and complicated object inference
schemes.

Convnet-based approaches. Recently, convnet-based approaches (Tokmakov et al.,
2017a; Jain et al., 2017; Tokmakov et al., 2017b) have become the state of the art for
unsupervised video object segmentation. These methods usually process videos
per-frame, cast video object segmentation as a binary classification problem (fore-
ground/background) and build the convnet architecture upon the semantic labelling
networks (Long et al., 2015; Bansal et al., 2017; Ronneberger et al., 2015).

Tokmakov et al. (2017a) propose to learn moving objects in videos via convnets.
Their encoder-decoder style network first learns a coarse representation of the optical
flow field features, and then refines it iteratively to produce motion labels at the
original high-resolution. The output labelling is further refined with an objectness
map and CRF (Krähenbühl and Koltun, 2011) to account for errors in optical flow.

Jain et al. (2017) propose a framework for segmenting generic objects in videos.
They employ a two-stream convnet where individual streams encode generic ap-
pearance and motion cues derived from an RGB video frame and its corresponding
optical flow. These cues are fused in the network to produce a final object versus
background pixel-level segmentation for each video frame. The proposed network
can segment both static and moving objects.

Tokmakov et al. (2017b) present a two-stream network with a visual memory
module. The memory module is a convolutional gated recurrent unit (GRU) that
encodes the evolution of the object in the input video sequence. The representation
used in the memory module is extracted from two streams — the appearance stream
(Chen et al., 2015) which describes static features of objects in the video, and the
motion stream (Tokmakov et al., 2017a) which captures motion cues. With these CNN
features the GRU component is updated at each frame to learn a visual memory
representation of the object in the scene.

Because these methods ignore the first frame annotation and try to segment
the most salient object, both in motion and appearance, they fail to distinguish
similar looking instances in videos where multiple salient objects move, e.g. flock of
penguins.

2.4.2 Human-guided methods

Human-guided video segmentation methods accept human input in the first frame
or a subset of frames, then propagate the information to the remaining frames
(Nagaraja et al., 2015; Tsai et al., 2016; Badrinarayanan et al., 2010; Jain and Grauman,
2014; Wen et al., 2015; Perazzi et al., 2015; Maerki et al., 2016; Tsai et al., 2010).

Mask propagation techniques. Among this group are semi-supervised or semi-
automatic approaches, which assume an object mask in the first frame is known,
and the objective is to track the object mask throughout the video. Appearance
similarity and motion smoothness across time is used to propagate the first frame
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annotation across the video (Maerki et al., 2016; Wang and Shen, 2017; Tsai et al., 2016).
These methods usually leverage optical flow and long term trajectories. Existing
approaches focus on propagating superpixels (Wen et al., 2015; Jain and Grauman,
2014), constructing graphical models (Maerki et al., 2016; Tsai et al., 2016) or utilizing
object proposals (Perazzi et al., 2015).

The label propagation method of (Badrinarayanan et al., 2010) jointly models
appearance and semantic information. The key idea is to influence the learning of
frame to frame patch correlations as a function of both appearance and class labels.
This method was extended to include correlations between non-successive frames
using a decision forest classifier by Budvytis et al. (2011). Tsai et al. (2010) propose to
jointly optimize for temporal motion and semantic labels in an energy minimization
framework. A sliding window approach is used to process overlapping n-frame
grids for efficiency reasons. The result of one n-frame grid is employed as a hard
constraint in the next grid and so on.

Fathi et al. (2011) use active learning for video segmentation. Each unlabelled pixel
is provided a confidence measure based on its distance to a labelled point, computed
on a neighbourhood graph. These confidences are used to recommend frames in
which more interaction is desired. In the work of Nagaraja et al. (2015) video object
segmentation is formulated as a spatio-temporal markov random field optimization
problem, with a cost function including user input, motion and appearance cues,
and spatio-temporal consistency.

Tsai et al. (2016) build a graph over pixels and superpixels, uses convnet based ap-
pearance terms, and interleave video segmentation with optical flow estimation. For
the segmentation model, they construct a multi-level graphical model that consists of
pixels and superpixels, each of which plays different roles for segmentation. At the
superpixel level, each superpixel is likely to contain pixels from the foreground and
background as the object boundary may not be clear. At the pixel level, each pixel is
less informative although it can be used for more accurate estimation of motion and
segmentation. With the combination of these two levels, the object boundary can be
better identified by exploiting both statistics contained in superpixels and details in
the pixel level.

Wen et al. (2015) construct a graph over neighboring frames connecting super-
pixels and (generic) object parts to solve the video labeling task. Perazzi et al. (2015)
propose to build a global graph structure over object proposal segments, and then
infer a consistent segmentation. A limitation of methods utilizing long-range con-
nections is that they have to operate on larger image regions such as superpixels or
object proposals for acceptable speed and memory usage, compromising on their
ability to handle fine details. In contrast, the systems introduced in Chapter 9 and
Chapter 10 are efficient at test time due to its feed-forward architecture, operate on a
pixel level and generate high quality results in a single pass over the video, without
the need for considering more than one frame at a time.

Instead of using superpixels or proposals, Maerki et al. (2016) formulate a fully-
connected pixel-level graph between frames and efficiently infer the labeling over the
vertices of a spatio-temporal bilateral grid (Chen et al., 2007). Because this method
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propagates information only across neighboring frames it has difficulties ensuring
globally consistent segmentation. On the contrary, our approaches in Chapters 9

and 10 learn the specific appearance of the object of interest via online tuning and
therefore produce temporally consistent results.

Box tracking. Classic work on video object tracking focused on bounding box
tracking. Many of the insights from these works have been re-used for mask tracking.
Some previous works have investigated approaches that improve segmentation
quality by leveraging box-level tracking and vice versa (Ren and Malik, 2007; Godec
et al., 2011; Duffner and Garcia, 2013; Chockalingam et al., 2009).

Traditional box tracking smoothly updates across time a linear model over hand-
crafted features (Henriques et al., 2012; Breitenstein et al., 2009; Kristan et al., 2014).
Since then, convnets have been used as improved features (Danelljan et al., 2016,
2015; Ma et al., 2015; Wang et al., 2015a), and eventually to drive the tracking itself
(Held et al., 2016; Bertinetto et al., 2016; Tao et al., 2016; Nam et al., 2016; Nam and
Han, 2016). Convnet-based approaches need data for pre-training and learning the
task.

In Chapter 9 we propose a mask tracking method, which is closely related to
convnet-based box trackers of Held et al. (2016) and Nam and Han (2016). Held et al.
(2016) propose to train offline a convnet so as to directly regress the bounding box in
the current frame based on the object position and appearance in the previous frame.
Nam and Han (2016) propose to use online fine-tuning of a convnet to model the
object appearance. Our training strategy in Chapter 9 is inspired by Held et al. (2016)
for the offline part, and Nam and Han (2016) for the online stage. Compared to the
aforementioned methods our approach operates at pixel level masks instead of boxes.
Differently from Nam and Han (2016), we do not replace the domain-specific layers,
instead fine-tuning all the layers on the available annotations for each individual
video sequence.

Convnet-based mask tracking. Following the trend in box-level tracking, recently
convnets have been proposed for mask tracking. What makes convnets particularly
suitable for the task, is that they can learn what are the common statistics of
appearance and motion patterns of objects, as well as what makes them distinctive
from the background, and exploit this knowledge when tracking a single particular
object. This aspect gives convnets an edge over traditional techniques based on
low-level features.

Caelles et al. (2017b) train a generic object saliency network, and fine-tune it
per-video using the first frame annotation to make the output sensitive to the specific
object instance being tracked. The resulting fine-tuned network is then applied on
each frame of the video individually. Differently from our approach in Chapters 9

and 10 their segmentation is not guided, and therefore it cannot distinguish multiple
instances of the same object. Instead, they incorporate the notion of the object to
be segmented based solely on the first frame annotation, which might result in
performance decay over time, as the object appearance diverges from the initial
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frame. Furthermore, it relies on expensive dense video annotations for pre-training,
while we employ static images.

Caelles et al. (2017a) extend the work of Caelles et al. (2017b) by incorporating
the semantic information of an instance segmentation method into the video object
segmentation pipeline. More recently, Voigtlaender and Leibe (2017b) have proposed
to integrate an online adaptation mechanism into the pipeline of Caelles et al. (2017b).
To adapt to the object appearance changes they update the network per-frame based
on training examples selected online. In order to avoid drift, training examples are
carefully selected by choosing pixels for which the network is very certain that they
belong to the object of interest as positive examples, and pixels which are far away
from the previous frame mask as negative examples.

Jampani et al. (2016a) mix convnets with ideas of bilateral filtering. They introduce
a Video Propagation Network (VPN) that propagates information forward through
video data. The VPN architecture is composed of two components. The first one is
a temporal bilateral network that performs image adaptive spatio-temporal dense
filtering. The bilateral network allows to connect densely all pixels from current and
previous frames and to propagate associated pixel information to the current frame.
This is then followed by a standard spatial CNN on the bilateral network output to
re-fine and predict the mask for the present video frame.

To cope with frequent occlusions and appearance variations in dynamic scenes,
most recently Li et al. (2017b) have proposed to employ an adaptive object re-
identification module along with our mask propagation introduced in Chapter 9 to
retrieve missing instances. Specifically, when missing instances are re-identified with
high confidence, they are assigned with a higher priority to be recovered during
the mask propagation process. For each retrieved instance, its frame is taken as
the starting point and the mask propagation is applied bi-directionally. Both mask
propagation and re-identification modules are iteratively applied to the whole video
sequence until no more high confidence instances can be found. Following our
work in Chapter 10 they employ a two-stream convnet with a RGB and optical flow
magnitude branches for mask propagation. However, they adopt the much deeper
ResNet network (He et al., 2016) with atrous spatial pyramid pooling and multi-scale
testing (Chen et al., 2017a) to increase the model capacity and the resolution of
prediction.

The network architecture employed in Chapter 10 is similar to Caelles et al. (2017b)
and Jain et al. (2017). Other than implementation details, there are two differentiating
factors. One, we use a different strategy for training: while other works (Caelles et al.,
2017b; Jampani et al., 2016a; Voigtlaender and Leibe, 2017b) all rely on consecutive
video training frames and/or use an external image datasets (Voigtlaender and Leibe,
2017b; Perazzi et al., 2017; Li et al., 2017b), our approach focuses on using the first
frame annotations provided with each targeted video benchmark without relying on
external annotations. Two, our approach exploits optical flow more effectively than
these previous methods.
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Interactive video segmentation. Applications such as video editing for movie
production often require a level of accuracy beyond the current state of the art. Thus
several works have also considered video segmentation with variable annotation
effort, leveraging a human in the loop to provide guidance or correct errors, e.g. (Jain
and Grauman, 2016; Fan et al., 2015; Nagaraja et al., 2015). Several methods employ
flexible user inputs, enabling human interaction using clicks (Jain and Grauman,
2016; Spina and Falcão, 2016; Wang et al., 2014b) or strokes (Bai et al., 2009; Zhong
et al., 2012; Fan et al., 2015).

Albeit our techniques in Chapters 9 and 10 can be adapted for more flexible inputs,
we focus on maximizing quality for the non-interactive case with no-additional hints
along the video.





Part I

L E A R N I N G T O S E G M E N T I M A G E S
W I T H W E A K E R F O R M S O F S U P E RV I S I O N

Convolutional networks have become the de facto technique for many
problems in computer vision. Training convolutional networks for applic-
ations such as object boundary detection, semantic labelling or instance
segmentation requires expensive dense pixel-wise annotations, and thus
significant cost is involved in creating large enough training sets. In order
to make the training data more affordable, there is a need to relax the
constraint of high-quality pixel-level image annotations. In this part we
explore weaker forms of supervision for training the networks, such as
image label and bounding box annotations, which are cheaper and easier
to obtain.

In Chapter 3 we propose a technique to detect class-specific object bound-
aries using only box supervision by generating pixel-level approximate
groundtruth to train a network. We show that bounding box annotations
alone suffice to predict high-quality object boundaries without using any
object-specific boundary annotations. Motivated by the achieved results
we extend this framework in Chapter 4 to other closely related tasks,
such as semantic labelling and instance segmentation. We employ the
weakly supervised object boundaries proposed in Chapter 3 to improve
object mask estimation for generating segmentation annotations and ex-
periment with recursive training. In Chapter 5 we explore a weaker form
of supervision for semantic segmentation and propose to train a convnet
with image-level annotations of the present object classes. To obtain the
full extent of the object we employ a saliency model as an additional
source of information. With these weaker forms of supervision we achieve
high-quality results, getting close to the full supervision quality.





3
W E A K LY S U P E RV I S E D O B J E C T B O U N D A R I E S

State-of-the-art learning based boundary detection methods require extensive
training data. Since labelling object boundaries is one of the most expensive
types of annotations, there is a need to relax the requirement to carefully

annotate images to make both the training more affordable and to extend the
amount of training data.

In this chapter we propose a technique to generate weakly supervised annotations
and show that bounding box annotations alone suffice to reach high-quality object
boundaries without using any object-specific boundary annotations.

3.1 introduction

Boundary detection is a classic computer vision problem. It is an enabling ingredient
for many vision tasks such as image/video segmentation (Arbeláez et al., 2011;
Galasso et al., 2013), object proposals (Hosang et al., 2015), object detection (Zhu et al.,
2015), and semantic labelling (Banica and Sminchisescu, 2015). Rather than image
edges, many of these tasks require class specific objects boundaries. These are the
external boundaries of object instances belonging to a specific class (or class set).

State-of-the-art boundary detection is obtained via machine learning which
requires extensive training data. Yet, instance-wise boundaries are amongst the
most expensive types of annotations. Compared to two clicks for a bounding box,
delineating an object requires a polygon with 20~100 points, i.e. at least 10× more
effort per object.

In order to make the training of new object classes affordable, and/or to increase
the size of the models we train, there is a need to relax the requirement of high-
quality image annotations. Hence the starting point of this chapter is the following
question: is it possible to obtain object-specific boundaries without having any object
boundary annotations at training time?

In this chapter we focus on learning object boundaries in a weakly supervised
fashion and show that high quality object boundary detection can be obtained
without using any class-specific boundary annotations. We propose several ways of
generating object boundary annotations with different levels of supervision, from
just using a bounding box oriented object detector to using the boundary detector
trained on generic boundaries. For generating weak object boundary annotations we
consider different sources, fusing unsupervised image segmentation (Felzenszwalb
and Huttenlocher., 2004) and object proposal methods (Uijlings et al., 2013; Pont-
Tuset et al., 2016) with object detectors (Girshick, 2015; Ren et al., 2015). We show
that bounding box annotations alone suffice to achieve objects boundary estimates

35
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(a) Image (b) SE(VOC) (c) Det.+SE (VOC)

(d) SE(BSDS) (e) SE (weak) (f) Det.+SE (weak)

Figure 3.1: Object-specific boundaries 3.1a differ from generic boundaries (such
as the ones detected in 3.1d). The proposed weakly supervised approach drives
boundary detection towards the objects of interest. Example results in 3.1e and 3.1f.
Red/green indicate false/true positive pixels, grey is missing recall. All methods
shown at 50% recall.

with high quality.
We present results using a decision forest (Dollár and Zitnick, 2015) and a

convnet edge detector (Xie and Tu, 2015). We report top performance on Pascal
object boundary detection (Hariharan et al., 2011; Everingham et al., 2015) with
our weak-supervision approaches already surpassing previously reported fully
supervised results.

Our main contributions are summarized below:

• We introduce the problem of weakly supervised object-specific boundary
detection.

• We show that good performance can be obtained on BSDS, PascalVOC12, and
SBD boundary estimation using only weak-supervision (leveraging bounding
box detection annotations without the need of instance-wise object boundary
annotations).

• We report best known results on PascalVOC12, and SBD datasets. Our weakly
supervised results alone improve over the previous fully supervised state of
the art.

The rest of this chapter is organized as follows. Section 3.2 describes different
types of boundary detection and the considered datasets. In Section 3.3 we investig-
ate the robustness to annotation noise during training. We leverage our findings and
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propose several approaches for generating weak boundary annotations in Section
3.4. Sections 3.5-3.8 report results using the two different classifier architectures.

3.2 boundary detection tasks

In this work we distinguish three types of boundaries: generic boundaries (“things”
and “stuff”), instance-wise boundaries (external object instance boundaries), and
class specific boundaries (object instance boundaries of a certain semantic class). For
detecting these three types of boundaries we consider different datasets: BSDS500

(Arbeláez et al., 2011; Martin et al., 2001), Pascal VOC12 (Everingham et al., 2015),
MS COCO (Lin et al., 2014), and SBD (Hariharan et al., 2011), where each represents
boundary annotations of a given boundary type (see Figure 3.2).

BSDS. We first present our results on the Berkeley Segmentation Dataset and
Benchmark (BSDS) (Arbeláez et al., 2011; Martin et al., 2001), the most established
benchmark for generic boundary detection task. The dataset contains 200 training,
100 validation and 200 test images. Each image has multiple ground truth annota-
tions. For evaluating the quality of estimated boundaries three measures are used:
fixed contour threshold (ODS), per-image best threshold (OIS), and average preci-
sion (AP). Following the standard approach (Dollár and Zitnick, 2015; Canny, 1986)
prior to evaluation we apply a non-maximal suppression technique to boundary
probability maps to obtain thinned edges.

VOC. For evaluating instance-wise boundaries we propose to use the PASCAL
VOC 2012 (VOC) segmentation dataset (Everingham et al., 2015). The dataset
contains 1 464 training and 1 449 validation images, annotated with contours for 20

object classes for all instances. The dataset was originally designed for semantic
segmentation. Therefore only object interior pixels are marked and the boundary
location is recovered from the segmentation mask. Here we consider only object
boundaries without distinguishing the semantics, treating all 20 classes as one. For
measuring the quality of predicted boundaries the BSDS evaluation software is used.
Following Uijlings and Ferrari (2015) the maxDist (maximum tolerance for edge
match) is set to 0.01.

COCO. To show generalization of the proposed method for instance-wise bound-
ary detection we use the MS COCO (COCO) dataset (Lin et al., 2014). The dataset
provides semantic segmentation masks for 80 object classes. For our experiments we
consider only images that contain the 20 Pascal classes and objects larger than 200

pixels. The subset of COCO that contains Pascal classes consists of 65 813 training
and 30 163 validation images. For computational reasons we limit evaluation to 5 000
randomly chosen images of the validation set. The BSDS evaluation software is used
(maxDist = 0.01). Only object boundaries are evaluated without distinguishing the
semantics.
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(a) BSDS (Arbeláez et al., 2011) (b) VOC12 (Everingham et al., 2015)

(c) COCO (Lin et al., 2014) (d) SBD (Hariharan et al., 2011)

Figure 3.2: Datasets considered.

SBD. We use the Semantic Boundaries Dataset (SBD) (Hariharan et al., 2011) for
evaluating class specific object boundaries. The dataset consists of 11 318 images
from the trainval set of the PASCAL VOC2011 challenge, divided into 8 498 training
and 2 820 test images. This dataset has object instance boundaries with accurate
figure/ground masks that are also labeled with one of 20 Pascal VOC classes. The
boundary detection accuracy for each class is evaluated using the official evaluation
software (Hariharan et al., 2011). During the evaluation process all internal object-
specific boundaries are set to zero and the maxDist is set to 0.02. We report the mean
ODS F-measure (F), and average precision (AP) across 20 classes.

Note that VOC and SBD datasets have overlap between their train and test sets.
When doing experiments across datasets we make sure not to re-use any images
included in the test set considered.

Baselines. For our experiments we consider two different types of boundary
detectors - SE (Dollár and Zitnick, 2015) and HED (Xie and Tu, 2015) - as baselines.
SE is at the core of multiple related methods (SCG, MCG, OEF (Hallman and Fowlkes,
2015)). SE (Dollár and Zitnick, 2015) builds a “structured decision forest” which
is a modified decision forest, where the leaf outputs are local boundary patches
(16× 16 pixels) that are averaged at test time, and the split nodes are built taking
into account the local segmentation of the ground truth input patches. It uses binary
comparison over hand-crafted edge and self-similarity features as split decisions. By
construction this method requires closed contours (i.e. segmentations) as training
input. This detector is reasonably fast to train/test and yields good detection quality.
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HED (Xie and Tu, 2015) is currently the top performing convnet for BSDS boundaries.
It builds upon a VGG16 network pre-trained on ImageNet (Simonyan and Zisserman,
2015), and exploits features from all layers to build its output boundary probability
map. By also exploiting the lower layers (which have higher resolution) the output
is more detailed, and the fine-tuning is more effective (since all layers are guided
directly towards the boundary detection task). To reach top performance, HED is
trained using a subset of the annotated BSDS pixels, where all annotators agree (Xie
and Tu, 2015). These are so called “consensus” annotations (Hou et al., 2013), and
correspond to sparse ∼15% of all true positives.

3.3 robustness to annotation noise

We start by exploring weakly supervised training for generic boundary detection, as
considered in BSDS.

Model based approaches such as Canny (Canny, 1986) and F&H (Felzenszwalb
and Huttenlocher., 2004) are able to provide low quality boundary detections. We
notice that correct boundaries tend to have consistent appearance, while erroneous
detections are mostly inconsistent. Robust training methods should be able to
pick-up the signal in such noisy detections.

SE. In Figure 3.3 and Table 3.1 we report our results when training a structured
decision forest (SE) and a convnet (HED) with noisy boundary annotations. By
(·) we denote the data used for training. When training SE using either Canny
(SE (Canny)) or F&H (SE (F&H)) we observe a notable jump in boundary detection
quality. Comparing SE trained with the BSDS ground truth (fully supervised,
SE (BSDS)), with the noisy labels from F&H, SE (F&H) closes up to 80% of the
gap between SE (F&H) and SE (BSDS) (∆AP% column in Table 3.1). Using only
noisy weak supervision SE (F&H) is only 3 AP percent points behind from the fully
supervised case (76 vs. 79).
We believe that the strong noise robustness of SE can be attributed to the way it
builds its leaves. The final output of each leaf is the medoid of all segments reaching
it. If the noisy boundaries are randomly spread in the image appearance space, the
medoid selection will be robust.

HED. The HED convnet (Xie and Tu, 2015) reaches top quality when trained
over consensus annotations. When using all annotations (“non consensus”), its
performance is comparable to other convnet alternatives. When trained over F&H
the relative improvement is smaller than for the SE case, when combined with SE
(denoted “HED(SE (F&H))”) it reaches 69 ∆AP% . HED (SE (F&H)) provides better
boundaries than SE (F&H) alone, and reaches a quality comparable to the classic
gPb method (Arbeláez et al., 2011) (75 vs. 73).

On BSDS the unsupervised PMI methods provides better boundaries than our
weakly supervised variants. However, PMI cannot be adapted to provide object-
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Figure 3.3: BSDS results. Canny and F&H points indicate the boundaries used as
noisy annotations. When trained over noisy annotations, both SE and HED provide
a large quality improvement.

Family Method ODS OIS AP ∆AP%

Unsupervised
Canny (Canny, 1986) 58 62 55 -
F&H (Felzenszwalb and Huttenlocher., 2004) 64 67 64 -
PMI (Isola et al., 2014) 74 77 78 -

Trained
on

ground truth

gPb-owt-ucm (Arbeláez et al., 2011) 73 76 73 -
SE(BSDS) (Dollár and Zitnick, 2015) 74 76 79 -
HED(BSDS) noncons. (Xie and Tu, 2015) 75 77 80 -
HED(BSDS) cons. (Xie and Tu, 2015) 79 81 84 -

Trained
on

unsupervised
boundary
estimates

SE (Canny) 64 67 64 38

SE (F&H) 71 74 76 80

SE (SE (F&H)) 72 74 76 80

SE(PMI) 72 75 77 -
HED (F&H) 69 72 73 56

HED (SE (F&H)) 73 76 75 69

Table 3.1: Detailed BSDS results, see Figure 3.3 and Section 3.3. Underline indicates
ground truth baselines, and bold are our best weakly supervised results. (·) denotes
the data used for training. ∆AP% indicates the ratio between the same model trained
on ground truth, and the noisy input boundaries. The closer to 100%, the lower the
drop due to using noisy inputs instead of ground truth.
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specific boundaries. For this we need to rely on methods than can be trained, such
as SE and HED.

Conclusion. SE is surprisingly robust to annotation noise during training. HED
is also robust but to a lesser degree. By using noisy boundaries generated from
unsupervised methods, we can reach a performance comparable to the bulk of
current methods.

3.4 weakly supervised boundary annotation generation

Based on the observations in Section 3.3, we propose to train boundary detectors
using data generated from weak annotations. Our weakly supervised models are
trained in a regular fashion, but use generated (noisy) training data as input instead
of human annotations.

We consider boundary annotations generated with three different levels of su-
pervision: fully unsupervised, using only detection annotations, and using both
detection annotations and BSDS boundary annotations (e.g. using generic bound-
ary annotation, but zero object-specific boundaries). In this section we present the
different variants of weakly supervised boundary annotations. Some of them are
illustrated in Figure 3.4.

BBs. We use the bounding box annotations to train a class-specific object detector
(Ren et al., 2015; Girshick, 2015). We then apply this detector over the training set
(and possibly a larger set of images), and retain boxes with confidence scores above
0.8. (We also experimented using directly the ground truth annotations, but saw no
noticeable difference; thus we report only numbers using the “detections over the
training set”).

F&H. As a source of unsupervised boundaries we consider the classical graph
based image segmentation technique proposed by Felzenszwalb and Huttenlocher.
(2004) (F&H). To focus the training data on the classes of interest, we intersect these
boundaries with detection bounding boxes from Ren et al. (2015) (F&H∩ BBs). Only
the boundaries of segments that are contained inside a bounding box are retained.

GrabCut. Boundaries from F&H will trigger on any kind of boundary, including
the internal boundaries of objects. A way to exclude internal object boundaries, is to
extract object contours via figure-ground segmentation of the detection bounding
box. We use GrabCut (Rother et al., 2004) for this purpose. We also experimented
with DenseCut (Cheng et al., 2015a) and CNN+GraphCut (Simonyan et al., 2014), but
did not obtain any gain; thus we report only GrabCut results.
For the experiments reported below, for GrabCut∩ BBs a segment is only accepted
if a detection from Ren et al. (2015) has the intersection-over-union score (IoU) ≥ 0.7.
If a detection bounding boxes has no matching segment, the whole region is marked
as ignore (see Figure 3.4e) and not used during the training of boundary detectors.
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(a) Ground truth (b) F&H (c) F&H∩ BBs (d) GrabCut ∩ BBs (e) SeSe ∩ BBs

(f) MCG ∩ BBs (g) cons. MCG ∩
BBs

(h) SE(SeSe ∩ BBs) (i) cons. S&G∩BBs (j) cons. all meth-
ods ∩ BBs

Figure 3.4: Different generated boundary annotations. Cyan/black indicates posi-
tive/ignored boundaries.

Object proposals. Another way to bias generation of boundary annotations to-
wards object contours is to consider object proposals. SeSe (Uijlings et al., 2013)
is based on the F&H (Felzenszwalb and Huttenlocher., 2004) segmentation (thus
it is fully unsupervised), while MCG (Pont-Tuset et al., 2016) employs boundaries
estimated via SE (BSDS) (thus uses generic boundaries annotations).

Similar to GrabCut∩BBs, SeSe∩BBs and MCG∩BBs are generated by matching
proposals to bounding boxes (if IoU ≥ 0.9). BBs come from Girshick (2015) with
the corresponding object proposals. When more than one proposal is matched to
a detection bounding box we use the union of the proposal boundaries as positive
annotations. This maximizes the recall of boundaries, and somewhat imitates
the multiple human annotators in BSDS. We also experimented using only the
highest overlapping proposal, but the union provides marginally better results; thus
we report only the later. Since proposals matching a bounding box might have
boundaries outside it, we consider them all since the bounding box itself might not
cover well the underlying object.

Consensus boundaries. As pointed out in Table 3.1, HED requires consensus
boundaries to reach good performance. Thus rather than taking the union between
proposal boundaries, we consider using the consensus between object proposal
boundaries. The boundary is considered to be present if the agreement is higher
than 70%, otherwise the boundary is ignored. We denote such generated annotations
as “cons.”, e.g. cons. MCG∩ BBs (see Figure 3.4g).
Another way to generate sparse (consensus-like) boundaries, is to threshold the
boundary probability map out of an SE (·) model. SE (SeSe∩ BBs) uses the top 15%
quantile per image as weakly supervised annotations.
Finally, other than consensus between proposals, we can also do consensus between
methods. cons. S&G ∩ BBs is the intersection between SE (SeSe∩ BBs), SeSe and
GrabCut boundaries (fully unsupervised); while cons. all methods ∩ BBs is the



3.4 weakly supervised boundary annotation generation 43

(a) Ground
truth

(b) F&H (c) F&H∩ BBs (d) GrabCut ∩
BBs

(e) SeSe ∩ BBs

(f) MCG ∩ BBs (g) cons. MCG
∩ BBs

(h) cons. S&G
∩ BBs

(i) cons. all ∩
BBs

(j) SE(SeSe ∩
BBs)

Figure 3.5: Examples of generated boundary annotations. Cyan/black indicates
positive/ignored boundaries.
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intersection between MCG, SeSe and GrabCut (uses BSDS data).
More examples of generated boundary annotations are in Figure 3.5.

Datasets. Since we generate boundary annotations in a weakly supervised fash-
ion, we are able to generate boundaries over arbitrary image sets. In our experi-
ments we consider SBD, VOC (segmentation), and VOC+ (VOC plus images from
Pascal VOC12 detection task). Methods using VOC+are denoted using ·+ (e.g.
SE (SeSe+ ∩ BBs)).

3.5 structured forest voc boundary detection

In this section we analyse the variants of weakly supervised methods for object
boundary detection proposed in Section 3.4 as opposed to the fully supervised ones.
From now on we are interested in external boundaries of objects. Therefore we
employ the Pascal VOC12, treating all 20 Pascal classes as one. See details of the
evaluation protocol in Section 3.2. We start by discussing results using SE; convnet
results are presented in Section 3.6.

3.5.1 Training models with ground truth

SE. Figure 3.6 and Table 3.2 show results of SE trained over the ground truth of
different datasets (dashed lines). Our results of SE (VOC) are on par to the ones
reported in Uijlings and Ferrari (2015). The gap between SE (VOC) and SE (BSDS)
reflects the difference between generic boundaries and boundaries specific to the 20

VOC object categories (see also Figure 3.1).

SB. To improve object-specific boundary detection, the situational boundary
method SB (Uijlings and Ferrari, 2015), trains 20 class-specific SE models. These
models are combined at test time using a convnet image classifier. The original SB
results and our re-implementation SB (VOC) are shown in Figure 3.6. Our version
obtains better results (4 percent points gain in AP) due to training the SE models
with more samples per image, and using a stronger image classifier (Simonyan and
Zisserman, 2015).

Detector + SE. Rather than training and testing with 20 SE models plus an image
classifier, we propose to leverage the same training data using a single SE model
together with a detector (Girshick, 2015). By computing a per-pixel maximum among
all detection bounding boxes and their score, we construct an “objectness map” that
we multiply with the boundary probability map from SE. False positive boundaries
are thus down-scored, and boundaries in high confidence regions for the detector
get boosted. The detector is trained with the same per object boundary annotations
used to train the SE model, no additional data is required.

Our Det.+SE (VOC) obtains the same detection quality as SB (VOC) while using
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[48] Det. + SE(VOC)
[48] SB(VOC)
[44] SB(VOC) orig.
[43] SE(VOC) orig.
[43] SE(VOC)
[40] SE(BSDS)

Figure 3.6: VOC12 results, fully supervised SE models. (·) denotes the data used for
training. Continuous/dashed line indicates models using/not using a detector at
test time. Legend indicates AP numbers.

only a single SE model. These are the best reported results on this task (top of Table
3.2), when using the fully supervised training data.

At the cost of more expensive training and test, one could in principle also
combine object detection with the situational boundaries method (Uijlings and
Ferrari, 2015), this is out of scope of this thesis and considered as future work.

3.5.2 Training models using weak annotations

Given the reference performance of Det.+SE (VOC), can we reach similar boundary
detection quality without using the boundary annotations from VOC?

SE (·). First we consider using a SE model alone at test time. Using only the BSDS
annotations leads to rather low performance (see SE (BSDS) in Figure 3.7). PMI
shows a similar gap. The same BSDS data can be used to generate MCG object
proposals over the VOC training data, and a detector trained on VOC bounding
boxes can generate bounding boxes over the same images. We combined them
together to generate boundary annotations via MCG∩ BBs, as described in Section
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Figure 3.7: VOC12 results, weakly supervised SE models. (·) denotes the data used
for training. Continuous/dashed line indicates models using/not using a detector at
test time. Legend indicates AP numbers.

3.4. The weak supervision from the bounding boxes can be used to improve the
performance of SE (BSDS). By extending the training set to additional pascal images
(SE (MCG+ ∩ BBs) in Table 3.2) we can reach the same performance as when using the
ground truth VOC data.
We also consider variants that do not leverage the BSDS boundary annotations, such
as SeSe and GrabCut. SeSe provides essentially the same result as MCG.

Det.+SE (·). Applying object detection at test time squashes the differences among
all weakly supervised methods. Det.+PMI shows strong results, but (since not
trained on boundaries) fails to reach high precision. The high quality of Det.+BSDS
indicates that BSDS annotations, despite being in principle “generic boundaries” in
practice reflect well object boundaries, at least in the proximity of an object. This is
further confirmed in Section 3.6.
Compared to Det.+BSDS our weakly supervised annotation variants further close
the gap to Det.+SE (VOC) (especially in high precision area), even when not using
any BSDS data.
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Family Method Data
Without BBs With BBs
F AP ∆AP F AP ∆AP

GT SE VOC 43 35 - 48 41 -

Other
GT

SE COCO 44 37 2 49 42 1

SE
BSDS

40 29 -6 47 39 -2
MCG 41 28 -7 48 39 -2

Weakly
super-
vised

SE

F&H∩ BBs 40 29 -6 46 36 -5
GrabCut∩ BBs 41 32 -3 47 39 -2

SeSe∩ BBs 42 35 0 46 39 -2
SeSe+ ∩ BBs 43 36 +1 46 39 -2
MCG∩ BBs 43 34 -1 47 39 -2

MCG+ ∩ BBs 43 35 0 48 40 -1
Unsuper-

vised
F&H

-
34 15 -20 41 25 -16

PMI 41 29 -6 47 38 -3

Table 3.2: VOC results for SE models, see Figures 3.6 and 3.7. Underline indicates
ground truth baselines, and bold are our best weakly supervised results.

Conclusion. Based only on bonding box annotations, our weakly supervised
boundary annotations enable the Det.+SE model to match the fully supervised case,
improving over the best reported results on the task. We also observe that BSDS data
allows to train models that describe well object boundaries.

3.6 convnet voc boundary detection results

This section analyses the performance of the HED (Xie and Tu, 2015) trained with
the weakly supervised variants proposed in Section 3.4. We use our HED re-
implementation of HED which is on par performance with the original (see Figure
3.3). We use the same evaluation setup as in the previous section. Figure 3.8 and
Table 3.3 show the results.

HED (·). The HED(VOC) model outperforms the SE(VOC) model by a large mar-
gin. We observe in the test images that HED manages to suppress well the internal
object boundaries, while SE fails to do so due to its more local nature.

Even though trained on the generic boundaries HED(BSDS) achieves high per-
formance on the object boundary detection task. HED(BSDS) is trained on the
“consensus” annotations and they are closer to object-like boundaries as the fraction
of annotators agreeing on the presence of external object boundaries is much higher
than for non-object or internal object boundaries.

For training HED, in contrast to SE model, we do not need closed contours and
can use the consensus between different weak annotation variants. This results in
better performance. Using the consensus between boundaries of MCG proposals
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[62] HED(VOC)
[59] Det. + HED(VOC)
[53] HED(cons. all methods BBs)
[53] Det. + HED(cons. all methods BBs)
[53] Det. + HED(BSDS)
[52] Det. + HED(cons. S&G BBs)
[51] HED(cons. S&G BBs)
[48] Det. + SE(VOC)
[48] HED(BSDS)
[47] Det. + SE(BSDS)

Figure 3.8: VOC12 HED results. (·) denotes the data used for training. Continu-
ous/dashed line indicates models using/not using a detector at test time. Legend
indicates AP numbers.

Family Method Data
Without BBs With BBs
F AP ∆AP F AP ∆AP

GT
SE

VOC
43 35 - 48 41 -

HED 62 61 26 59 58 17

Other
GT

HED
BSDS 48 41 6 53 48 7

COCO 59 60 25 56 55 14

Weakly
super-
vised

SE MCG∩ BBs 43 34 -1 47 39 -2

HED

SE(SeSe∩ BBs) 45 37 3 49 40 -1
MCG∩ BBs 50 44 9 48 42 1

cons. S&G∩ BBs 51 46 +11 52 47 +8
cons. MCG∩ BBs 53 50 15 52 49 8

cons. all methods∩BBs 53 50 +15 53 50 +9

Table 3.3: VOC results for HED models, see Figure 3.8. Underline indicates ground
truth baselines, and bold are our best weakly supervised results.
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Method Family Data
Without BBs With BBs
F AP ∆AP F AP ∆AP

SE

GT COCO 40 32 - 45 37 -
Other GT BSDS 34 23 -9 43 33 -4
Weakly

supervised
SeSe+ ∩ BBs 40 31 -1 44 35 -2
MCG+ ∩ BBs 39 30 -2 44 35 -2

HED

GT COCO 60 59 27 56 55 18

Other GT BSDS 44 34 2 49 42 5

Weakly
supervised

cons. S&G∩BBs 47 39 7 48 42 5

cons. all methods∩BBs 49 43 +11 50 44 +7

Table 3.4: COCO results. Underline indicates ground truth baselines.

HED(cons. MCG∩ BBs) improves AP by 6% compared to using the union of object
proposals HED(MCG∩ BBs) (see Table 3.3).

The HED models trained with weak annotations outperform the fully supervised
SE(VOC) and do not reach the performance of HED(VOC). As has been shown in
Section 3.3 the HED detector is less robust to noise than SE.

Det.+HED (·). Combining an object detector with HED(VOC) (see Det.+HED (VOC)
in Figure 3.8) is not beneficial to the performance as the HED detector already has
notion of objects and their location due to pixel-to-pixel end-to-end learning of the
network.

For HED models trained with the weakly supervised variants, employing an
object detector at test time brings only a slight improvement of the performance in
the high precision area. The reason for this is that we already use information from
the bounding box detector to generate the annotation and the convnet method is
able to learn it during training.

Det.+HED (MCG∩ BBs) outperforms Det.+HED (BSDS) (see Table 3.3). Note
that the HED trained with the proposed annotations, generated without using
boundary ground truth, performs on par with the HED model trained on generic
boundaries (Det.+HED (cons. S&G∩BBs) and Det.+HED (BSDS)in Figure 3.8).

The qualitative results are presented in Figure 3.9 and support the quantitative
evaluation.

Conclusion. Similar to other computer vision tasks deep convnet methods show
superior performance. Due to the pixel-to-pixel training and global view of the
image the convnet models have a notion of object and its location which allows to
omit the use of the detector at test time. With our weakly supervised boundary
annotations we can gain fair performance without using any instance-wise object
boundary or generic boundary annotations and leave out object detection at test
time by feeding object bounding box information during training.
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Image Ground truth SE(BSDS) SB(VOC) Det.+SE (VOC) Det.+SE (weak) Det.+HED (weak)

Figure 3.9: Qualitative results on VOC12. (·) denotes the data used for training.
Red/green indicate false/true positive pixels, grey is missing recall. All methods
are shown at 50% recall. Det.+SE (weak) refers to the model Det.+SE (SeSe+ ∩ BBs)
Det.+HED (weak) refers to Det.+HED (cons. S&G∩ BBs). Object-specific boundar-
ies differ from generic boundaries (such as the ones detected by SE(BSDS)). By using
an object detector we can suppress non-object boundaries and focus boundary detec-
tion on the classes of interest. The proposed weakly supervised techniques allow
to achieve high quality boundary estimates that are similar to the ones obtained by
fully supervised methods.
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[60] HED(COCO)
[56] Det. + HED(COCO)
[50] Det. + HED(cons. all methods \ BBs)
[49] Det. + HED(BSDS)
[48] Det. + HED(cons. S&G \ BBs)
[45] Det. + SE(COCO)
[44] Det. + SE(SeSe

+
 \ BBs)

[44] Det. + SE(MCG
+
 \ BBs)

[42] Det. + SE(BSDS)
[40] SE(COCO)

Figure 3.10: COCO results. (·) denotes the data used for training. Continu-
ous/dashed line indicates models using/not using a detector at test time. Legend
indicates AP numbers. For weakly supervised cases the results are shown with the
models trained on VOC, without re-training on COCO.

3.7 coco boundary detection results

Additionally we show the generalization of the proposed weakly supervised variants
for object boundary detection on the COCO dataset. We use the same evaluation
protocol as for VOC. For weakly supervised cases the results are shown with the
models trained on VOC, without re-training on COCO.

The results are summarized in Table 3.4 and in Figure 3.10. On the COCO bench-
mark for both SE and HED the models trained on the proposed weak annotations
perform as well as the fully supervised SE models. Similar to the VOC benchmark
the HED model trained on ground truth shows superior performance.

3.8 sbd boundary detection results

In this section we analyse the performance of the proposed weakly supervised
boundary variants trained with SE and HED on the SBD dataset (Hariharan et al.,
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Figure 3.11: SBD results per class. (·) denotes the data used for training. Det.+
HED (weak) refers to the model Det.+HED (cons. S&G∩ BBs).

2011). In contrast to the VOC benchmark we move from object boundaries to class
specific object boundaries. We are interested in external boundaries of all annotated
objects of the specific semantic class and all internal boundaries are ignored during
evaluation following the benchmark (Hariharan et al., 2011). The results are presented
in Figure 3.11 and in Table 3.5.

Fully supervised. Applying SE model plus object detection at test time outper-
forms the class specific situational boundary detector (for both Uijlings and Ferrari
(2015) and our re-implementation) as well as the Inverse Detectors (Hariharan et al.,
2011). The model trained with SE on ground truth performs as well as the HED de-
tector. Both of the models are good at detecting external object boundaries; however
SE, being a more local, triggers more on internal boundaries than HED. In the VOC
evaluation detecting internal object boundaries is penalized, while in SBD these are
ignored. This explains the small gap in the performance between SE and HED on
this benchmark.

Weakly supervised. The models trained with the proposed weakly-supervised
boundary variants perform on par with the fully supervised detectors, while only
using bounding boxes or generic boundary annotations. We show in Table 3.5 the
top result with the Det. + HED(cons. S&G∩BBs) model, achieving the state-of-the-art
performance on the SBD benchmark. As Figure 3.11 shows our weakly supervised
approach considerably outperforms Uijlings and Ferrari (2015) and Hariharan et al.
(2011) on all 20 classes.
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Family Method mF mAP

Other GT Hariharan et al. (Hariharan et al., 2011) 28 21

SE

GT
SB(SBD) orig. (Uijlings and Ferrari, 2015) 39 32

SB(SBD) 43 37

Det.+SE (SBD) 51 45

Other
GT

Det.+SE (BSDS) 51 44

Det.+MCG (BSDS) 50 42

Weakly
super-
vised

SB(SeSe∩ BBs) 40 34

SB (MCG∩ BBs) 42 35

Det.+SE (SeSe∩ BBs) 48 42

Det.+SE (MCG∩ BBs) 51 45

HED

GT
HED (SBD) 44 41

Det.+HED (SBD) 49 45

Other
GT

HED(BSDS) 38 32

Det.+HED (BSDS) 49 44

Weakly
super-
vised

HED(cons. MCG∩ BBs) 41 37

HED (cons. S&G∩ BBs) 44 39

Det.+HED (cons. MCG∩ BBs) 48 44

Det.+HED (cons. S&G∩ BBs) 52 47

Table 3.5: SBD results. Results are mean F(ODS)/AP across all 20 categories. (·)
denotes the data used for training. See also Figure 3.11. Underline indicates ground
truth baselines, and bold are our best weakly supervised results.

3.9 conclusion

The presented experiments show that high quality object boundaries can be achieved
using only detection bounding box annotations. With these alone, our proposed
weak-supervision techniques already improve over previously reported fully super-
vised results for object-specific boundaries. When using generic boundary or ground
truth annotations, we achieve the top performance on the object boundary detection
task, outperforming previously reported results by a large margin.

In Chapter 4 we extend the proposed approach to other closely related tasks,
such as semantic labelling and instance segmentation.





4
S I M P L E D O E S I T: W E A K LY S U P E RV I S E D I N S TA N C E
A N D S E M A N T I C S E G M E N TAT I O N

In Chapter 3 we addressed the problem of weakly supervised object boundary
detection. Semantic labelling and instance segmentation are another two tasks
that require particularly costly pixel-level annotations and are in need of relaxing

this constraint.
Similarly to Chapter 3, we employ weak supervision in the form of bounding box

detection annotations and propose an approach that does not require modification
of the segmentation training procedure. We show that when carefully designing the
input labels from given bounding boxes, even a single round of training is enough
to improve over previously reported weakly supervised results. Overall, our weak
supervision approach reaches ∼95% of the quality of the fully supervised model,
both for semantic labelling and instance segmentation.

4.1 introduction

Convolutional networks (convnets) have become the de facto technique for pattern
recognition problems in computer vision. One of their main strengths is the ability
to profit from extensive amounts of training data to reach top quality. However, one
of their main weaknesses is that they need a large number of training samples for
high quality results. This is usually mitigated by using pre-trained models (e.g. with
∼106 training samples for ImageNet classification (Russakovsky et al., 2015)), but
still thousands of samples are needed to shift from the pre-training domain to the
application domain. Applications such as semantic labelling (associating each image
pixel to a given class) or instance segmentation (grouping all pixels belonging to the
same object instance) are expensive to annotate, and thus significant cost is involved
in creating large enough training sets.

Compared to object bounding box annotations, pixel-wise mask annotations
are far more expensive, requiring ∼15× more time (Lin et al., 2014). Cheaper and
easier to define, box annotations are more pervasive than pixel-wise annotations.
In principle, a large number of box annotations (and images representing the back-
ground class) should convey enough information to understand which part of the
box content is foreground and which is background. In this chapter we explore
how much one can close the gap between training a convnet using full supervision
for semantic labelling (or instance segmentation) versus using only bounding box
annotations.

Our experiments focus on the 20 Pascal classes (Everingham et al., 2015) and
show that using only bounding box annotations over the same training set we

55
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Training sample,
with box annotations

Test image, fully
supervised result

Test image, weakly
supervised result

Figure 4.1: We propose a technique to train semantic labelling from bounding boxes,
and reach 95% of the quality obtained when training from pixel-wise annotations.

can reach ∼ 95% of the accuracy achievable with full supervision. We show top
results for (bounding box) weakly supervised semantic labelling and, to the best
of our knowledge, for the first time report results for weakly supervised instance
segmentation.

We view the problem of weak supervision as an issue of input label noise. We
explore recursive training as a de-noising strategy, where convnet predictions of
the previous training round are used as supervision for the next round. We also
show that, when properly used, “classic computer vision” techniques for box-guided
instance segmentation are a source of surprisingly effective supervision for convnet
training.

In summary, our main contributions are:

• We explore recursive training of convnets for weakly supervised semantic la-
belling, discuss how to reach good quality results, and what are the limitations
of the approach (Section 4.2.1).

• We show that state-of-the-art quality can be reached when properly employing
GrabCut-like algorithms to generate training labels from given bounding boxes,
instead of modifying the segmentation convnet training procedure (Section
4.2.2).

• We report the best known results when training using bounding boxes only,
both using Pascal VOC12 and VOC12+COCO training data, reaching compar-
able quality with the fully supervised regime (Section 4.3.2).

• We are the first to show that similar results can be achieved for the weakly
supervised instance segmentation task (Section 4.5).

4.2 from boxes to semantic labels

The goal of this work is to provide high quality semantic labelling starting from
object bounding box annotations. We design our approach aiming to exploit the
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available information at its best. There are two sources of information: the annotated
boxes and priors about the objects. We integrate these in the following cues:

C1 Background. Since the bounding boxes are expected to be exhaustive, any
pixel not covered by a box is labelled as background.

C2 Object extent. The box annotations bound the extent of each instance. Assum-
ing a prior on the objects shapes (e.g. oval-shaped objects are more likely than thin
bar or full rectangular objects), the box also gives information on the expected object
area. We employ this size information during training.

C3 Objectness. In addition to extent and area, there are other object priors at hand.
Two priors typically used are spatial continuity and having a contrasting boundary
with the background. In general we can harness priors about object shape by using
segment proposal techniques (Pont-Tuset and Gool, 2015), which are designed to
enumerate and rank plausible object shapes in an area of the image.

4.2.1 Box baselines

We first describe a naive baseline that serves as starting point for our exploration.
Given an annotated bounding box and its class label, we label all pixels inside the
box with such given class. If two boxes overlap, we assume the smaller one is in
front. Any pixel not covered by boxes is labelled as background.

Figure 4.2 left side and Figure 4.3c show such example annotations. We use these
labels to train a segmentation network with the standard training procedure. We
employ the DeepLabv1 approach from Chen et al. (2015) (details in Section 4.3.1).

Recursive training. We observe that when applying the resulting model over the
training set, the network outputs capture the object shape significantly better than
just boxes (see Figure 4.2). This inspires us to follow a recursive training procedure,
where these new labels are fed in as ground truth for a second training round. We
name this recursive training approach Naive.

The recursive training is enhanced by de-noising the convnet outputs using extra
information from the annotated boxes and object priors. Between each round we
improve the labels with three post-processing stages:

1. Any pixel outside the box annotations is reset to background label (cue C1).

2. If the area of a segment is too small compared to its corresponding bounding
box (e.g. IoU< 50%), the box area is reset to its initial label (fed in the first
round). This enforces a minimal area (cue C2).

3. As it is common practice among semantic labelling methods, we filter the
output of the network to better respect the image boundaries. (We use Den-
seCRF (Krähenbühl and Koltun, 2011) with the DeepLabv1 parameters (Chen
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Example Output after 1 After After Ground
input rectangles training round 5 rounds 10 rounds truth

Figure 4.2: Example results of using only rectangle segments and recursive training
(using convnet predictions as supervision for the next round), see Section 4.2.1.

et al., 2015)). In our weakly supervised scenario, boundary-aware filtering is
particularly useful to improve objects delineation (cue C3).

The recursion and these three post-processing stages are crucial to reach good
performance. We name this recursive training approach Box, and show an example
result in Figure 4.2.

Ignore regions. We also consider a second variant Boxi that, instead of using filled
rectangles as initial labels, we fill in the 20% inner region, and leave the remaining
inner area of the bounding box as ignore regions. See Figure 4.3d. Following cues C2

and C3 (shape and spatial continuity priors), the 20% inner box region should have
higher chances of overlapping with the corresponding object, reducing the noise in
the generated input labels. The intuition is that the convnet training might benefit
from trading-off lower recall (more ignore pixels) for higher precision (more pixels
are correctly labelled). Starting from this initial input, we use the same recursive
training procedure as for Box. Despite the simplicity of the approach, as we will see
in the experimental section 4.3, Box / Boxi are already competitive with the current
state of the art.

However, using rectangular shapes as training labels is clearly suboptimal. There-
fore, in the next section, we propose an approach that obtains better results while
avoiding multiple recursive training rounds.

4.2.2 Box-driven segments

The box baselines are purposely simple. A next step in complexity consists in
utilising the box annotations to generate an initial guess of the object segments.
We think of this as “old school meets new school”: we use the noisy outputs of
classic computer vision methods, box-driven figure-ground segmentation (Rother
et al., 2004) and object proposal (Pont-Tuset and Gool, 2015) techniques, to feed the
training of a convnet. Although the output object segments are noisy, they are more
precise than simple rectangles, and thus should provide improved results. A single
training round will be enough to reach good quality.
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(a) Input image (b) Ground truth (c) Box (d) Boxi

(e) GrabCut (f) GrabCut+ (g) GrabCut+i (h) MCG (i) M ∩ G+

Figure 4.3: Example of the different segmentations obtained starting from a bounding
box annotation. Grey/pink/magenta indicate different object classes, white is
background, and ignore regions are beige. M∩ G+ denotes MCG∩ GrabCut+.

4.2.2.1 GrabCut baselines

GrabCut (Rother et al., 2004) is an established technique to estimate an object segment
from its bounding box. We propose to use a modified version of GrabCut, which
we call GrabCut+, where HED boundaries (Xie and Tu, 2015) are used as pairwise
term instead of the typical RGB colour difference. (The HED boundary detector is
trained on the generic boundaries of BSDS500 (Arbeláez et al., 2011)). We considered
other GrabCut variants, such as Cheng et al. (2015a); Tang et al. (2015). However,
the proposed GrabCut+ gives higher quality segments (75.2 mIoU compared to 73.5
mIoU (Tang et al., 2015) and 52.5 mIoU (Cheng et al., 2015a) on the Pascal VOC12

validation set).

Similar to Boxi, we also consider a GrabCut+i variant, which trades off recall for
higher precision. For each annotated box we generate multiple (∼150) perturbed
GrabCut+ outputs. If 70% of the segments mark the pixel as foreground, the pixel
is set to the box object class. If less than 20% of the segments mark the pixels as
foreground, the pixel is set as background, otherwise it is marked as ignore. The
perturbed outputs are generated by jittering the box coordinates (±5%) as well as
the size of the outer background region considered by GrabCut (from 10% to 60%).
An example result of GrabCut+i can be seen in Figure 4.3g.
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Input image Ground truth Box Boxi

GrabCut GrabCut+ GrabCut+i MCG M ∩ G+

Input image Ground truth Box Boxi

GrabCut GrabCut+ GrabCut+i MCG M ∩ G+

Input image Ground truth Box Boxi

GrabCut GrabCut+ GrabCut+i MCG M ∩ G+

Figure 4.4: More examples of segmentation annotations obtained starting from a
bounding box. White is background and ignore regions are beige. M ∩ G+ denotes
MCG ∩ Grabcut+.
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4.2.2.2 Adding objectness

With our final approach we attempt to better incorporate the object shape priors by
using segment proposals (Pont-Tuset and Gool, 2015). Segment proposals techniques
are designed to generate a soup of likely object segmentations, incorporating as
many “objectness” priors as useful (cue C3).

We use the state-of-the-art proposals from MCG (Pont-Tuset et al., 2016). As the
final stage the MCG algorithm includes a ranking based on a decision forest trained
over the Pascal VOC 2012 dataset. We do not use this last ranking stage, but instead
use all the (unranked) generated segments. Given a box annotation, we pick the
highest overlapping proposal as a corresponding segment.

Building upon the insights from the baselines in Section 4.2.1 and 4.2.2, we use
the MCG segment proposals to supplement GrabCut+. Inside the annotated boxes,
we mark as foreground pixels where both MCG and GrabCut+ agree; the remaining
ones are marked as ignore. We denote this approach as MCG ∩ GrabCut+ or M ∩ G+
for short. Because MCG and GrabCut+ provide complementary information, we can
think of M∩ G+ as an improved version of GrabCut+i providing a different trade-off
between precision and recall on the generated labels (see Figure 4.3i). More examples
of generated segmentation annotations can be seen in Figure 4.4.

The BoxSup method (Dai et al., 2015a) also uses MCG object proposals during
training; however, there are important differences. They modify the training pro-
cedure so as to denoise intermediate outputs by randomly selecting high overlap
proposals. In comparison, our approach keeps the training procedure unmodified
and simply generates input labels. Our approach also uses ignore regions, while
BoxSup does not explore this dimension. Finally, BoxSup uses a longer training than
our approach.

Section 4.3 shows results for the semantic labelling task, compares different
methods and different supervision regimes. In Section 4.4 we show that the proposed
approach is also suitable for the instance segmentation task.

4.3 semantic labelling results

Our approach is equally suitable (and effective) for weakly supervised instance
segmentation as well as for semantic labelling. However, only the latter has directly
comparable related work. We thus focus our experimental comparison efforts on the
semantic labelling task. Results for instance segmentation are presented in Section
4.5.

Section 4.3.1 discusses the experimental setup, evaluation, and implementation
details for semantic labelling. Section 4.3.2 presents our main results, contrasting
the methods from Section 4.2 with the current state of the art. Section 4.3.3 further
expands these results with a more detailed analysis, and presents results when using
more supervision (semi-supervised case).
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4.3.1 Experimental setup

Datasets. We evaluate the proposed methods on the Pascal VOC12 segmentation
benchmark (Everingham et al., 2015). The dataset consists of 20 foreground object
classes and one background class. The segmentation part of the VOC12 dataset
contains 1 464 training, 1 449 validation, and 1 456 test images. Following previous
work (Chen et al., 2015; Dai et al., 2015a), we extend the training set with the
annotations provided by Hariharan et al. (2011), resulting in an augmented set of
10 582 training images.

In some of our experiments, we use additional training images from the COCO
(Lin et al., 2014) dataset. We only consider images that contain any of the 20 Pascal
classes and (following Zheng et al. (2015)) only objects with a bounding box area
larger than 200 pixels. After this filtering, 99 310 images remain (from training and
validation sets), which are added to our training set. When using COCO data, we
first pre-train on COCO and then fine-tune over the Pascal VOC12 training set. All
of the COCO and Pascal training images come with semantic labelling annotations
(for fully supervised case) and bounding box annotations (for weakly supervised
case).

Evaluation. We use the “comp6” evaluation protocol. The performance is meas-
ured in terms of pixel intersection-over-union averaged across 21 classes (mIoU).
Most of our results are shown on the validation set, which we use to guide our
design choices. Final results are reported on the test set (via the evaluation server)
and compared with other state-of-the-art methods.

Implementation details. For all our experiments we use the DeepLab-LargeFOV
network, using the same train and test parameters as Chen et al. (2015). The
model is initialized from a VGG16 network pre-trained on ImageNet (Simonyan and
Zisserman, 2015). We use a mini-batch of 30 images for SGD and initial learning
rate of 0.001, which is divided by 10 after a 2k/20k iterations (for Pascal/COCO).
At test time, we apply DenseCRF (Krähenbühl and Koltun, 2011). Our network and
post-processing are comparable to the ones used in Dai et al. (2015a); Papandreou
et al. (2015).

Note that multiple strategies have been considered to boost test time results, such
as multi-resolution or model ensembles (Chen et al., 2015; Kokkinos, 2016). Here we
keep the approach simple and fixed. In all our experiments we use a fixed training
and test time procedure. Across experiments we only change the input training data
that the networks gets to see.

4.3.2 Main results

Box results. Figure 4.5 presents the results for the recursive training of the box
baselines from Section 4.2.1. We see that the Naive scheme, a recursive training
from rectangles disregarding post-processing stages, leads to poor quality. However,
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Figure 4.5: Segmentation quality versus training round for different approaches,
see also Tables 4.1 and 4.2. Pascal VOC12 validation set results. “Previous best
(rectangles/segments)” corresponds to WSSLR/BoxSupMCG in Table 4.2.

Method val. mIoU

-
Fast-RCNN 44.3
GT Boxes 62.2

Weakly
supervised

Box 61.2
Boxi 62.7
MCG 62.6

GrabCut+ 63.4
GrabCut+i

64.3
M∩ G+ 65.7

Fully supervised DeepLabours (Chen et al., 2015) 69.1

Table 4.1: Weakly supervised semantic labelling results for our baselines. Trained
using Pascal VOC12 bounding boxes alone, validation set results. DeepLabours
indicates our fully supervised result.
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Super-
vision

#GT
images

#Weak
images Method val. set

mIoU
test set

mIoU FS%
VOC12 (V)

Weak - V10k

Bearman et al. (Bearman et al., 2015) 45.1 - -
BoxSupR (Dai et al., 2015a) 52.3 - -

WSSLR(Papandreou et al., 2015) 52.5 54.2 76.9
WSSLS(Papandreou et al., 2015) 60.6 62.2 88.2

BoxSupMCG(Dai et al., 2015a) 62.0 64.6 91.6
Boxi 62.7 63.5 90.0
M∩ G+ 65.7 67.5 95.7

Semi V1.4k V9k

WSSLR(Papandreou et al., 2015) 62.1 - -
BoxSupMCG(Dai et al., 2015a) 63.5 66.2 93.9

WSSLS(Papandreou et al., 2015) 65.1 66.6 94.5
M∩ G+ 65.8 66.9 94.9

Full V10k -
BoxSup (Dai et al., 2015a) 63.8 - -

WSSL (Papandreou et al., 2015) 67.6 70.3 99.7
DeepLabours (Chen et al., 2015) 69.1 70.5 100

VOC12 + COCO (V+C)

Weak - V+C
110k

Boxi 65.3 66.7 91.1
M∩ G+ 68.9 69.9 95.5

Semi V10k C123k BoxSupMCG(Dai et al., 2015a) 68.2 71.0 97.0
C100k M∩ G+ 71.6 72.8 99.5

Full V+C133k -
BoxSup (Dai et al., 2015a) 68.1 - -

WSSL (Papandreou et al., 2015) 71.7 73 99.7
V+C110k DeepLabours (Chen et al., 2015) 72.3 73.2 100

Table 4.2: Semantic labelling results for validation and test set; under different
training regimes with VOC12 (V) and COCO data (C). Underline indicates full su-
pervision baselines, and bold are our best weakly- and semi-supervised results. FS%:
performance relative to the best fully supervised model (DeepLabours). Discussion
in Sections 4.3.2 and 4.3.3.

Supervision Method mIoU FS%
VOC12

Weak M∩ G+ 69.4 93.2
Full DeepLabv2-ResNet101 (Chen et al., 2016b) 74.5 100

VOC12 + COCO
Weak M∩ G+ 74.2 95.5
Full DeepLabv2-ResNet101 (Chen et al., 2016b) 77.7 100

Table 4.3: DeepLabv2-ResNet101 network semantic labelling results on VOC12

validation set, using VOC12 or VOC12+COCO training data. FS%: performance
relative to the full supervision. Discussion in Section 4.3.3.
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Image Ground
truth Box Boxi M∩ G+

Semi
supervised
M∩ G+

Fully
supervised

Figure 4.6: Qualitative results on VOC12. Visually, the results from our weakly
supervised method M ∩ G+ are hardly distinguishable from the fully supervised
ones.
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by using the suggested three post-processing stages, the Box baseline obtains a
significant gain, getting tantalisingly close to the best reported results on the task
(Dai et al., 2015a). Adding ignore regions inside the rectangles (Box→ Boxi) provides
a clear gain and leads by itself to state-of-the-art results.

Figure 4.5 also shows the result of using longer training for fully supervised case.
When using ground truth semantic segmentation annotations, one training round is
enough to achieve good performance; longer training brings marginal improvement.
As discussed in Section 4.2.1, reaching good quality for Box/Boxi requires multiple
training rounds instead, and performance becomes stable from round 5 onwards.
Instead, GrabCut+/M∩ G+ do not benefit from additional training rounds.

Box-driven segment results. Table 4.1 evaluates results on the Pascal VOC12 val-
idation set. It indicates the Box/Boxi results after 10 rounds, and MCG/GrabCut+/
GrabCut+i/M ∩ G+ results after one round. “Fast-RCNN” is the result using de-
tections (Girshick, 2015) to generate semantic labels (lower-bound), “GT Boxes”
considers the box annotations as labels, and DeepLabours indicates our fully super-
vised segmentation network result obtained with a training length equivalent to
three training rounds (upper-bound for our results). We see in the results that using
ignore regions systematically helps (trading-off recall for precision), and that M∩ G+
provides better results than MCG and GrabCut+ alone.

Table 4.2 indicates the box-driven segment results after 1 training round and
shows comparison with other state-of-the-art methods, trained from boxes only
using either Pascal VOC12, or VOC12+COCO data. BoxSupR and WSSLR both
feed the network with rectangle segments (comparable to Boxi), while WSSLS and
BoxSupMCG exploit arbitrary shaped segments (comparable to M ∩ G+). Although
our network and post-processing is comparable to the ones in Dai et al. (2015a);
Papandreou et al. (2015), there are differences in the exact training procedure and
parameters.

Overall, our results indicate that - without modifying the training procedure -
M ∩ G+ is able to improve over previously reported results and reach 95% of the
fully-supervised training quality. By training with COCO data (Lin et al., 2014) before
fine-tuning for Pascal VOC12, we see that with enough additional bounding boxes
we can match the full supervision from Pascal VOC 12 (68.9 versus 69.1). This shows
that the labelling effort could be significantly reduced by replacing segmentation
masks with bounding box annotations.

4.3.3 Additional results

Semi-supervised case. Table 4.2 compares results in the semi-supervised modes
considered by Dai et al. (2015a); Papandreou et al. (2015), where some of the images
have full supervision, and some have only bounding box supervision. Training with
10% of Pascal VOC12 semantic labelling annotations does not bring much gain to
the performance (65.7 versus 65.8), this hints at the high quality of the generated
M∩ G+ input data.
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By using ground-truth annotations on Pascal plus bounding box annotations on
COCO, we observe 2.5 points gain (69.1→71.6 , see Table 4.2). This suggests that
the overall performance could be further improved by using extra training data with
bounding box annotations.

Boundaries supervision. Our results from MCG, GrabCut+, and M ∩ G+ all indir-
ectly include information from the BSDS500 dataset (Arbeláez et al., 2011) via the
HED boundary detector (Xie and Tu, 2015). These results are fully comparable to
BoxSup-MCG (Dai et al., 2015a), to which we see a clear improvement. Nonetheless
one would like to know how much using dense boundary annotations from BSDS500

contributes to the results. We use the weakly supervised boundary detection tech-
nique from Khoreva et al. (2016b) to learn boundaries directly from the Pascal VOC12

box annotations. Training M∩ G+ using weakly supervised HED boundaries results
in 1 point loss compared to using the BSDS500 (64.8 versus 65.7 mIoU on Pascal
VOC12 validation set). We see then that although the additional supervision does
bring some help, it has a minor effect and our results are still rank at the top even
when we use only Pascal VOC12 + ImageNet pre-training.

Different convnet results. For comparison purposes with Dai et al. (2015a); Papan-
dreou et al. (2015) we used DeepLabv1 with a VGG-16 network in our experiments.
To show that our approach also generalizes across different convnets, we also trained
DeepLabv2 with a ResNet101 network (Chen et al., 2016b). Table 4.3 presents the
results.

Similar to the case with VGG-16, our weakly supervised approach M∩ G+ reaches
93%/95% of the fully supervised case when training with VOC12/VOC12+COCO,
and the weakly supervised results with COCO data reach similar quality to full
supervision with VOC12 only.

4.4 from boxes to instance segmentation

Complementing the experiments of the previous sections, we also explore a second
task: weakly supervised instance segmentation. To the best of our knowledge, these
are the first reported experiments on this task.

As object detection moves forward, there is a need to provide richer output than a
simple bounding box around objects. Recently (Hariharan et al., 2015; Pinheiro et al.,
2015, 2016) explored training convnets to output a foreground versus background
segmentation of an instance inside a given bounding box. Such networks are trained
using pixel-wise annotations that distinguish between instances. These annotations
are more detailed and expensive than semantic labelling, and thus there is interest
in weakly supervised training.

The segments used for training, as discussed in Section 4.2.2, are generated
starting from individual object bounding boxes. Each segment represents a different
object instance and thus can be used directly to train an instance segmentation
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Figure 4.7: Example result from our weakly supervised DeepMask (VOC12+COCO)
model.

convnet. For each annotated bounding box, we generate a foreground versus
background segmentation using the GrabCut+ method (Section 4.2.2), and train a
convnet to regress from the image and bounding box information to the instance
segment.

4.5 instance segmentation results

Experimental setup. We choose a purposely simple instance segmentation pipeline,
based on the “hyper-columns system 2” architecture (Hariharan et al., 2015). We
use Fast-RCNN (Girshick, 2015) detections (post-NMS) with their class score, and
for each detection estimate an associated foreground segment. We estimate the
foreground using either some baseline method (e.g. GrabCut) or using convnets
trained for the task (Pinheiro et al., 2015; Chen et al., 2016b).

For our experiments we use a re-implementation of the DeepMask (Pinheiro et al.,
2015) architecture, and additionally we re-purpose a DeepLabv2 VGG-16 network
(Chen et al., 2016b) for the instance segmentation task, which we name DeepLabBOX.
Inspired by Xu et al. (2016); Carreira et al. (2016), we modify DeepLab to accept four
input channels: the input image RGB channels, plus a binary map with a bounding
box of the object instance to segment. We train the network DeepLabBOX to output
the segmentation mask of the object corresponding to the input bounding box. The
additional input channel guides the network so as to segment only the instance of
interest instead of all objects in the scene. The input box rectangle can also be seen
as an initial guess of the desired output. We train using ground truth bounding
boxes, and at test time Fast-RCNN detection boxes are used.

We train DeepMask and DeepLabBOX using GrabCut+ results either over Pascal
VOC12 or VOC12+COCO data (1 training round, no recursion like in Section 4.2.1),
and test on the VOC12 validation set, the same set of images used in Section 4.3. The
augmented annotation from Hariharan et al. (2011) provides per-instance segments
for VOC12. We do not use CRF post-processing for neither of the networks.

Following instance segmentation literature (Hariharan et al., 2014, 2015) we report
in Table 4.4 mAPr at IoU threshold 0.5 and 0.75. mAPr is similar to the traditional
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DeepMask

DeepLabBOX

Figure 4.8: Example results from the DeepMask and DeepLabBOX models trained
with Pascal VOC12 and COCO using box supervision. White boxes illustrate Fast-
RCNN detection proposals used to output the segments which have the best overlap
with the ground truth segmentation mask.
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Supervision Method mAPr
0.5mAPr

0.75 ABO

-

Rectangle 21.6 1.8 38.5
Ellipse 29.5 3.9 41.7
MCG 28.3 5.9 44.7

GrabCut 38.5 13.9 45.8
GrabCut+ 41.1 17.8 46.4

VOC12

Weak
DeepMask 39.4 8.1 45.8

DeepLabBOX 44.8 16.3 49.1

Full
DeepMask 41.7 9.7 47.1

DeepLabBOX 47.5 20.2 51.1

VOC12 + COCO

Weak
DeepMask 42.9 11.5 48.8

DeepLabBOX 46.4 18.5 51.4

Full
DeepMask 44.7 13.1 49.7

DeepLabBOX 49.4 23.7 53.1

Table 4.4: Instance segmentation results on VOC12 validation set. Underline indicates
the full supervision baseline, and bold are our best weak supervision results. Weakly
supervised DeepMask and DeepLabBOX reach comparable results to full supervision.
See Section 4.5 for details.

Ground
truth Rectangles Ellipse MCG GrabCut+ Weakly

supervised
Fully

supervised

Figure 4.9: Qualitative results of instance segmentation on VOC12. Example result
from the DeepMask model are trained with Pascal VOC12 and COCO supervision.
White boxes illustrate Fast-RCNN detection proposals used to output the segments
which have the best overlap with the ground truth segmentation mask.
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VOC12 evaluation, but using IoU between segments instead of between boxes. Since
we have a fixed set of windows, we can also report the average best overlap (ABO)
(Pont-Tuset and Gool, 2015) metric to give a different perspective on the results.

Baselines. We consider five training-free baselines: simply filling in the detection
rectangles (boxes) with foreground labels, fitting an ellipse inside the box, using the
MCG proposal with best bounding box IoU, and using GrabCut and GrabCut+ (see
Section 4.2.2 and Figure 4.9), initialized from the detection box.

Analysis. The results table 4.4 follows the same trend as the semantic labelling
results in Section 4.3. GrabCut+ provides the best results among the baselines
considered and shows comparable performance to DeepMask, while our proposed
DeepLabBOX outperforms both techniques. We see that our weakly supervised
approach reaches ∼95% of the quality of fully-supervised case (both on mAPr

0.5 and
ABO metrics) using two different convnets, DeepMask and DeepLabBOX, both when
training with VOC12 or VOC12+COCO. Examples of the instance segmentation
results from weakly supervised DeepMask and DeepLabBOX are shown in Figure
4.8.

4.6 conclusion

The series of experiments presented in this chapter provides new insights on how to
train pixel-labelling convnets from bounding box annotations only. We showed that
when carefully employing the available cues, recursive training using only rectangles
as input can be surprisingly effective (Boxi). Even more, when using box-driven
segmentation techniques and doing a good balance between accuracy and recall
in the noisy training segments, we can reach state-of-the-art performance without
modifying the segmentation network training procedure (M ∩ G+). Our results
improve over previously reported ones on the semantic labelling task and reach
∼95% of the quality of the same network trained on the ground truth segmentation
annotations (over the same data). By employing extra training data with bounding
box annotations from COCO we are able to match the full supervision results. We
also report the first results for weakly supervised instance segmentation, where we
also reach ∼95% of the quality of the fully-supervised training.

Our current approach exploits existing box-driven segmentation techniques,
treating each annotated box individually. In Chapter 5 we consider even a weaker
form of supervision for semantic segmentation and propose to train a convnet with
image label annotations.





5
E X P L O I T I N G S A L I E N C Y F O R O B J E C T S E G M E N TAT I O N
F R O M I M A G E L E V E L L A B E L S

This chapter studies the problem of training a pixel-wise semantic labeller
network from image-level annotations of the present object classes, a much
weaker form of supervision compared to Chapters 3 and 4.

Recently, it has been shown that high quality seeds indicating discriminative
object regions can be obtained from image-level labels. Without additional informa-
tion, obtaining the full extent of the object is an inherently ill-posed problem due
to co-occurrences. We propose using a saliency model as additional information
and hereby exploit prior knowledge on the object extent and image statistics. We
show how to combine both information sources in order to recover 80% of the fully
supervised performance – which is the new state of the art in weakly supervised
training for pixel-wise semantic labelling.

5.1 introduction

Semantic image labelling provides a rich information about scenes, but comes at
the cost of requiring pixel-wise labelling to generate training data. The accuracy of
convnet-based models the correlates strongly with the amount of available training
data. Collecting and annotating data has become a bottleneck for progress. This
problem has raised interest in exploring partially supervised data or different means
of supervision, which represents different tradeoffs between annotation efforts and
yield in terms of supervision signal for the learning task. For tasks such as semantic
segmentation there is a need to investigate what is the minimal supervision needed
to reach quality comparable to the fully supervised case.

A reasonable starting point considers that all training images have image-level
labels to indicate the presence or absence of the classes of interest. The weakly
supervised learning problem can be seen as a specific instance of learning from
constraints (Shcherbatyi and Andres, 2016; Xu et al., 2015). Instead of explicitly
supervising the output, the available labels provide a constraint on the desired
output. If an image label is absent, no pixel in the image should take that label;
if an image label is present at least in one pixel the image must take that label.
However, the objects of interest are rarely single pixel. Thus to enforce larger output
regions size, shape, or appearance priors are commonly employed (either explicitly
or implicitly).

Another reason for exploiting priors, is the fact that the task is fundamentally
ambiguous. Strongly co-occurring categories (such as train and rails, sculls and oars,
snow-bikes and snow) cannot be separated without additional information. Because
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(c)our result(b)saliency(a)image labels

person

bicycle

training image test image

Figure 5.1: We train a semantic labelling network with (a) image-level labels and (b)
saliency masks, to generate (c) a pixel-wise labelling of object classes at test time.

additional information is needed to solve the task, previous work has explored
different avenues, including class-specific size priors (Pathak et al., 2015a), crawling
additional images (Pinheiro and Collobert, 2015; Wei et al., 2015), or requesting
corrections from a human judge (Kolesnikov and Lampert, 2016a; Saleh et al., 2016).

Despite these efforts, the quality of the current best results on the task seems
to level out at ∼75% of the fully supervised case. Therefore, we argue that addi-
tional information sources have to be explored to complement the image level label
supervision – in particular addressing the inherent ambiguities of the task. In this
work, we propose to exploit class-agnostic saliency as a new ingredient to train for
class-specific pixel labelling; and show new state-of-the-art results on Pascal VOC
2012 semantic labelling with image label supervision.

We decompose the problem of object segmentation from image labels into two
separate ones: finding the object location (any point on the object), and finding the
object’s extent. Finding the object extent can be equivalently seen as finding the
background area in an image.

For object location we exploit the fact that image classifiers are sensitive to the
discriminative areas of an image. Thus training using the image labels enables to
find high confidence points over the objects classes of interest (we call these “object
seeds”), as well as high confidence regions for background. A classifier, however,
will struggle to delineate the fine details of an object instance, since these might not
be particularly discriminative.

For finding the object extent, we exploit the fact that a large portion of photos
aim at capturing a subject. Using class-agnostic object saliency we can find the
segment corresponding to some of the detected object seeds. Albeit saliency is noisy,
it provides information delineating the object extent beyond what seeds can indicate.
Our experiment show that this is an effective source of additional information. Our
saliency model is itself trained from bounding box annotations only. At no point of
our pipeline accurate pixel-wise annotations are used.
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In this chapter we provide an analysis of the factors that influence the seed
generation, explore the utility of saliency for the task, and report best known results
both when using image labels only and image labels with additional data.

In summary, our contributions are:

• We propose an effective method for combining seeds and saliency for the task
of weakly supervised semantic segmentation. Our method achieves the best
performance among the known works that utilise image level supervision with
or without additional external data.

• We compare recent seed methods side by side, and analyse the importance of
saliency towards the final quality.

Section 5.3 presents our overall architecture, Section 5.4 investigates suitable
object seeds, and Section 5.5 describes how we use saliency to guide the convnet
training. Finally Section 5.6 discusses the experimental setup, and presents our key
results.

5.2 previous work on object localization from image labels

Object seeds. Multiple works have considered using a trained classifier (from
image level labels) to find areas of the image that belong to a given class, without
necessarily enforcing to cover the full object extent (high precision, low recall).
Starting from simple strategies such as “probing classifier with different image areas
occluded” (Zeiler and Fergus, 2014), or back-propagating the class score gradient
on the image (Simonyan et al., 2014); significantly more involved strategies have
been proposed, mainly by modifying the back-propagation strategy (Springenberg
et al., 2015; Zhang et al., 2016; Shimoda and Yanai, 2016), or by solving a per-image
optimization problem (Cao et al., 2015). All these strategies provide some degree of
empirical success but lack a clear theoretical justification, and tend to have rather
noisy outputs.

Another approach considers modifying the classifier training procedure so as to
have it generate object masks as a by-product of a forward-pass. This can be achieved
by adding a global max-pooling (Pinheiro and Collobert, 2015) or mean-pooling
layer (Zhou et al., 2016) in the last stages of the classifier.

In this work we provide an empirical comparison of existing seeders, and explore
variants of the mean-pooling approach (Zhou et al., 2016) (Section 5.4).

Detection boxes from image level supervision. Detecting object boxes from im-
age labels has similar challenges as pixel labelling. The object location and extent
need to be found. State-of-the-art techniques for this task (Bilen and Vedaldi, 2016;
Teh et al., 2016; Kantorov et al., 2016) learn to re-score detection proposals using two
stream architectures that once trained separate “objectness” scores from class scores.
These architectures echo with our approach, where the seeds provide information
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about the class scores at each pixel (albeit with low recall for foreground classes),
and the saliency output provides a per-pixel (class agnostic) “objectness” score.

5.3 guided segmentation architecture

While previous work has emphasised using sophisticated training losses, or more
involved architectures, we focus on saliency as an effective prior, and thus keep our
architecture simple.

We approach the image-level supervised semantic segmentation problem via
a system with two modules (see Figure 5.2), we name this architecture “Guided
Segmentation”. Given an image and image-level labels, the “guide labeller” module
combines cues from a seeder (Section 5.4) and saliency (Section 5.5) sub-modules,
producing a rough segmentation mask (the “guide”). Then a segmenter convnet
is trained using the produced guide mask as supervision. In this architecture the
segmentation convnet is trained in a fully-supervised procedure, using the traditional
per pixel softmax cross-entropy loss.

In sections 5.4 and 5.5 we explain how we build our guide labeller, by first
generating seeds (discriminative areas of objects of interest), and then extending
them to better cover the full object extents.

5.4 finding good seeds

There has been recent burst of approaches to localise objects from a classifier. Some
approaches rely on image gradients from a trained classifier (Simonyan et al., 2014;
Springenberg et al., 2015; Zhang et al., 2016), while others propose to train a global
average pooling (GAP) based architectures as a classifier (Zhou et al., 2016). All the
classifier based localisation variants have a fundamental limitation in that there exists
a mismatch between the training objective (image classification) and the desired
output: the object locations. Nonetheless, they have proved to be effective.

In this section, we review the localisation approaches side by side and compare

image

Dense

loss

classifier

Segmenter
convnet

Guide labeller

person
table
chair

Saliency

Seeder

Figure 5.2: High level Guided Segmentation architecture.
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GAP -LowRes -HighRes -ROI -DeepLab
(Zhou et al., 2016) (Kolesnikov and Lampert, 2016b) (Chen et al., 2016b)

high res. % X X X
dil. conv. % % % X
ROI pool % % X %

mP 76.5 80.7 80.8 57.7
mAP 88.0 87.0 87.2 92.7

Table 5.1: Architectural comparisons with respect to output resolution, use of dilated
convolutions, and region of interest pooling. Mean precision (mP, see text for
definition) and classification mean Average Precision (mAP) results are reported.

their empirical performances. We report experimental results of different GAP
architectures (Zhou et al., 2016; Kolesnikov and Lampert, 2016b; Chen et al., 2016b),
where we show that good architectural components for a classifier or segmenter may
not lead to a good GAP architecture.

5.4.1 Global average pooling (GAP)

GAP, or global average pooling layer, can be inserted in the last or penultimate
layer of a fully convolutional architecture to turn it into a classifier. The resulting
architecture is then trained with a classification loss, and at test time the activation
maps before the global average pooling layer have been shown to contain localisation
information (Zhou et al., 2016).

In our analysis, we consider four different fully convolutional architectures with
a GAP layer: GAP-LowRes, GAP-HighRes, GAP-DeepLab, and GAP-ROI. A high-level
overview of architectural differences is introduced in Table 5.1. GAP-LowRes (Zhou
et al., 2016) is essentially a fully convolutional version of VGG-16 (Simonyan and
Zisserman, 2015). GAP-HighRes is inspired by Kolesnikov and Lampert (2016b) and
has 2 times higher output resolution than GAP-LowRes. GAP-DeepLab is a semantic
segmenter DeepLab with a GAP layer over the dense score output. The main differ-
ence between GAP-HighRes and GAP-DeepLab is the presence of dilated convolutions,
used to significantly enlarge the field of view in DeepLab. Finally, we consider
GAP-ROI as a variant of GAP-HighRes where we use region of interest pooling to
replace sliding window convolutions in the last layers of VGG-16. GAP-ROI is meant
to be functionally equivalent to GAP-HighRes, but with a slight structural variation.
As we will see in the next section, this affects GAP’s behaviour.

5.4.2 Empirical study

Evaluation. We evaluate each method on the validation set of the Pascal VOC
2012 (Everingham et al.) segmentation benchmark. We measure the foreground and
background precision-recall curves for each variant. In the foreground case, we
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Image GAP-LowRes GAP-HighRes GAP-ROI GAP-DeepLab Ground truth

Figure 5.3: Qualitative examples of GAP output for GAP-LowRes, GAP-HighRes,
GAP-DeepLab, and GAP-ROI. Note that all of them, except for GAP-DeepLab, are qual-
itatively similar. For GAP-DeepLab, we observe repeating patterns of certain stride.
Examples are chosen at random.
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Figure 5.4: Comparing seeds techniques. Precision-recall curves.
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compute the mean precision and recall over the 20 Pascal categories. The curves are
shown in Figure 5.4.

We define mean precision (mP) as a summary metric for the localisation metrics,
which averages the foreground precision at 20% recall and the background precision
at 80% recall: mP =

PrecFg@20%+PrecBg@80%
2 . Intuitively, for the FG region we only need

a small discriminative region, as saliency will fill in the extent. We thus care about
precision at ∼20% recall. On the other hand, BG is more diverse and usually takes
a larger region; we thus care about precision at ∼80% recall. Since we care about
both, we simply take the average (as is the case for the mAP metric). This metric has
shown a good correlation with the final performance in our preliminary experiments.

We also measure the classification performance in the standard mean average
precision (mAP) metric. Note that seeders are provided with the input image and its
ground truth image-level labels.

We compare the GAP architectures against the back-propagation family: Vanilla,
Guided, and Excitation back-propagation (Simonyan et al., 2014; Springenberg et al.,
2015; Zhang et al., 2016), as well as the centre mean shape baseline, which is a
no-image content baseline which predicts an average mask of the all ground truth
class instances.

Implementation details. We train all four GAP network variants for multi-label
image classification over the trainaug set of Pascal VOC 2012. At test time, we take
the output per-class heatmaps before the GAP layer and normalise them through
dividing by the maximal per-class scores.

For the back-propagation based methods, we use a VGG-16 (Simonyan and
Zisserman, 2015) classifier network that has also been trained on the “trainaug” set
of Pascal VOC 2012 (10 582 images in total). We take the maximal absolute gradient
value among the RGB channels on each pixel as the localisation signal (following
Simonyan et al. (2014)) and apply Gaussian smoothing. As final post-processing
we apply dense CRF (Krähenbühl and Koltun, 2011) to further smooth the seeder
output while respecting object boundaries.

In both GAP and backprop variants, we mark as background the pixels where all
per-class score values are bellow a given threshold τ, and remaining pixels take the
argmax class label.

Results. Refer to Figure 5.4 for the precision-recall curves. GAP variants in general
are better localisers than the backprop variants. We note that the Guided backprop
gives highest precision at a very low recall regime (∼5%), but we find the recall to
be too low to be useful. Among the GAP methods, GAP-HighRes and GAP-ROI give
high precision over most of the recall range. Note that the GAP results depends
heavily on the architecture used. For example, GAP-DeepLab shows a significantly
lower quality than any other GAP variants (despite being the best classifier).

The network matters for GAP. Table 5.1 shows a more detailed view of the GAP
results. Despite all architectures being based on VGG-16 the mP results have high
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fluctuations (GAP-HighRes: 80.7 mP, GAP-DeepLab: 57.7 mP), while there is no such
dramatic effect in the performance as classifiers (mAP). It is striking that GAP-DeepLab
is the best classifier, while giving the lowest performance in localisation when trained
with GAP. Thus better classifiers (even based on a semantic labelling network) do
not automatically make better seeders.

Along the architectural component dimensions, we observe that a higher resol-
ution network performs better as a seeder than their lower resolution counterpart
(GAP-HighRes versus GAP-LowRes), while using a larger field of view through dilated
convolutions hurts the GAP performance (GAP-HighRes versus GAP-DeepLab). We
observe on-par performances between GAP-HighRes and GAP-ROI.

In the rest of the chapter, we use GAP-HighRes as the seeder module. In Koles-
nikov and Lampert (2016b), foreground and background seeds are handled via two
different mechanisms, in our experiments we simply treat all the non-foreground
region as background.

5.5 finding the object extent

Having generated a set of seeds indicating discriminative object areas, the guide
labeller needs to find the extent of the object instances (Section 5.3).

Without any prior knowledge, it is very hard, if not impossible, to learn the
extent of objects only from images and image-level labels only. Image-level labels
only convey information about commonly occurring patterns that are present in
images with positive tags and absent in images with negative tags. The system is
thus susceptible to strong inter-class co-occurrences (e.g. train with rail), as well as
systematic part occlusions (e.g. feet).

CRF and CRFLoss. A traditional approach to make labels match object boundaries
is to solve a CRF inference problem (Lafferty et al., 2001; Krähenbühl and Koltun,
2011) over the image grid, where pair-wise terms relate to the object boundaries. A
CRF can be applied at three stages: (1) on the seeds (crf-seed), (2) as a loss function
during segmenter convnet training (crf-loss) (Kolesnikov and Lampert, 2016b),
and (3) as a post-processing at test time (crf-postproc).

We have experimented with multiple combinations of those. Albeit some gains
are observed, these are inconsistent. For example GAP-HighRes and GAP-ROI provide
near identical classification and seeding performance (see Table 5.1), yet using the
same CRF setup will provide +13 mIoU percent points in one, but only +7 pp on the
other. In comparison our saliency approach will provide +17 mIoU and +18 mIoU
for these two networks respectively (see below).

5.5.1 Saliency

Image saliency has multiple connotations: it can refer to a spatial probability map of
where a person might look first (Yamada et al., 2010), a probability map of which
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(a) High quality (b) Medium quality (c) Low quality

Figure 5.5: Example of our saliency map results on Pascal VOC 2012 data.

object a person might look at first (Li et al., 2014), or a binary mask segmenting the
one object a person is most likely to look first (Borji et al., 2015; Shi et al., 2016). We
employ the latter definition in this work. Note that this notion is class-agnostic, and
refers more to the composition of the image, than the specific object category.

In this chapter we propose to use object saliency to extract information about the
object extent. We work under the assumption that a large portion of the dataset is
intentional photographies, which is the case for most datasets crawled from the web
such as Pascal (Everingham et al.) and COCO (Lin et al., 2014). If the image contains
a single label “dog”, chances are that the image is about a dog, and that the salient
object of the image is a dog. We use a convnet based saliency estimator (detailed in
Section 5.6.1) which adds the benefit of translation invariance. If two locally salient
dogs appear in the image, both will be labelled as foreground.

When using saliency to guide semantic labelling at least two difficulties need
to be handled. For one, saliency per-se does not segment object instances. In the
example Figure 5.5a, the person-bike is well segmented, but person and bike are not
separated. Yet the ideal Guide labeller (Figure 5.2) should give different labels to
these two objects. The second difficulty, clearly visible in the examples of Figure 5.5,
is that the salient object might not belong to a category of interest (shirt instead of
person in Figure 5.5b) or that the method fails to identify any salient region at all
(Figure 5.5c).

We measure the saliency quality when compared to the ground truth foreground
on the Pascal VOC 2012 validation set. Albeit our convnet saliency model is better
than hand-crafted methods (Jiang et al., 2013; Zhang et al., 2015a), in the end only
about 20% of images have reasonably good (IoU > 0.6) foreground saliency quality.
Yet, as we will see in Section 5.6, this bit of information is already helpful for the
weakly supervised learning task.

Crucially, our saliency system is trained on images containing diverse objects
(hundreds of categories), the object categories are treated as “unknown”, and to
ensure clean experiments we handicap the system by removing any instance of
Pascal categories in the object saliency training set. Our saliency model captures a
general notion of plausible foreground objects and background areas (more details
in Section 5.6.1).

On every Pascal training image, we obtain a class-agnostic foreground/background
binary mask from our saliency model, and high precision/low recall class-specific
image labels from the seeds model (Section 5.4). We want to combine them in such a
way that seed signals are well propagated throughout the foreground saliency mask.
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Figure 5.6: Example of saliency results on its training data. We use MSRA box
annotations to train a weakly supervised saliency model. Note that the MSRA subset
employed does not contain Pascal categories.

We consider two baselines strategies to generate guide labels using saliency but no
seeds (G0 and G1), and then discuss how we combine saliency with seeds (G2).

G0 Random class assignment. Given a saliency mask, we assign all foreground
pixels to a class randomly picked from the ground truth image labels. If a single
“dog” label is present, then all foreground pixels are “dog”. Two labels are present
(“dog, cat”), then all pixels are either dog or cat.

G1 Per-connected component classification. Given a saliency mask, we split it in
components, and assign a separate label for each component. The per-component
labels are given using a full-image classifier trained using the image labels (classifier
details in Section 5.6.1). Given a connected component mask R f g

i (with pixel values
1: foreground, 0: background), we compute the classifier scores when feeding the
original image (I), and when feeding an image with background zeroed (I � R f g

i ).

Region R f g
i will be labelled with the ground truth class with the greatest positive

score difference before and after zeroing.

G2 Propagating seeds. Here, instead of assigning the label per connected compon-
ent R f g

i using a classifier, we instead use the seed labels. We also treat the seeds
as a set of connected components (seed Rs

j ). Depending on how the seeds and the
foreground regions intersect, we decide the label for each pixel in the guide labeller
output.

Our fusion strategy uses five simple ideas. 1) We treat the seeds as reliable small
size point predictors of each object instance, but that might leak outside of the object.
2) We assume the saliency might trigger on objects that are not part of the classes of
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Salient objects Saliency model Salient objects Saliency model
with boxes result with boxes result

Figure 5.7: Extension of Figure 5.6. Examples of saliency results on its training
data. We use MSRA box annotations to train a weakly supervised saliency model.
Note that the MSRA subset employed is not biased towards the Pascal categories.
Examples are chosen at random.
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Figure 5.8: Extension of Figure 5.5. Example of saliency results on Pascal images.
We note that the saliency often fails when the central, salient objects are non-Pascal
or when the scene is cluttered. Examples are chosen at random.
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(a) Image (b) Ground truth (c) Seed (d) Saliency

(e) G0 (f) G1 (g) G2

Figure 5.9: Guide labelling strategies example results. The image, its labels (“bicycle,
chair”), seeds, and saliency map are their input. White overlay indicates “ignore”
pixel label.

interest. 3) A foreground connected component R f g
i should take the label of the seed

touching it. 4) If two (or more) seeds touch the same foreground component, then
we want to propagate all the seed labels inside it. 5) When in doubt, mark as ignore.

Figure 5.9 provides example results of the different guide strategies. For addi-
tional qualitative examples of seeds, saliency foreground, and generated labels, see
Figure 5.11. With our guide strategies G0, G1, and G2 at hand, we now proceed to
empirically evaluate them in Section 5.6.

5.6 experiments

Sections 5.6 and 5.6.1 provide the details of the evaluation and our implementation.
Section 5.6.2 compares our different guide strategies amongst each other, and Section
5.6.3 compares with previous work on weakly supervised semantic labelling from
image-level labels.

Evaluation. We evaluate our image-level supervised semantic segmentation system
on the PASCAL VOC 2012 segmentation benchmark (Everingham et al.). We report
all the intermediate results on the validation set (1 449 images) and only report the
final system result on the test set (1 456 images). Evaluation metric is the standard
mean intersection-over-union (mIoU) measure.



5.6 experiments 87

5.6.1 Implementation details

For training “Seeder” and “Segmenter” networks, we use the ImageNet (Deng et al.,
2009) pretrained models for initialisation and fine-tune on the Pascal VOC 2012

trainaug set (10 582 images), an extension of the original train set (1 464 images) (Ever-
ingham et al.; Hariharan et al., 2011). This is the same procedure used by previous
work on fully (Chen et al., 2016b) and weakly supervised learning (Kolesnikov and
Lampert, 2016b).

Seeder. Results in Tables 5.2 and 5.3 are obtained using GAP-HighRes (see Section
5.4), trained for image classification on the Pascal trainaug set. The test time
foreground threshold τ is set to 0.2, following the previous literature (Zhou et al.,
2016; Kolesnikov and Lampert, 2016b).

G1 Classifier. The guide labeller strategy G1 uses an image classifier trained on
Pascal trainaug set. We use the VGG-16 architecture (Simonyan and Zisserman, 2015)
with a multi-label loss.

Saliency. Following Zhao et al. (2015); Li et al. (2016b); Li and Yu (2016) we re-
purpose a semantic labelling network for the task of class-agnostic saliency. We train
a DeepLab-v2 ResNet network (Chen et al., 2016b) over a subset of MSRA (Liu et al.,
2011), a saliency dataset with class agnostic bounding box annotations. We constrain
the training only to data samples of non-Pascal categories. Thus, the saliency model
does not leverage class specific features when Pascal images are fed. Out of 25k
MSRA images, 11 041 are selected after filtering.

MRSA provides bounding boxes (from multiple annotators) of the main salient
element of each image. To train the saliency model to output pixel-wise masks, we
follow the approach proposed in Chapter 4 (Khoreva et al., 2017a). We generate
segments from the MSRA boxes by applying grabcut over the average box annotation,
and use these as supervision for the DeepLab model. The model is trained as a
binary semantic labeller for foreground and background regions. The trained model
generates masks like the ones shown in Figure 5.6. Although having been trained
with images with single salient objects, due to its convolutional nature the network
can predict multiple salient regions in the Pascal images (as shown in Figure 5.11).

At test time, the saliency model generates a heatmap of foreground probabilities.
We take pixels with ≥ 50% of the maximal foreground probability as our saliency
foreground mask.

Segmenter. For comparison with previous work we use the DeepLabv1-LargeFOV
(Chen et al., 2016b) architecture as our segmenter convnet. The network is trained
on Pascal trainaug set with 10 582 images, using the output of the guide labeller
(Section 5.2), which uses only the image and presence-absence tags of the 20 Pascal
categories as supervision. The network is trained for 8k iterations.

Following the standard DeepLab procedure, at test time we up-sample the output
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Image Seeds Saliency G0 G1 G2 Ground
truth

Figure 5.10: Extension of Figure 5.9. Example results for three different guide
labelling strategies, G0, G1, and G2. The image, its image labels, seeds, and saliency
map are their input. White labels indicate “ignore” regions. Note that G0 and G1
give qualitatively similar results, while G2 produces much more precise labelling
by exploiting rich localisation information from the seeds. Examples are chosen at
random.
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Method Seeds Sali- Supervision val. set
ency Fg P/R Bg P/R mIoU

Seeds only X % 69 37 81 95 38.7
G0 % X 65 52 65 52 45.8
G1 % X 75 51 75 51 46.2
G2 X X 73 59 87 95 51.2

Saliency oracle X X 89 91 100 99 56.9

Table 5.2: Comparison of different guide labeller variants. Pascal VOC 2012

validation set results, without CRF post-processing. Fg/Bg P/R: are fore-
ground/background precision and recall of the guide labels. Discussion in Section
5.6.2.

to the original image resolution and apply the dense CRF inference (Krähenbühl
and Koltun, 2011). Unless stated otherwise, we use the CRF parameters used for
DeepLabv1-LargeFOV (Chen et al., 2016b).

5.6.2 Ingredients study

Table 5.2 compares different guide strategies G0, G1, G2, and oracle versions of G2.
The first row shows the result of training our segmenter using the seeds directly
as guide labels. This leads to poor quality (38.7 mIoU). The “Supervision” column
shows recall and precision for foreground and background of the guide labels
themselves (training data for the segmenter). We can see that the seeds alone have
low recall for the foreground (37%). In comparison, using saliency only, G0 reaches
significantly better results, due to the guide labels having higher foreground recall
(52%, while keeping a comparable precision).

Adding a classifier on top of the saliency (G0 → G1) provides only a negligible
improvement (45.8 → 46.2). This can be attributed to the fact that many Pascal
images contain only a single foreground class, and that the classifier might have
difficulties recognizing the masked objects. Interestingly, when using a similar
classifier to generate seeds instead of scoring the image (G1 → G2) we gain 5 pp
(percent points, 46.2→ 51.2). This shows that the details of how a classifier is used
can make a large difference.

Table 5.2 also reports a saliency oracle case on top of G2. If we use the ground
truth annotation to generate an ideal saliency mask we see a significant improvement
over G2 (51.2 → 56.9). This shows that the quality of the saliency is an important
ingredient, and that there is room for further gains.

5.6.3 Results

Table 5.3 compares our results with previous related work. We group results by
methods that only use ImageNet pre-training and image-level labels (I, P, E; see
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Figure 5.11: Qualitative examples of the different stages of our system.
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Figure 5.12: More qualitative examples of the different stages of the Guided Seg-
mentation system on the training images. White labels are “ignore” regions. Seeds
have high precision and low recall; combined with saliency foreground mask using
G2 guide labeller, object extents are recovered. The generated guide labelling can
still be noisy; however, the segmenter convnet can average out the noise to produce
more precise predictions. CRF post-processing further refines the predictions.
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val. set test set
Method Data mIoU mIoU FS%

Im
ag

e
la

be
ls

on
ly

MIL-FCN (Pathak et al., 2015b) I+P 25.0 25.6 36.5
CCNN (Pathak et al., 2015a) I+P 35.3 35.6 50.6

WSSL (Papandreou et al., 2015) I+P 38.2 39.6 56.3
MIL+Seg (Pinheiro and Collobert, 2015) I+E760k 42.0 40.6 57.8

DCSM (Shimoda and Yanai, 2016) I+P 44.1 45.1 64.2
CheckMask (Saleh et al., 2016) I+P 46.6 - -

SEC (Kolesnikov and Lampert, 2016b) I+P 50.7 51.7 73.5
AF-ss (Qi et al., 2016) I+P 51.6 - -

Seeds only I+P 39.8 - -

M
or

e
in

fo
rm

at
io

n CCNN (Pathak et al., 2015a) I+P+Z - 45.1 64.2
STC (Wei et al., 2015) I+P+S+E40k 49.8 51.2 72.8

CheckMask (Saleh et al., 2016) I+P+µ 51.5 - -
MicroAnno (Kolesnikov and Lampert, 2016a) I+P+µ 51.9 53.2 75.7

G0 I+P+S 48.8 - -
G2 I+P+S 55.7 56.7 80.6

DeepLabv1 I+P f ull 67.6 70.3 100

Table 5.3: Comparison of state-of-the-art methods, on Pascal VOC 2012 val. and
test set. FS%: fully supervised percent. Ingredients: I: ImageNet classification
pre-training, P: Pascal image level tags, P f ull: fully supervised case (pixel wise
labels), En: n extra images with image level tags, S: saliency, Z: per-class size prior, µ:
human-in-the-loop micro-annotations.

legend Table 5.3), and methods that use additional data or user-inputs. Here our G0
and G2 results include a CRF post-processing (crf-postproc). We also experimented
with crf-loss but did not find a parameter set that provided improved results.

We see that the guide strategies G0, which uses saliency and random ground-
truth label, reaches competitive performance compared to methods using I+P only.
This shows that saliency by itself is already a strong cue. Our guide strategy G2
(which uses seeds and saliency) obtains the best reported results on this task1. We
even improve over other methods using saliency (STC) or using additional human
annotations (MicroAnno, CheckMask). Compared to a fully supervised DeepLabv1

model, our results reach 80% of the fully supervised quality.

1Qi et al. (2016) also report 54.3 validation set results; however, we do not consider these results
comparable since they use the MCG scores (Pont-Tuset et al., 2016), which are trained on the ground
truth Pascal segments.
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5.7 conclusion

We have addressed the problem of training a semantic segmentation convnet from
image labels. Image labels alone can provide high quality seeds, or discriminative
object regions, but learning the full object extents is a hard problem. We have shown
that saliency is a viable option for obtaining the object extent information.

The proposed Guided Segmentation architecture (Section 5.3), where the “guide
labeller” combines cues from the seeds and saliency, can successfully train a seg-
mentation convnet to achieve state-of-the-art performance. Our weakly supervised
results reach 80% of the fully supervised case.

We expect that a deeper understanding of the seeder methods and improvements
on the saliency model can lead to further improvements.





Part II

L E A R N I N G T O S E G M E N T V I D E O S V I A G R A P H S

A popular and successful approach is modeling video segmentation as
a graph partitioning problem, where the nodes represent pixels or su-
perpixels, and the edges encode the spatio-temporal structure. These
methods usually consist of three essential steps: 1. extraction of super-
pixels and feature computation; 2. graph construction; 3. partitioning of
the graph using spectral clustering. In this part of the thesis we present
our proposed improvements for each individual step.

In Chapter 6 we address step 3 and propose to integrate the learned must-
links constraints into spectral clustering framework in order to reduce the
computational load as well as to guide the segmentation towards the right
solution. In Chapter 7 we focus on step 2 and explore how to construct a
graph to obtain the best video segmentation performance. We propose to
learn the topology of the graph and its edge weights from the features
estimated in step 1. Learning the graph helps to improve the results, while
significantly reducing its runtime, as the learnt graph is much sparser.
Chapter 8 addresses step 1 and proposes better superpixels for video
segmentation. We show that boundary-based superpixels perform best,
and that boundary estimation can be improved by fusion of appearance
and motion cues. By employing as graph nodes superpixels generated
from better boundaries we observe consistent improvement.





6L E A R N I N G M U S T- L I N K C O N S T R A I N T S F O R V I D E O
S E G M E N TAT I O N B A S E D O N S P E C T R A L C L U S T E R I N G

In recent years it has been shown that clustering and segmentation methods can
greatly benefit from the integration of prior information in terms of must-link
constraints. Very recently the use of such constraints has been integrated in a

rigorous manner also in graph-based methods such as normalized cut. On the other
hand spectral clustering as relaxation of the normalized cut has been shown to be
among the best methods for video segmentation.

In this chapter we merge these two developments and propose to learn must-
link constraints for video segmentation with spectral clustering. We show that the
integration of learned must-link constraints not only improves the segmentation
result but also significantly reduces the required runtime, making the use of costly
spectral methods possible for today’s high quality video.

6.1 introduction

Video segmentation is an open problem in computer vision, which has recently
attracted increasing attention. The problem is of high interest due to its potential
applications in action recognition, scene classification, 3D reconstruction and video
indexing, among others. The literature on the topic has become prolific (Brendel
and Todorovic, 2009; Vazquez-Reina et al., 2010; Andres et al., 2011; Lezama et al.,
2011; Cheng and Ahuja, 2012; Chang et al., 2013; Banica et al., 2013; Li et al., 2013)
and a number of techniques have become available, e.g. generative layered models
(Kannan et al., 2005; Kumar et al., 2008), graph-based models (Grundmann et al., 2010;
Xu and Corso, 2012; Palou and Salembier, 2013) and spectral techniques (Shi and
Malik, 2000; Brox and Malik, 2010; Fragkiadaki and Shi, 2012; Galasso et al., 2012;
Maire and Yu, 2013; Ochs et al., 2014; Galasso et al., 2014).

Spectral methods, stemming from the seminal work of Shi and Malik (2000) and
Ng et al. (2001), have received much attention from the theoretical viewpoint (von
Luxburg, 2007; Bühler and Hein, 2009; Hein and Bühler, 2010), and have proven
to be successful for segmentation (Arbeláez et al., 2011; Sundaram and Keutzer,
2011; Galasso et al., 2012; Sundberg et al., 2011; Ochs et al., 2014; Taylor, 2013; Maire
and Yu, 2013; Galasso et al., 2014). Spectral clustering, as a relaxation of the NP-
hard normalized cut problem, is suitable due to its ability to include long-range
affinities (Galasso et al., 2012; Sundaram and Keutzer, 2011) and its global view on
the problem (Fowlkes and Malik, 2004), providing balanced solutions.

In this chapter, we focus on two important limitations of spectral techniques:
the excessive resource requirements and the lack of exploiting available training data. The
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a) Video sequence b) SPX c) ProposedM SPX d) Video segm.

Figure 6.1: Video segmentation (Galasso et al., 2012) employs fine superpixels (b),
resulting in large resource requirements, esp. when using spectral methods. We
propose learned must-links to merge superpixels into fewer must-link-constrained
M superpixels (c). This reduces runtime and memory consumption and maintains
or improves the segmentation (d).

large demands of spectral techniques (Sundaram and Keutzer, 2011; Galasso et al.,
2012) are particularly clear in the case of high-quality video datasets (Galasso et al.,
2013), limiting their current large-scale applicability. While often a labeled dataset is
available, a systematic learning of the affinities used to build the graph for spectral
clustering is very difficult. In particular, as the normalized cut itself is a NP-hard
problem and even the spectral relaxation is non-convex, the optimization of the
minimizer which yields the segmentation is out of reach. Thus in practice one
typically validates a few model parameters (Brox and Malik, 2010; Galasso et al.,
2012; Maire and Yu, 2013), preventing spectral methods to make use of recently
available large training data (Galasso et al., 2013).

We propose to learn must-link constraints to overcome both limitations. Recent
spectral theory work (Rangapuram and Hein, 2012; Galasso et al., 2014) has shown
that the integration of must-links (i.e. forcing two vertices to be in the same cluster)
allows to reduce the size of the problem, while preserving the original optimization
objective for all partitions satisfying the must-links. On the other hand by learning
must-link constraints we can leverage the available training data in order to guide
spectral clustering towards a desired segmentation. Figure 6.1 illustrates the advant-
ages of learning must-links: superpixel-based techniques (Galasso et al., 2012) build
spectral graphs on fine superpixels, Figure 6.1(b); by contrast, we propose to build
graphs merging superpixels based on learned must-link constraints, Figure 6.1(c). In
particular, specifically training a classifier to minimize the number of false positives
allows conservative superpixel merging, which: 1. reduces the problem size signi-
ficantly; 2. preserves the original optimization problem; and 3. improves the video
segmentation, Figure 6.1(d), because correct must-links avoid undesired solutions (cf.
Section 6.3).

In the following, we present the integration and learning of must-link constraints
in Section 6.3 and validate them experimentally under various setups in Section 6.4
on two video segmentation datasets (Brox and Malik, 2010; Galasso et al., 2013).
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6.2 previous work on must-link constraints

The usage of must-link constraints, first introduced by Wagstaff et al. (2001), is an
active area of research in machine learning known as constrained clustering (see Basu
et al. (2008) for an overview). The goal of integrating must-link constraints into
spectral clustering has been tried via: i. modifying the value of affinities (cf. Kamvar
et al. (2003), which first considered constrained spectral clustering); ii. modifying the
spectral embedding (Li et al., 2009); or iii. adding constraints in a post-processing
step (Yu and Shi, 2001; Eriksson et al., 2007; Xu et al., 2009; Wang and Davidson,
2010; Maji et al., 2011). Interestingly, none of these methods can guarantee that the
must-link constraints are actually satisfied in the final clustering. By contrast, we
employ must-link constraints to reduce the original graph to one of smaller size,
thus enforcing the constraints while additionally benefiting runtime and memory
consumption.

In particular, Rangapuram and Hein (2012) and Galasso et al. (2014) have shown
that must-link constraints can be used to reduce the graph, based on the correspond-
ing point groupings, and proved equivalence between the reduced and the original
graph, respectively in terms of NCut (Rangapuram and Hein, 2012) and SC (Galasso
et al., 2014), for any clustering satisfying the must-link constraints. We employ these
recent advances and propose to learn the must-link constraints in a data-driven
discriminative fashion for video segmentation.

Other related work in segmentation have looked at merging superpixels with
equivalence (Alpert et al., 2012), but using hand-designed affinities, or learned pair-
wise relations between superpixels (Jain et al., 2011), disregarding equivalence in the
agglomerative merging process. This work brings together learning affinities and
merging with equivalence guarantees for the first time.

6.3 learning spectral must-link constraints

We provide here the steps of a video segmentation framework based on the normal-
ized cut (Shi and Malik, 2000; Ng et al., 2001; Hein and Setzer, 2011) and review the
integration of must-link constraints by graph reductions as proposed in Rangapuram
and Hein (2012); Galasso et al. (2014). While the idea of learning must-link constraints
applies to any segmentation problem, we discuss in detail learning and inference in
the specific case of the video segmentation features of Galasso et al. (2012).

6.3.1 Segmentation and Must-link Constraints

We represent a video sequence as a graph G = (V , E): nodes i ∈ V represent super-
pixels, extracted at each frame of the video sequence with an image segmentation
algorithm (Arbeláez et al., 2011); edges eij ∈ E between superpixels i and j take
non-negative weights wij and express the similarity (affinity) between the superpixels.

A video segmentation can be defined as a partition S = {S1, S2, . . . , SK} of the



100chapter 6. learning must-link constraints for video segmentation

(superpixel) vertex set V , i.e. ∪kSk = V , Sk ∩ Sm = ∅ ∀ k 6= m. Given S the set of
all partitions, we look for an optimal video segmentation S∗ = {S∗1 , S∗2 , . . . , S∗N} ∈ S
(where N is the number of visual objects), minimizer of an objective function,
implicit (Grundmann et al., 2010; Xu et al., 2012; Paris, 2008) or explicit (Shi and
Malik, 2000; Ng et al., 2001; Vazquez-Reina et al., 2010; Chang et al., 2013).

Must-link constraints alter the video segmentation by reducing the set of feasible
partitions S . Given correct2 must-links, a video segmentation algorithm generally
improves in performance, since the solver is constrained to disregard non-optimal
segmentations wrt S∗. Moreover, the integration of must-links leads to reduced
runtime and memory load as the recent work (Rangapuram and Hein, 2012; Galasso
et al., 2014) suggests.

We are interested in learning a must-link grouping function M, which groups
certain3 superpixels in the graph, while respecting S∗. M should conservatively
associate each node i with a point grouping Ik ⊆ S∗l (in most uncertain cases a point
grouping may only include a single node). More formally:

M : V 7→ P , i 7→ Ik (6.1)
s.t. Ik ⊆ S∗l ⊆ V , ∪k Ik = V , Ik ∩ Im = ∅ ∀ k 6= m ,

where P is the set of possible partitions of V .

6.3.2 Framework

Here we tailor the general theory to a video segmentation framework based on
normalized cut, solved either via the spectral (Shi and Malik, 2000; Ng et al., 2001)
or 1-spectral (Bühler and Hein, 2009; Hein and Bühler, 2010) relaxation. Further,
we discuss the integration of learned must-link constraints via graph reduction
techniques (Rangapuram and Hein, 2012; Galasso et al., 2014) and learning and
inference strategies.

6.3.2.1 Video segmentation setup

We build upon Galasso et al. (2012). Their constructed graph G = (V , E) uses
superpixels extracted from the lowest level (level 1) of a hierarchical image segment-
ation (Arbeláez et al., 2011). Edges connect superpixels from spatial and temporal
neighbors and are weighted by their pair-wise affinities, computed from motion,
appearance and shape features.

We consider six pairwise affinities: spatio-temporal appearance (STA), based
on the median CIE Lab color distance; spatio-temporal motion (STM), based on
median optical flow distance; across boundary appearance (ABA) and motion (ABM),
computed across the common boundary of superpixels; short-term-temporal (STT),

2correct refers to the desired ground truth segmentation, which ideally corresponds with the
optimal segmentation S∗

3certain groupings are the conservative grouping decisions which we propose to learn
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measuring shape similarity by the spatial overlap of optical flow-propagated su-
perpixels; long-term-temporal (LTT), given by the fraction of common trajectories
between the superpixels. Additionally, we consider the number of common intersect-
ing trajectories (IT). We distinguish four types of affinities, depending on whether
the related superpixels: i. lie within the same frame (STA,STM,ABA,ABM); ii. lie on
adjacent frames (STA,STM,STT); iii-iv. lie on frames at a distance of 2 (STT,LTT,IT)
or more frames (LTT,IT) respectively.

6.3.2.2 Video segmentation objective function

Given a partition of V into N sets S1, . . . , SN , the normalized cut (NCut) is defined (von
Luxburg, 2007) as:

NCut(S1, . . . , SN) =
N

∑
k=1

cut(Sk,V\Sk)

vol(Sk)
, (6.2)

where cut(Sk,V\Sk) = ∑i∈Sk,j∈V\Sk
wij and vol(Sk) = ∑i∈Sk,j∈V wij. The balancing

factor prevents trivial solutions and is ideal when unary terms cannot be defined,
but is also the reason why minimization of the NCut is NP-Hard.

6.3.2.3 Spectral relaxations

The most widely adopted relaxation of NCut is spectral clustering (SC) (Shi and
Malik, 2000; Ng et al., 2001; von Luxburg, 2007), where the solution of the relaxed
problem is given by representing the data points with the first few eigenvectors and
then clustering them with k-means.

While widely adopted (Galasso et al., 2014; Maire and Yu, 2013; Arbeláez et al.,
2011; Brox and Malik, 2010; Sundaram and Keutzer, 2011; Galasso et al., 2012; Sund-
berg et al., 2011), the SC relaxation is known to be loose. We therefore additionally
consider the 1-spectral clustering (1-SC) (Hein and Bühler, 2010; Hein and Setzer,
2011) - a tight relaxation based on the 1-Laplacian. However, the relaxation is only
tight for bi-partitioning, for multi-way partitioning recursive splitting is used as
greedy heuristic. Reducing the original graph size with learned must-link constraints
allows to experiment with 1-SC on two video segmentation benchmarks (Brox and
Malik, 2010; Galasso et al., 2013), notwithstanding the increased computational costs.

6.3.2.4 Graph reduction schemes

Given must-link constraints provided as point groupings {I1, I2, . . . , Iq} on the ori-
ginal vertex set Ik ⊆ V , recent work (Rangapuram and Hein, 2012; Galasso et al., 2014)
shows how to integrate such constraints into the original problem with respectively
preserving the NCut and the spectral clustering objective function.

In more detail, integration proceeds by reducing the original graph G to one of
smaller size GM = (VM, EM), whereby the vertex set is given by the point grouping
VM = {I1, I2, . . . , Iq}, the edge set EM preserves the original node connectivity
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and weights wM
I J are estimated so as to preserve the original video segmentation

problem in terms of the NCut or spectral clustering objective. In particular, the NCut
reduction is given by

wM
I J = ∑

i∈I
∑
j∈J

wij (6.3)

while the spectral clustering reduction is defined as

wM
I J =


∑
i∈I

∑
j∈J

wij if I 6= J

1
|I|∑i∈I

∑
j∈J

wij −
(|I| − 1)
|I| ∑

i∈I
∑

j∈V\I
wij if I = J,

(6.4)

provided equal affinities of elements of G constrained in GM, cf. Galasso et al. (2014).

6.3.3 Learning

An ideal must-link constraining functionM (Eq. 6.1) should only merge superpixels
which are correct, i.e. belong to the same set in the optimal segmentation. From an
implementation viewpoint, it is convenient to consider insteadMpw, defined over
the set of edges E of the graph G representing the video sequence:

Mpw : E 7→ {0, 1} (6.5)

Mpw casts the must-link constraining problem as a binary classification one, where
a true output for an input edge eij means that i and j belong to the same point
grouping, in the must-link constrained graph GM.

We learnMpw with Random Forests (Breiman, 2001; Criminisi et al., 2012) using
as features the affinities of Galasso et al. (2012) (STA,STM,ABA,ABM,STT,LTT) and
the additional IT which we described in Section 6.3.2.1. Since different sets of
affinities are available depending on whether two superpixels lie on the same or on
different frames, we learn 4 different classifiers to match the 4 types of affinities.

We train a set of independent trees by estimating optimal parameters θp for the
split functions h(x, θp) at each tree node p, as a function of the computed features
x. Given a training set Tp ⊂ X × Y, with X the vector of computed features and
Y = {0, 1} the corresponding ground truth video annotations, we seek to maximize
the information gain Ip:

Ip(Tp, TL
p , TR

p ) = H(Tp)−
|TL

p |
|Tp|

H(TL
p )−

|TR
p |
|Tp|

H(TR
p ), (6.6)

with TL
p = {(x, y) ∈ Tp|h(x, θp) = 0}, TR

p = Tp\TL
p , the Shannon entropy H(T) =

−∑y∈{0,1} py log(py) and py is the pdf of outcome y.
We extend the formulation of (6.6) to allow for learning must-link constraints on

pre-grouped nodes. Galasso et al. (2014) use superpixel groupings (larger superpixel
named level 2, cf. 6.4). It is important, as we found out, to consider the node
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multiplicity. We define therefore |Tp| = ∑k∈Tp mk, where mk = |Ik| · |Jk| is the

multiplicity of the edge between superpixel groupings Ik and Jk, thus py =
∑y my

∑y∈{0,1} my
.

Must-link constraints have a transitive nature: Mpw(eij) = 1 andMpw(eik) = 1
implyMpw(ejk) = 1. It is therefore crucial that all decided constraints are correct,
as a few wrong ones may result in a larger set of incorrect decisions by transitive
closure and potentially spoil the segmentation. Thus we define the hyper-parameters
(threshold of the classifier and tree depth) such that Mpw provides the largest
number of positive predictions (the must-link decisions), while making zero false
positives on the validation set. In such a conservative way we ensure that the
resulting classifier makes only a very small number of false positives on unseen
data. Although this conservative classifier might imply that in the worst case, no
must-link constraints are predicted, it turns out our classifier actually predicts for a
large fraction of the edges to be linked and thus leads to a significant reduction in
size, while making a few false positives on the unseen data (overall, 1 false positive
per 242k true predictions).

6.3.4 Inference

The learned must-link constraining functionMpw provides must-link decisions for
each edge of graph G = (V , E). A further propagation of merge decisions in the
graph accounts for the transitivity closure ofMpw, consistently with the validation
procedure (cf. Section 6.3.3). Based on the must-link decisions, we use the graph
reduction techniques of Section 6.3.2.4, which integrate must-link decisions into
graph G by reducing it to the smaller one GM = (VM, EM) based on the determined
groupings.

The described framework allows for evaluating different reduction schemes
(equivalence in terms of NCut (Rangapuram and Hein, 2012) and SC (Galasso et al.,
2014)) and various spectral partitioning functions (1-SC (Hein and Setzer, 2011)
and SC (Shi and Malik, 2000; Ng et al., 2001)). It further allows to include spatial
must-link constraints and use larger superpixels, as done in Galasso et al. (2014). We
report experimental results on all these combinations in the following section.

6.4 experimental evaluation

We conduct two sets of experiments to analyze performance and efficiency of must-
link constrained graphs GM. In both cases we adopt the recently proposed benchmark
metrics of Galasso et al. (2013): the boundary precision-recall (BPR) from Arbeláez
et al. (2011) and the volume precision-recall (VPR) metric. Besides the PR curves,
we report aggregate performance for BPR and VPR: optimal dataset scale [ODS],
optimal segmentation scale [OSS], average precision [AP].

In the first set of experiments, we consider the Berkeley Motion Segmentation Dataset
(BMDS) (Brox and Malik, 2010), which consists of 26 VGA-quality video sequences,
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BPR VPR Length NCL

BPR VPR Length NCL
Algorithm ODS OSS AP ODS OSS AP µ(δ) µ

Grundmann et al. (Grundmann et al., 2010) 0.22 0.25 0.12 0.42 0.44 0.39 26.06(6.34) 13.81

Galasso et al. (Galasso et al., 2012) - SC 0.37 0.39 0.24 0.57 0.72 0.59 25.75(6.46) 4.00

[M(G)]NCut - SC 0.40 0.45 0.26 0.69 0.77 0.69 24.17(8.57) 6.00

[M(G)]SC - SC 0.41 0.46 0.27 0.64 0.75 0.67 22.66(9.55) 6.00

Galasso et al. (Galasso et al., 2012) - 1SC 0.34 0.36 0.19 0.56 0.62 0.49 25.99(6.61) 5.00

[M(G)]NCut - 1SC 0.44 0.48 0.34 0.64 0.70 0.60 26.62(5.80) 5.00

[M(G)]SC - 1SC 0.43 0.48 0.34 0.64 0.71 0.60 26.41(5.95) 5.00

Galasso et al.’14 (Galasso et al., 2014) - SC 0.43 0.48 0.29 0.71 0.79 0.71 22.04(8.92) 7.00

[M(GSC
2 )]NCut - SC 0.43 0.48 0.28 0.71 0.80 0.75 24.77(7.49) 5.00

Figure 6.2: Comparison of video segmentation algorithms with the learned must-
links, on BMDS (restricted to first 30 frames) (Brox and Malik, 2010). The plots
and table show BPR and VPR, aggregate measures ODS, OSS and AP, and length
statistics (mean µ, std. δ, no. clusters NCL) (Galasso et al., 2013).

representing mainly humans and cars, which we arrange into training, validation
and test sets (6+4+16). We restrict sequences to the first 30 frames. The ground truth
is provided for the 1st, 10th, 20th, 30th frame. We further annotate the 2nd, 9th, 11th
frame to learn must-links across 1 and 2 frames (the extra annotations are public
now).

We compare the baseline of Galasso et al. (2012) with the proposed variants,
[M(G)]NCut - SC and [M(G)]SC - SC, reducing the original graph G of Galasso
et al. (2012) with learned must-links to GM by using respectively the normalized cut
(NCut) and spectral clustering (SC) reductions, and then performing SC. Figure 6.2
(plots) shows that both proposed variants outperform the baseline algorithm (Galasso
et al., 2012) both on BPR and VPR. The table shows improvement by 4.7% in BPR
and 9% in VPR. Since the average number of superpixels is reduced by 66.7%, the
better performance is accompanied by a reduction of 60% in runtime and 90% in
memory load.

In Figure 6.2, we further experiment by adopting 1-spectral clustering (1-SC) (Hein
and Setzer, 2011) for the NCut within the baseline algorithm (Galasso et al. (2012)
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- 1-SC), and we compare this with our proposed variants, [M(G)]NCut - 1-SC and
[M(G)]SC - 1-SC, where we have grouped superpixels according to learned must-
links prior to processing (here with 1-SC). Since 1-SC is more costly, the provided
computational reduction is even more desirable here. Again, our proposed variants
improve in performance, as it appears both in the plots and the tables (average
improvement of 12.3% in BPR and 9% in VPR), while significantly reducing runtime
(improved by 80%) and memory load (improved by 90%). We note the similar
performance of 1-SC for both reduction variants, [M(G)]NCut and [M(G)]SC, which
surprises because only the NCut reduction is theoretically justified in combination
with 1-SC. Moreover, we observe the better performance of SC over 1-SC. This may
indicate that the affinities of Galasso et al. (2012), designed for SC, do not fit as well
the original (but different) NCut problem.

Additionally, we consider the recent work of Galasso et al. (2014), which uses
superpixels extracted from a higher hierarchical level of an image segmentation
algorithm (Arbeláez et al., 2011) (superpixels at level 2), computes affinities between
them and re-weights them according to SC, to take the finest superpixels at level
1 into account. Our proposed method based on must-links also allows learning
constraints on the larger superpixel graph G2 (the multiplicity of point groupings
plays a role in this case, cf. Section 6.3.3). Figure 6.2 shows that the reduction
[M(GSC

2 )]NCut - SC leads to the same performance as the original algorithm (Galasso
et al., 2014) on BPR and improves on VPR, while reducing the problem size wrt
Galasso et al. (2014) (runtime by 30% and memory load by 70%).

Figure 6.3 qualitatively supports the positive results. Note that the learned must-
links respect the GT objects while reducing the number of employed superpixels,M
SPX. Improvements in the video segmentation output (M Segm Vs. (SPX) Segm.)
are more evident for 1-SC. The proposed learned must-links determine merging
both in the spatial and temporal dimension. It is interesting to note that for the
BMDS (Brox and Malik, 2010) most merging comes from the first: it seems easier to
make conservative merging assumptions within the frame.

In the second set of experiments we consider the benchmark VSB100 (Galasso
et al., 2013), which includes 100 HD quality videos (Sundberg et al., 2011) arranged
into train and test sets (40+60) (we split training – 24 – and validation set – 16). In Fig-
ure 6.4 we compare the proposed method [M(GSC

2 )]NCut - SC to the baseline (Galasso
et al., 2014) and other video segmentation algorithms. Our method maintains the
performance of Galasso et al. (2014) on BPR and slightly improves on VPR. This
shows that Galasso et al. (2014), by jointly leveraging large powerful superpixels (Ar-
beláez et al., 2011), saturate the few affinities of Galasso et al. (2012), which we also
use here. Thus learned must-links closely follow the spectral clustering optimization
and our proposed method only provides further reduction of the problem size. With
similar arguments, as also maintained in Galasso et al. (2014), the segmentation
propagation method of Galasso et al. (2013) is only partially outperformed, due to its
more complex image features e.g. textures. Both observations suggest to use more
complex features for learning. With respect to the efficient reduction of Galasso
et al. (2014), we further reduce runtime by 30% and memory load by 65%, while we
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Spectral Clustering

1-Spectral Clustering

Video GT SPX (SPX) Segm. M SPX M Segm.

Figure 6.3: Sample superpixels (SPX) and segmentation results of Galasso et al. (2012),
compared with the proposed learned must-link variants, both when employing SC
and 1-SC (cf. Section 6.4 for details). The proposed superpixels (M SPX) respect the
video segmentation output while reducing the problem size. Additionally,M SPX
improve results, esp. for 1-SC.

reduce runtime by 97% and memory load by 87% wrt Galasso et al. (2012).
In addition, we adopt 1-spectral clustering (Hein and Setzer, 2011) within the

baseline (Galasso et al. (2014) - 1-SC), and compare this with our proposed method
([M(G2)]

NCut - 1SC). Figure 6.4 shows that [M(GSC
2 )]NCut - 1SC results in the same

performance on BPR and minor improvement on VPR, while significantly reducing
runtime (by 70%) and memory load (by 65%) wrt Galasso et al. (2014).

Implementation details. We use the Random Forests implementation of Crimin-
isi et al. (2012). The number of features to sample for each node split is set to

√
F,

where F is the dimensionality of the feature space. The averaged prediction of the
individual trees is taken for prediction of the ensemble. As weak learners we use
linear binary split functions and conic sections, and the forest size is set to 100 trees.
The tree depth is varied in the range [2, 12] and validated along with the threshold,
which yields the largest number of must-links with zero false positives. Following
Galasso et al. (2012), we extract the first 6 eigenvectors.
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BPR VPR Length NCL

BPR VPR Length NCL
Algorithm ODS OSS AP ODS OSS AP µ(δ) µ

Human 0.81 0.81 0.67 0.83 0.83 0.70 83.24(40.04) 11.90

Grundmann et al. (Grundmann et al., 2010) 0.47 0.54 0.41 0.52 0.55 0.52 87.69(34.02) 18.83

Galasso et al.’12 (Galasso et al., 2012) 0.51 0.56 0.45 0.45 0.51 0.42 80.17(37.56) 8.00

Segm. propagation (Galasso et al., 2013) 0.61 0.65 0.59 0.59 0.62 0.56 25.50(36.48) 258.05

Galasso et al.’14 (Galasso et al., 2014) - SC 0.62 0.65 0.50 0.55 0.59 0.55 61.25(40.87) 80.00

[M(GSC
2 )]NCut - SC 0.61 0.66 0.52 0.58 0.61 0.58 51.72(39.90) 176.65

Galasso et al.’14 (Galasso et al., 2014) - 1SC 0.61 0.64 0.52 0.55 0.60 0.54 69.80(42.26) 19.00

[M(GSC
2 )]NCut - 1SC 0.61 0.64 0.51 0.58 0.61 0.58 60.48(43.19) 50.00

Figure 6.4: Comparison of video segmentation algorithms with our proposed
method based on the learned must-links, on VSB100 (Galasso et al., 2013) (cf. Sec-
tion 6.4 for details).

6.5 conclusions

We have formalized must-link constraints and proposed the relevant learning and
inference algorithms. While this theory is applicable to general clustering and
segmentation problems, we have particularly shown the use of learned must-link
constraints in conjunction with spectral techniques, whereby recent theoretical
advances employ these to reduce the original problem size, hence the runtime
and memory requirements. Experimentally, we have shown that learned must-
link constraints improve efficiency and, in most cases, performance, as these allow
discriminatively training on GT data.

In Chapter 7 we show how to construct a graph in order to improve video
segmentation performance as well as reduce the problem size without changing the
graph partitioning model.





7
C L A S S I F I E R B A S E D G R A P H C O N S T R U C T I O N F O R
V I D E O S E G M E N TAT I O N

While a wide variety of features has been explored and various graph
partition algorithms have been proposed, there is surprisingly little re-
search on how to construct a graph to obtain the best video segmentation

performance. This is the focus of this chapter.
We propose to combine features by means of a classifier, use calibrated classifier

outputs as edge weights and define the graph topology by edge selection. By
learning the graph (without changes to the graph partitioning method), we improve
the results of the best performing video segmentation algorithm by 6% on the
challenging VSB100 benchmark, while reducing its runtime by 55%, as the learnt
graph is much sparser.

7.1 introduction

Video segmentation has recently witnessed growing interest (Banica et al., 2013;
Chang et al., 2013; Fragkiadaki and Shi, 2012; Jain et al., 2013; Li et al., 2013; Maire
and Yu, 2013; Palou and Salembier, 2013; Reso et al., 2013; Zhang et al., 2013). On
the one hand, this is motivated by its usefulness for applications such as semantic
scene understanding (Jain et al., 2013), activity recognition (Taralova et al., 2014),
or geometric context classification (Raza et al., 2013). In these cases, organizing a
video into spatio-temporal tubes allows the joint consideration of appearance and
motion, while reducing the search space for the solution. On the other hand, video
segmentation poses interesting research questions. In addition to the scene and scale
ambiguities of image segmentation (Arbeláez et al., 2011; Dollár and Zitnick, 2015;
Isola et al., 2014; Ren and Bo, 2012), various parts of the scene will change over time
as well as appear or disappear.

Graph-based approaches are among the top-performing methods for video seg-
mentation (Grundmann et al., 2010; Fragkiadaki and Shi, 2012; Palou and Salembier,
2013; Xu et al., 2013; Galasso et al., 2014). The use of graphs is long established in
segmentation (Shi and Malik, 2000; Arbeláez et al., 2011; Isola et al., 2014; Maire and
Yu, 2013; Brox and Malik, 2010; Palou and Salembier, 2013; Sundaram and Keutzer,
2011). Graphs provide a natural representation of image/video sequences, where
edges encode the spatio-temporal structure, and allow long-term reasoning due to
their transitivity property. Graph-based video segmentation techniques:

1. compute features among pairs of pixels or superpixels;

2. design a graph according to the spatio-temporal neighborhood of the pixels or

109
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BPR Video GT

VPR Galasso et al. (2014) Proposed [L(G)]

Figure 7.1: Climbing up! We contribute theory and best-practices for graph construc-
tion and achieve high-quality results on the challenging VSB100 Galasso et al. (2013)
(BPR and VPR reported here, more details in Section 7.5.)

superpixels and manually combine features to weight its edges;

3. partition the graphs with spatio-temporal clustering.

Previous work has used a variety of features and has proposed various graph
partitioning algorithms. However, we argue in this chapter that constructing the
underlying graph is a crucial step for best performance of such graph-based methods
that has received little attention in the literature. This work therefore explicitly
addresses the problem of graph construction. We propose and empirically evaluate
procedures and validation-based best practices to learn both the edge topology and
weights.

Our contribution includes:

• Using a classifier for learning the pairwise similarities between superpixels,
leveraging the recent availability of a larger training set for video segmenta-
tion (Galasso et al., 2013).

• Employing different classifiers for differently-neighboring superpixels (within
the same frame or across time) and further considering the neighboring topo-
logy (superpixels directly neighboring or connected by longer-term links).

• Calibrating the confidence of the various classifiers with their classification
accuracy.
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• Selecting edges based on the classifier confidence which, while further im-
proving the quality, also reduces the graph size and thus the computational
load.

These topics are respectively treated in Section 7.4. In Section 7.3 we present
the features and the graph partitioning model we use. The proposed approach
based on learning allows the seamless integration of multiple features from recent
literature (Brox and Malik, 2010; Arbeláez et al., 2011; Palou and Salembier, 2013;
Galasso et al., 2014). We build upon the graph partitioning model of Galasso et al.
(2014) based on spectral clustering and show that addressing the graph construction
explicitly helps to achieve better performance (cf. Figure 7.1) without altering the
graph partitioning or the underlying features.

7.2 previous work on graph construction

Meaningful features are necessary for good video segmentation. Much literat-
ure (Brox and Malik, 2010; Grundmann et al., 2010; Palou and Salembier, 2013;
Galasso et al., 2012) has proposed features for appearance, motion or shape simil-
arities among the graph nodes. Most works are currently limited in the number of
features they can leverage, as often the researchers hand-design the feature combin-
ation to measure similarity between pixels or superpixels. In this work we learn
classifiers to combine features and seamlessly integrate them.

Much research has been devoted to graph partitioning models (Couprie et al.,
2011; Xu et al., 2013; Maire and Yu, 2013; Andres et al., 2011; Cheng and Ahuja,
2012; Jain et al., 2013; Galasso et al., 2014). While measurable differences have
been observed we intentionally focus on the graph construction problem instead.
Therefore, we adopt the recent and successful graph partitioning model (Galasso
et al., 2014), which is based on spectral clustering (Ng et al., 2001; Shi and Malik,
2000; Brox and Malik, 2010; Fragkiadaki and Shi, 2012; Sundaram and Keutzer,
2011). However, our proposed graph construction is directly applicable to other
graph-based techniques (see Section 7.5).

Constructing the graph is a vital step for ensuring the performance of clustering
methods (Maier et al., 2009; Jebara and Chang, 2009) Although graph-based methods
have been extensively studied, there have been limited efforts for building effective
graphs. The most popular method for constructing a sparse graph is the nearest
neighbor (NN) approach, including different variants such as k-nearest neighbor
and ε-nearest neighbor methods. Another contender approach is the b-matching
procedure (Jebara and Shchogolev, 2006), which prunes graph edges such that the
degree of each node is b, producing a more balanced variant of k-nearest neighbor.
Several works explored semi-supervised learning of the graph (Jebara and Chang,
2009; Alexandrescu and Kirchhoff, 2007), i.e. learning the graph from its partial
labelling. By contrast our method is applied to unlabeled test-set videos.

To the best of our knowledge, graph construction based on classifier-learnt
combination of features is novel in video segmentation. While learning the edge
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weights of the graph has been exploited in image segmentation (Ren and Malik,
2003; Turaga et al., 2009; Kim et al., 2013), our work addresses the topology of the
graph, raising novel issues, such as weight-calibration and edge-selection, which we
discuss in Section 7.4. Learning the topology provides larger performance gains and
benefits efficiency due to a sparser structure of the constructed graph.

7.3 graph-based video segmentation

Let us represent a video sequence as a graph G = (V , E). Nodes i ∈ V are su-
perpixels, extracted at each frame from a specific hierarchical level of an image
segmentation algorithm (Arbeláez et al., 2011). Following Galasso et al. (2014), we
do not consider the lowest level (finest superpixels), but rather extract them by
thresholding the ultrametric contour map (ucm) at a higher value (0.12), whereby
fewer of them (larger superpixels) provide a comparable model error.

Edges of the graph eij ∈ E connect pairs of superpixels i and j with non-negative
weight wij, which expresses their similarity. Following Grundmann et al. (2010);
Lezama et al. (2011); Galasso et al. (2012); Palou and Salembier (2013), edges may
connect neighbors:

within frame: i and j are neighbors if they share a common part of their
superpixel contour or are close by in the spatial domain of the frame;

across 1 frame: connected by coordinate correspondences over time;

across 2 frames: connected by across-1 correspondences, further propagated
over one more frame;

across > 2 frames: linked if overlapping with common long-term point traject-
ories.

Graph based video segmentation proceeds in three main steps:

1. Feature computation. Depending on the edge type, a number of features are
available to compute the similarity between superpixels. For example, su-
perpixels on the same frame may be related by the strength of the image
segmentation boundary between them (aba) and by the χ2 distance between
their color histograms (staχ2); if neighboring across frames, just staχ2 applies
(see Section 7.4.1 and Table 7.1 for more details).

2. Graph construction. State-of-the-art approaches use edges eij if the two super-
pixels are neighbors, either within or across frames. Then, they compute edge
weights wij by combining the similarities from the applicable features linearly.
Current video segmentation literature (Brox and Malik, 2010; Grundmann et al.,
2010; Galasso et al., 2012; Palou and Salembier, 2013) sets the combinations
manually on a validation set.
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3. Graph partitioning. Video segmentation S is defined as a partition of the vertex
set V : S = {S1, S2, . . . , SK} , i.e. ∪kSk = V , Sk ∩ Sm = ∅ ∀ k 6= m. Given
S the set of all partitions, graph partitioning looks for the optimal video
segmentation S∗ = {S∗1 , S∗2 , . . . , S∗N} ∈ S (where N is the number of visual
objects) which minimizes an objective function, implicitly (Grundmann et al.,
2010; Xu et al., 2012; Paris, 2008) or explicitly (Shi and Malik, 2000; Ng et al.,
2001; Vazquez-Reina et al., 2010; Chang et al., 2013).

Different to previous work, we focus on the graph construction. Since we use discrim-
inatively trained classifiers to combine features, we name ours a learnt graph L(G).
Furthermore, we investigate graph topology, classifier output confidence mapping
and edge selection in detail in Section 7.4.

In the rest of this Section, we present the features which we use and the graph
partitioning model which we adopt, based on spectral clustering and the graph-
equivalent reweighting from Galasso et al. (2014). We use the publicly available code
of Galasso et al. (2014) for the original graph construction and partitioning method.

7.3.1 Superpixel features

Adopting learning allows to seamlessly integrate an arbitrary number of features
into the computation of the graph edge weights, letting the classifier work out the
optimal combination. We consider 14 well-established features from video segment-
ation techniques (Hoiem et al., 2007; Brox and Malik, 2010; Arbeláez et al., 2011;
Galasso et al., 2012; Palou and Salembier, 2013; Galasso et al., 2014), which apply to
superpixels. We present them by grouping appearance, motion and shape features.

7.3.1.1 Appearance Based Features

Across boundary appearance [aba]. This measures similarity in the close vicinity of
the common boundary between two superpixels i f and j f by averaging the common
boundary strength (here and in the following we explicitly indicate the frame f
which the superpixel belongs to for clarity). We take vij

f the average ultrametric
contour map of Arbeláez et al. (2011) as a measure of the boundary strength between
i and j and define: aba(i f , j f ) = vij

f .
Spatio-temporal appearance [sta, staχ2]. This uses the distance between the median
brightness and color of a superpixel in Lab-color-space as a measure of the overall
similarity among two superpixels i and j, from the same or different frames f and
f ′: sta(i f , j f ′) = exp

{
−λsta‖Labi f − Labj f ′

‖
}

.
Similarly staχ2 measures the overall appearance similarity using Lab (8-bin) color

histograms and their χ2 distance: staχ2(i f , j f ′) = exp
{
−λsta

χ2 dχ2(h(Labi f ), h(Labj f ))
}

.
Texture [text, textχ2]. Texture information may be encoded (cf. Hoiem et al. (2007) for
more details) with (a subset of) the textons designed by Leung and Malik (2001). We
consider the L2 distance between the mean absolute filter responses text(i f , j f ′) =
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exp
{
−λtext‖Ti f − T j f ′

‖
}

and the chi-squared distance between the histograms of

maximum filter responses textχ2(i f , j f ′) = exp
{
−λtext

χ2 dχ2(h(Ti f ), h(Tj f ))
}

.
Size ratio [size]. We further consider the relative size difference of superpixels as an
indication of appearance similarity size(i f , j f ′) =

∣∣|i f |−|j f ′ |
∣∣/ max{|i f |, |j f ′ |}.

7.3.1.2 Motion Based Features
Across boundary motion [abm]. We consider an optical flow estimate (Zach et al.,
2007), which we smooth spatially (preserving the across-superpixels boundaries with
bilateral filtering) and temporally (median filtered ±2 frames). The resulting u f (x)
(simply indicated as u f in the following) allows to compute the motion similarity in
the vicinity of the boundary between two superpixels by averaging their u f distance
across the common boundary ψ

ij
f :

abm(i f , j f ) = exp
{
−λabm

(
∑

(xm
i ,xm

j )∈ψ
ij
f
‖u f (xm

i )− u f (xm
j )‖2)/|ψij

f |
}

.

Spatio-temporal motion [stm, stmχ2]. This measures the overall motion simil-
arity between two superpixels i f and j f ′ based on their median optical flow u:
stm(i f , j f ′) = exp

{
−λstm‖ui f − uj f ′

‖2}.

Similarly, we may compute the similarity with the χ2 distance between the super-
pixel optical flow (22 bin) histograms: stmχ2(i f , j f ′) = exp

{
−λstm

χ2 dχ2
(
h(ui f ), h(uj f ′

)
)}

.
Spatial distance [sd]. As a measure of motion-displacement, we additionally con-
sider the spatial distance between centroids of superpixels ci f and cj f ′

across frames:
sd(i f , j f ′) =‖ci f − cj f ′

‖.

7.3.1.3 Shape Based Features
Short term temporal [stt]. We measure the shape similarity by comparing mj f ′

the shape (its binary mask m) of a superpixel j at frame f ′ with the shape of i f

propagated with optical flow to frame f ′ (its projected mask m f ′

i f
). stt is given by the

Dice coefficient between the true mj f ′
and optical-flow-projected m f ′

i f
binary mask:

stt(i f , j f ′) = 2
∣∣m f ′

i f

⋂
mj f ′

∣∣/(∣∣m f ′

i f

∣∣+∣∣mj f ′

∣∣).
Long term temporal [ltt, cit, td]. In a similar spirit to stt, ltt measures the similarity
between superpixels i f and j f ′ which belong to frames potentially further in time
from each other ( f ′ = f + m, m ∈ (0, F] where F scales up to the whole length of
the video sequence). We consider the dense point trajectories of (Sundaram et al.,
2010) as a measure of the shape (binary mask) projection. Let Φi f be the subset of
trajectories intersecting superpixel i f . The similarity is the Dice measure between
the intersection sets Φi f and Φj f ′

: ltt(i f , j f ′) = 2
∣∣Φi f

⋂
Φj f ′

∣∣/(∣∣Φi f

∣∣+∣∣Φj f ′

∣∣).
We additionally provide the classifier with the number of common intersecting

trajectories (the fewer dense tracks are available, the less it should rely on ltt as a
reliable shape similarity): cit(i f , j f ′) =

∣∣Φi f

⋂
Φj f ′

∣∣ and temporal distance between
superpixels td(i f , j f ′) =| f − f ′|.
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7.3.2 Graph partitioning

We consider the graph partitioning model of Galasso et al. (2014). The approach
seeks to determine the graph partition S = {S1, S2, . . . , SN} (complete and disjoint
∪kSk = V , Sk ∩ Sm = ∅ ∀ k 6= m) which is optimal according to the normalized cut
(NCut) objective:

NCut(S1, . . . , SN) =
N

∑
k=1

cut(Sk,V\Sk)

vol(Sk)
, (7.1)

where cut(Sk,V\Sk) = ∑i∈Sk,j∈V\Sk
wij and vol(Sk) = ∑i∈Sk,j∈V wij.

Following established literature (Shi and Malik, 2000; Ng et al., 2001; von Luxburg,
2007; Corso et al., 2008; Brox and Malik, 2010; Arbeláez et al., 2011; Sundberg et al.,
2011; Sundaram and Keutzer, 2011; Di et al., 2012; Galasso et al., 2012; Fragkiadaki
and Shi, 2012; Maire and Yu, 2013; Galasso et al., 2014), we consider the spectral
relaxation of the NCut problem (otherwise NP-Hard):

min
T

Tr(T′LsymT) subject to TT′ = I, T = D
1
2 H, (7.2)

where H is the matrix containing indicator vectors hi, Lsym = I − D−
1
2 WD−

1
2 is the

normalized graph Laplacian, W is the matrix containing the pairwise affinities wij
and D is the diagonal degree matrix with dii = ∑j∈V wij. The solution of (7.2) is
provided by matrix T which contains the first k eigenvectors Lsym as columns.

As theoretically and empirically relevant to good performance, we reweight the
affinities wij, as Galasso et al. (2014) suggest, by the number of fine superpixels to
wQ

I J (cf. Galasso et al. (2014) for more details):

wQ
I J =


∑
i∈I

∑
j∈J

wij if I 6= J,

1
|I|∑i∈I

∑
j∈J

wij −
(|I| − 1)
|I| ∑

i∈I
∑

j∈V\I
wij if I = J.

(7.3)

7.3.3 VSB100: Learning, Validating and Testing

Galasso et al. (2013) have introduced VSB100: a challenging video segmentation
benchmark based on the HD quality videos from Sundberg et al. (2011), the boundary
precision-recall (BPR) metric from Arbeláez et al. (2011) and a volume precision-
recall metric (VPR) that reflects the properties of a good video segmentation, such
as temporal consistency. Besides the PR curves, we report aggregate performance
for BPR and VPR: optimal dataset scale [ODS], optimal segmentation scale [OSS],
average precision [AP]. (We additionally report the length and number of clusters
(NCL) statistics.)

The 100 videos are arranged into train (40) and test (60) set. We further split the
training set into a training and validation sets, where 24 video sequences are used for
learning the classifier and 16 videos are used for validation of the parameters. We
compare with other approaches on the whole test set.
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7.4 graph construction

Here we discuss the proposed graph construction L(G). First we consider learning
for estimating the edge weights and the importance of topology in the setup of
different classifiers. Then we consider calibration of classifier scores based on their
reliability. Finally, we discuss edge selection, for a sparse efficient graph. We conduct
these experiments on the training and validation sets.

7.4.1 Learning superpixel affinities

Let us consider the graph G = (V , E), as introduced in Section 7.3, composed of
superpixel nodes, connected over their spatio-temporal neighborhoods.

We propose the use of a classifier to learn the edge weights. To this end, we
harvest from the training set pairs of superpixels connected by an affinity and
provide them to a classifier along with their ground truth labelling (the indication
whether two superpixels belong to the same video segment or not). Random Forest
is used for learning.

There are four superpixel edge types: within, across 1, across 2 and across > 2
frames. While a single classifier should suffice for all, in our first experiments it
turned out that its performance is extremely poor. By contrast, the use of multiple
classifiers is beneficial. We attribute this to data unbalance (the edges within frames
are the vast majority) and to scarcity of training samples (esp. compared to the large
image and video variability).

We set therefore to consider four classifiers for the four edge types. The corres-
ponding available features are:

within frame: sta, staχ2 , stm, stmχ2 , aba, abm, sd, text, textχ2 , size;

across 1: sta, staχ2 , stm, stmχ2 , stt, sd, text, textχ2 , size;

across 2: ltt, cit, stt, sd, text, textχ2 , size;

across > 2: ltt, cit, sd, td, size.

In our experience the Random Forest classifier profits from removing redundant
or irrelevant features. Therefore for each affinity type we validate the subset of
features to improve the model. The maximum set which we consider consists of 10

features (within frame), therefore we can test each possible combination finding the
one which maximizes the average precision of the classifier. This is an exhaustive
search of the feature space; however, in this particular setting it is computationally
tractable as the feature set is quite small. We train a new classifier for each subset
of features and validate the performance on a subset of the validation set. The
best performing feature sets for each affinity type are reported in Table 7.1. Our
findings on the importance of each feature for each affinity type are in agreement
with Galasso et al. (2012) (the most contributive are highlighted in bold in the table).
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Our experiments confirm that only considering pairs of superpixels in the training
set which have at least 60% overlap with ground truth objects improves results, as
also noted in Oneata et al. (2014); Raza et al. (2013). Further stricter thresholds do
not benefit the performance and also reduce the number of training samples.

In Figure 7.2, we plot precision-recall curves comparing our learnt affinities
against the original ones of Galasso et al. (2012), for which weighted-product com-
binations of motion, appearance and shape features were hand-tuned. Note that
the improvement of our curve (red) is particularly prominent at the high-precision
regimes. High precision scores are important as they correspond to decisions taken
with most confidence, thus most detrimental to the graph partitioning when wrong.

Implementation details. We use the Random Forest implementation of Dollár.
The number of features to sample for each node split is set to

√
F, where F is the

dimensionality of the feature space. As weak learners we use binary split functions,
and the maximum tree depth is set to 50. Split thresholds are chosen to optimize
the Gini impurity. The minimum number of data points required to split a node
in the tree is set to 15. Ensemble averaging is used to fuse the predictions of trees.
Other parameters, such as number of trees [250, 350, 150, 300] and minimum number
of data points allowed at leaves [10, 15, 5, 15] are validated on the subset of the
validation data and differs for each affinity type, depending on the dimensionality
of training sets.

7.4.2 Topology of the graph

Note from Figure 7.2 the overall performance (red curves) of the affinities learnt
for the across 1 (Figure 7.2(b)) and the across 2 type (Figure 7.2(c)). The across 1

type have 55% precision (we take the overall precision at 100% recall). These have
therefore 55% chance of correctness compared to 82% of the across 2 type learnt
affinities. The across 1 affinities should ideally be more accurate, as they connect
superpixels closer in time.

Let us take a closer look at the graph topology of Galasso et al. (2014), i.e. the
edge connectivity E . In the case of connectivity between superpixels within or across
1 frame, the graph is densified by using edges among neighboring superpixels (we
call these layer-1 neighbors) and among more distant superpixels which share the
same neighbor (we name these layer-2 neighbors). While the across 1 type affinities
consider both direct temporal neighbors (best temporally-matching superpixel edges,

Affinity type Set of features
i. within frame {sta, staχ2 , stm, stmχ2 , aba, abm, sd, text, textχ2 , size}
ii. across 1 frame {sta, staχ2 , stm, stt, sd, text, textχ2 , size}
iii. across 2 frames {ltt, cit, stt, sd, size}
iv. across > 2 frames {ltt, cit, sd, td}

Table 7.1: Set of features for learning.
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a) Within b) Across 1

c) Across 2 d) Across > 2

Figure 7.2: Affinity scores designed by Galasso et al. (2012) vs learned affinities.

according to optical flow propagation) and layer-2 neighbors, the across 2 type
affinities only consider layer-1 neighbors.

We propose to treat the topologically different neighbors separately, which we
illustrate in Figure 7.3, whereby we plot precision-recall curves for all types of our
learnt affinities. We separate the two topologies both for the within and the across
1 type and re-learn separate classifiers. The results in Figure 7.3 show that now
the layer-1 across 1 affinities reaches the overall performance (85%) of the across 2

affinity, and the corresponding performance of the within type also raises to 80%.
As for the across 2 type, also the across > 2 type only has layer-1 neighbors and is
therefore not affected by the topological procedure.

Taking into account the topology of the graph increases performance and im-
proves the edge-selection procedure (cf. Section 7.4.4). Treating separately the two
neighbor layers, video segmentation performance increases (on the validation set)
by 2% on the BPR and 3% on the VPR measures of VSB100 (Galasso et al., 2013)
(cf. Figure 7.5). (These experiments are conducted by changing the topology of the
graph and selecting edges with precision higher than 97% for all affinity types.)
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Figure 7.3: Performance of affinities,
defined by the original graph topo-
logy (Galasso et al., 2014).

Figure 7.4: Calibration of classifier scores.

7.4.3 Calibration of classifier outputs

An ideal subsequent processing of the graph would be the selection of the most
likely edges (assuming that these be correct) and the deletion of wrong ones. This
is desirable because it sparsifies the graph and reduces the chance of segmentation
errors. For this purpose the classifier scores should correspond to the confidence
measure of two superpixels being merged together. However, the classifier outputs
for different affinity types have different ranges and provide different confidence
levels.

We propose a probabilistic interpretation of the learnt scores and to calibrate
the classifier outputs based on their performance on the validation set. We define
a linear mapping Π : S 7→ P, such that the classifier score s is approximated by its
precision value p. We mean by precision p the ratio of true positive edges among all
weights higher than or equal s. Precision is taken as a proxy to the true posterior
probability (affinity between two nodes).

For each affinity type we estimate its own calibration function, which is illustrated
in Figure 7.4. This calibration is an easier interpretation of the classifier outputs
and serves to align the scores to their quality. This is important when combining
multiple classifiers, as also noted by Hallman and Fowlkes (2015).

The calibration of classifier outputs is not dependent on the choice of the learning
algorithm. The proposed procedure provides a way to encode edge weights and
in our experience can help to improve the clustering performance. The calibrated
classifier output scores are used as edge weights in the graph.
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BPR VPR Length NCL
BPR VPR Length NCL

Algorithm ODS OSS AP ODS OSS AP µ(δ) µ

Galasso et al. (2014) 0.46 0.49 0.37 0.54 0.61 0.56 75.94(46.39) 60

Galasso et al. (2014) + edge selection 0.47 0.51 0.37 0.57 0.62 0.57 74.14(46.26) 70

[L(G)] + calibration 0.49 0.53 0.36 0.59 0.65 0.59 96.83(34.42) 50

[L(G)] + calibration + topology 0.51 0.54 0.38 0.62 0.67 0.62 97.85(33.55) 60

[L(G)] + calibration + edge selection 0.52 0.57 0.44 0.65 0.70 0.64 94.23(37.59) 20

[L(G)] + calibr. + topology + edge select. 0.52 0.58 0.44 0.66 0.70 0.65 96.34(37.24) 20

Figure 7.5: Comparison of the proposed graph learning method with the baseline
algorithm of Galasso et al. (2014), on the validation set of VSB100 Galasso et al. (2013).
The plots and table show BPR and VPR measures, aggregate performances ODS,
OSS and AP, and length statistics (mean µ, std. δ, no. clusters NCL) (cf. Section 7.4.4
for details).

7.4.4 Edge selection

Following the argument of the previous section, we now modify the graph structure
by reducing the number of edges and selecting the ones with high confidence. Each
affinity type is thresholded with some confidence level, reducing the number of
temporal and spatial edges in the graph. The goal is to have a connected graph with
a minimal set of the most certain edges, as for maximal sparsity and the least chance
of segmentation error.

For finding the optimal thresholds for each affinity type grid search is applied. We
find the confidence levels for four affinity types which provide the best performance
on the validation set. We measure the performance as the sum of F-measures (ODS,
OSS) and AP for BPR and VPR metric. We restrict the candidate space of the
thresholds for each affinity type to [0.5;1], as the goal is to leave the most confident
edges which have at least 50% precision. Edge selection turns out to be essential for
best performance, cf. the next discussion.

We also explored other procedures for edge selection, such as kNN, but they
all underperform by large margins. Our edge selection produces a potentially
unbalanced (nodes have different number of neighbors) but better graph.
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BPR VPR Length NCL
BPR VPR Length NCL

Algorithm ODS OSS AP ODS OSS AP µ(δ) µ

Human 0.81 0.81 0.67 0.83 0.83 0.70 83.24(40.04) 12

Grundmann et al. (2010) 0.47 0.54 0.41 0.52 0.55 0.52 87.69(34.02) 19

Galasso et al. (2012) 0.51 0.56 0.45 0.45 0.51 0.42 80.17(37.56) 8

Galasso et al. (2013) 0.61 0.65 0.59 0.59 0.62 0.56 25.50(36.48) 258

Galasso et al. (2014) 0.62 0.66 0.54 0.55 0.59 0.55 61.25(40.87) 80

Khoreva et al. (2014) 0.61 0.66 0.52 0.58 0.61 0.58 51.72(39.90) 177

Proposed [L(G)] 0.64 0.70 0.61 0.63 0.66 0.63 83.41(35.27) 50

Figure 7.6: Comparison of video segmentation algorithms with our proposed
method on the test set of VSB100 Galasso et al. (2013) (cf. Section 7.5 for details).

7.4.5 Discussion

In Figure 7.5, we analyze how the learnt graph [L(G)] and the proposed steps
improve on the (validation) performance, with respect to the baseline algorithm of
Galasso et al. (2014).

Given a learnt and calibrated graph (3rd row), topology improves 2.2% (4th row,
average improvement over all six measures) while edge selection improves 5.2% (5th
row). Edge selection is thus more important than topology. Adding topology on
top of edge selection further contributes 0.5%. The importance of edge selection
contrasts previous literature (Ren and Malik, 2003; Turaga et al., 2009; Kim et al.,
2013), all concerned with edge weights.

To further test the importance of edge selection, we have applied this to the
baseline algorithm of Galasso et al. (2014) (1st and 2nd rows). The improvement is
only marginal (1.3%). We conclude therefore that a pre-requisite for successful edge
selection is weight calibration plus the good performance of the classifier in the high
precision regime (see Figure 7.2).

7.5 experimental evaluation

In Figure 7.6 we compare the proposed method to the baseline (Galasso et al., 2014)
as well as video segmentation algorithms of Grundmann et al. (2010), Galasso et al.
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BPR VPR
Algorithm ODS OSS AP ODS OSS AP
Galasso et al. (2014) - 1–SC (Hein and Bühler, 2010) 0.61 0.64 0.52 0.55 0.60 0.54

[L(G)] - 1–SC (Hein and Bühler, 2010) 0.63 0.69 0.63 0.60 0.65 0.59
Galasso et al. (2014) - GRACLUS (Dhillon et al., 2007) 0.59 0.64 0.51 0.34 0.46 0.31

[L(G)] - GRACLUS (Dhillon et al., 2007) 0.62 0.67 0.52 0.54 0.60 0.53
Galasso et al. (2014) - MCL (van Dongen, 2008) 0.59 0.64 0.45 0.40 0.46 0.37

[L(G)] - MCL (van Dongen, 2008) 0.64 0.68 0.39 0.58 0.59 0.59

Table 7.2: General applicability of the proposed graph construction. We have tested
different clustering methods with the graph of Galasso et al. (2014) and our learnt
graph. In all cases the learnt graph yields better performance and thus generalizes
beyond the employed spectral clustering.

(2012, 2013) and our approach proposed in Chapter 6 (Khoreva et al., 2014) on the
test set of VSB100 (Galasso et al., 2013). We consider the graph [L(G)] with the learnt
topology and edge weights proposed in Section 7.4.

The proposed method improves the performance of Galasso et al. (2014) on both
BPR and VPR by a large margin, as it appears both in the plots and the tables (average
improvement of 4% in BPR and 8% in VPR, 6% on all measures). We outperform
all considered video segmentation algorithms and the challenging segmentation
propagation baseline (Galasso et al., 2013).

The proposed graph construction, however, is directly applicable to other graph-
based techniques. We have tested different graph partitioning methods (Bühler and
Hein, 2009; Hein and Bühler, 2010; Dhillon et al., 2007; van Dongen, 2008) with
the graph of Galasso et al. (2014) and our learnt graph, the results are presented
in Table 7.2. For all three tested methods our learnt graph improves significantly
the performance both on BPR and VPR (up to 6–10% on average). This shows
that our graph construction generalizes beyond the employed spectral clustering
technique. Note that the 1-spectral clustering approach (Bühler and Hein, 2009; Hein
and Bühler, 2010) outperforms spectral clustering in terms of AP with respect to
BPR while being worse on VPR.

Regarding runtime, the efficiency of the algorithm depends on the number of
superpixels n (nodes in the graph). The (test-time) Random Forests classification
runtime is negligible with respect to feature computation and graph partition. In
spectral clustering, the bottleneck is the eigendecomposition: the Lanczos method
has complexity O(kE) and the iteration number scales with ∼ log E (k the number
of eigenvectors and E the number of edges in the graph, which scales linearly with
n, approx. ∼ 366n). In our graph due to the edge selection procedure the average
number of edges is reduced to 15% and the constructed graph is much sparser, hence
the reduction in runtime of 55% with respect to Galasso et al. (2014). E.g. runtime of
“soccer” reduces from 4.8 min to 2.9 min, “hippo fight” from 9.3 min to 4.4 min.

We illustrate qualitative results, comparing in Figure 7.7 our proposed algorithm
to other video segmentation methods (Grundmann et al., 2010; Galasso et al., 2012,
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Video GT Grundmann et al. (2010) Galasso et al. (2012) Galasso et al. (2013) Galasso et al. (2014) [L(G)]

Figure 7.7: Comparison of video segmentation results of algorithms (Grundmann
et al., 2010; Galasso et al., 2012, 2013, 2014) and our proposed method [L(G)] to one
of ground truths (Galasso et al., 2013). We report for each algorithm the coarse-to-
fine segmentation level with best performance in VPR. Our approach qualitatively
improves on the algorithm of Galasso et al. (2014), better discriminating visual objects
with less number of clusters (cf. Section 7.5 for details).

Video GT Grundmann et al. (2010) Galasso et al. (2012) Galasso et al. (2013) Galasso et al. (2014) [L(G)]

Figure 7.8: Failure cases for the algorithms (Grundmann et al., 2010; Galasso et al.,
2012, 2013, 2014) and the proposed graph learning method [L(G)]. All methods fail
to correctly discern objects, oversegmenting the foreground and background due to
the misleading appearance differences and textured background.
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2013, 2014). Figure 7.7 supports the positive quantitative results. The proposed ap-
proach allows to better distinguish visual objects with well-localized boundaries and
limited label leakage. Segmentations provided by our method capture better motion
and appearance self-contained within the objects, distinguishing the homogeneous
areas of foreground and background with less number of clusters. However, a failure
cases show further potential for improvement (see Figure 7.8).

7.6 conclusions

In this chapter we addressed the classifier based graph construction procedure for
video segmentation. We proposed an empirical approach to learn both the edge
topology and weights of the graph. While combining well-established features by
means of a classifier and calibrating the classifier scores by its accuracy we alter
the graph structure selecting the most confident edges. Our method of learning the
graph helps to improve both performance on the challenging VSB100 benchmark as
well as efficiency without changing the graph partitioning model.

In the next chapter we aim to improve the graph nodes - superpixels, which are
the starting point for unary and pairwise terms, and thus have a direct influence
on the final quality of video segmentation techniques proposed in the current and
previous chapters.



8I M P R O V E D I M A G E B O U N D A R I E S F O R B E T T E R V I D E O
S E G M E N TAT I O N

While in the two previous chapters we have focused on the construction
of the graph as well as solving the graph partitioning problem with
must-link constraints, this chapter focuses on better superpixels for video

segmentation.
We demonstrate by a comparative analysis that superpixels extracted from bound-

aries perform best, and show that boundary estimation can be significantly improved
via image and time domain cues. With superpixels generated from our better bound-
aries we observe consistent improvement for two video segmentation methods in
two different datasets.

8.1 introduction

Class-agnostic image and video segmentation have shown to be helpful in diverse
computer vision tasks such as object detection (via object proposals) (Krähenbühl
and Koltun, 2014; Pont-Tuset et al., 2016; Humayun et al., 2014, 2015), semantic
video segmentation (as pre-segmentation) (Dai et al., 2015b), activity recognition (by
computing features on voxels) (Taralova et al., 2014), or scene understanding (Jain
et al., 2013).

Both image and video segmentation have seen steady progress recently leveraging
advanced machine learning techniques. A popular and successful approach consists
of modeling segmentation as a graph partitioning problem (Fragkiadaki and Shi,
2012; Ochs et al., 2014; Keuper and Brox, 2016), where the nodes represent pixels
or superpixels, and the edges encode the spatio-temporal structure. Previous work
focused on solving the partitioning problem (Brox and Malik, 2010; Grundmann
et al., 2010; Palou and Salembier, 2013; Yi and Pavlovic, 2015), on the unary and
pairwise terms of the graph (Galasso et al., 2014) and on the graph construction itself
(Ren and Malik, 2003; Turaga et al., 2009; Khoreva et al., 2015).

The aim of this work is to improve video segmentation by focusing on the graph
nodes themselves, the video superpixels. These nodes are the starting point for
unary and pairwise terms, and thus directly impact the final segmentation quality.
Good superpixels for video segmentation should both be temporally consistent and
give high boundary recall, and, in the case of graph-based video segmentation, for
efficient runtime should enable to use a few superpixels per frame which is related
to high boundary precision.

Our experiments show that existing classical superpixel/voxel methods (Chang
et al., 2013; Achanta et al., 2012; Bergh et al., 2013) underperform for graph-based
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Video TSP superpixels gPbI superpixels Our superpixels
(Chang et al., 2013) (Arbeláez et al., 2011) (101 spx)

(117 spx) (101 spx)

Figure 8.1: Graph based video segmentation relies on having high quality super-
pixels/voxels as starting point (graph nodes). We explore diverse techniques to
improve boundary estimates, which result in better superpixels, which in turn has a
significant impact on final video segmentation.

video segmentation and superpixels built from per-frame boundary estimates are
more effective for the task (see Section 8.5). We show that boundary estimates can be
improved when using image cues combined with object-level cues, and by merging
with temporal cues. By fusing image and time domain cues, we can significantly
enhance boundary estimation in video frames, improve per-frame superpixels, and
thus improve video segmentation.

In particular we contribute:

• A comparative evaluation of the importance of the initial superpixels/voxels
for graph-based video segmentations (Section 8.5).

• Significantly improved boundary estimates (and thus per-frame superpixels)
by the careful fusion of image (Section 8.6.1) and time (Section 8.6.2) domain
cues.

• The integration of high-level object-related cues into the local image segmenta-
tion processing (Section 8.6.1.1).

• High-quality video segmentation results on the VSB100 (Galasso et al., 2013)
and BMDS (Brox and Malik, 2010) datasets.

8.2 previous work on superpixels/voxels

Video segmentation can be seen as a clustering problem in the 3D spatial-temporal
volume. Considering superpixels/voxels as nodes, graphs are a natural way to
address video segmentation and there are plenty of approaches to process the
graphs.

Previous work covers various aspects related to graph based video segmentation.
Several papers have addressed the features for video segmentation (Brox and Malik,
2010; Grundmann et al., 2010; Palou and Salembier, 2013) and some work has
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addressed the graph construction (Ren and Malik, 2003; Turaga et al., 2009). While
these methods are based on superpixels none of them examines the quality of the
respective superpixels for graph-based video segmentation. To the best of our
knowledge, this work is the first to thoroughly analyze and advance superpixel
methods in the context of video segmentation.

We distinguish two groups of superpixel methods. The first one is the classical
superpixel/voxel methods (Chang et al., 2013; Achanta et al., 2012; Bergh et al.,
2013; Levinshtein et al., 2009). These methods are designed to extract superpixels
of homogeneous shape and size, in order for them to have a regular topology.
Having a regular superpixel topology has shown a good basis for image and video
segmentation (Grundmann et al., 2010; Papazoglou and Ferrari, 2013; Badrinarayanan
et al., 2013; Ren and Malik, 2003).

The second group are based on boundary estimation and focus on the image
content. They extract superpixels by building a hierarchical image segmentation
(Arbeláez et al., 2011; Isola et al., 2014; Dollár and Zitnick, 2015; Pont-Tuset et al.,
2016) and selecting one level in the hierarchy. These methods generate superpixels of
heterogeneous size, that are typically fairly accurate on each frame but may jitter over
time. Superpixels based on per-frame boundary estimation are employed in many
state-of-the-art video segmentation methods (Galasso et al., 2014; Vazquez-Reina
et al., 2010; Jain et al., 2013; Yi and Pavlovic, 2015).

In this work we argue that boundaries based superpixels are more suitable for
graph-based video segmentation, and propose to improve the extracted superpixels
by exploring temporal information such as optical flow and temporal smoothing.

8.3 video segmentation methods

For our experiments we consider two open source graph-based video segmentation
methods (Galasso et al., 2013, 2014). Both of them rely on superpixels extracted from
hierarchical image segmentation (Arbeláez et al., 2011), which we aim to improve.

Spectral graph reduction (Galasso et al., 2014). Our first baseline is composed of
three main parts:

1. Extraction of superpixels. Superpixels are image-based pixel groupings which are
similar in terms of colour and texture, extracted by using the state-of-the-art
image segmentation of Arbeláez et al. (2011). These superpixels are accurate
but not temporally consistent, as only extracted per frame.

2. Feature computation. Superpixels are compared to their (spatio-temporal) neigh-
bors and affinities are computed between pairs of them based on appearance,
motion and long term point trajectories (Ochs et al., 2014), depending on the
type of neighbourhood (e.g. within a frame, across frames, etc.).

3. Graph partitioning. Video segmentation is cast as the grouping of superpixels
into video volumes. Galasso et al. (2014) employ either a spectral clustering or
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normalised cut formulation for incorporating a reweighing scheme to improve
the performance.

In our work we focus on the first part. We show that superpixels extracted from
stronger boundary estimation help to achieve better segmentation performance
without altering the underlying features or the graph partitioning method.

Segmentation propagation (Galasso et al., 2013). As the second video segmenta-
tion method we consider the baseline proposed in Galasso et al. (2013). This method
does greedy matching of superpixels by propagating them over time via optical flow.
This “simple” method obtains good results on VSB100. We therefore also report how
superpixels extracted via hierarchical image segmentation based on our proposed
boundary estimation improve this baseline.

8.4 video segmentation evaluation

VSB100. We consider for learning and for evaluation the challenging video seg-
mentation benchmark VSB100 (Galasso et al., 2013) based on the HD quality video
sequences of Sundberg et al. (2011), containing natural scenes as well as motion
pictures, with heterogeneous appearance and motion. The dataset is arranged into
train (40 videos) and test (60) set. Additionally we split the training set into a training
(24) and validation set (16).

The evaluation in VSB100 is mainly given by:

Precision-recall plots (BPR, VPR): VSB100 distinguishes a boundary precision-
recall metric (BPR), measuring the per-frame boundary alignment between
a video segmentation solution and the human annotations, and a volume
precision-recall metric (VPR), reflecting the temporal consistency of the video
segmentation result.

Aggregate performance measures (AP, ODS, OSS): for both BPR and VPR, VSB100

reports average precision (AP), the area under the precision-recall curves, and
two F-measures where one is measured at an optimal dataset scale (ODS) and
the other at an optimal segmentation scale (OSS) (where "optimal" stands for
oracle provided).

BMDS. To show the generalization of the proposed method we further consider
the Berkeley Motion Segmentation Dataset (BMDS) (Brox and Malik, 2010), which
consists of 26 VGA-quality videos, representing mainly humans and cars. Following
prior work (Khoreva et al., 2014) we use 10 videos for training and 16 as a test set,
and restrict all video sequences to the first 30 frames.
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Figure 8.2: Comparison of different superpixel/voxel methods, and their use for
video segmentation. VSB100 validation set. SPX: superpixels. Segm. prop.: segment-
ation propagation (Galasso et al., 2013) (see Section 8.3).

8.5 superpixels and supervoxels

Graph-based video segmentation methods rely on superpixels to compute features
and affinities. Employing superpixels as pre-processing stage for video segmentation
provides a desirable computational reduction and a powerful per-frame representa-
tion. Ideally these superpixels have high boundary recall (since one cannot recover
from missing recall), good temporal consistency (to make matching across time
easier), and are as few as possible (in order to reduce the chances of segmentation
errors; to accelerate overall computation and reduce memory needs).

In this section we explore which type of superpixels are most suitable for graph-
based video segmentation.
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Superpixel/voxel methods. Many superpixel/voxel methods have been explored
in the past. We consider the most promising ones in the experiments of Figure
8.2. SLIC 2D/3D (Achanta et al., 2012) is a classic method to obtain superpixels
via iterative clustering (in space and space-time domain). TSP (Chang et al., 2013)
extends SLIC to explicitly model temporal dynamics. Video SEEDS (Bergh et al.,
2013) is similar to SLIC 3D, but uses an alternative optimization strategy. Other than
classic superpixel/voxel methods we also consider superpixels generated from per-
frame hierarchical segmentation based on boundary detection (ultrametric contour
maps (Arbeláez et al., 2011)). We include gPbI (Arbeláez et al., 2011), SEI (Dollár and
Zitnick, 2015), PMI (Isola et al., 2014) and MCG (Pont-Tuset et al., 2016) as sources of
boundary estimates.

Superpixel evaluation. We compare superpixels by evaluating the recall and preci-
sion of boundaries and the under-segmentation error (Neubert and Protzel, 2013) as
functions of the average number of superpixels per frame. We also use some of them
directly for video segmentation (Figure 8.2d). We evaluate (use) all methods on a
frame by frame basis; supervoxel methods are expected to provide more temporally
consistent segmentations than superpixel methods.

Results. Boundary recall (Figure 8.2a) is comparable for most methods. Video
SEEDS is an outlier, showing very high recall, but low boundary precision (8.2b)
and high under-segmentation error (Figure 8.2c). gPbI and SEI reach the highest
boundary recall with fewer superpixels. Per-frame boundaries based superpixels
perform better than classical superpixel methods on boundary precision (Figure
8.2b). From these figures one can see the conflicting goals of having high boundary
recall, high precision, and few superpixels.

We additionally evaluate the superpixel methods using a region-based metric:
under-segmentation error (Neubert and Protzel, 2013). Similar to the boundary
results, the curves are clustered in two groups: TSP-like and gPbI -like quality
methods, where the latter underperform due to the heterogeneous shape and size of
superpixels (Figure 8.2c).

Figure 8.2d shows the impact of superpixels for video segmentation using the
baseline method of Galasso et al. (2013). We pick TSP as a representative superpixel
method (fair quality on all metrics), Video SEEDS as an interesting case (good bound-
ary recall, bad precision), SEI and MCG as good boundary estimation methods,
and the baseline gPbI (used in Galasso et al. (2013)). Although classical superpixel
methods have lower under-segmentation error than boundaries based superpixels,
when applied for video segmentation the former underperform (both on boundary
and volume metrics), as seen in Figure 8.2d. Boundary quality measures seem to be
a good proxy to predict the quality of superpixels for video segmentation. Both in
boundary precision and recall metrics having stronger initial superpixels leads to
better results.
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Intuition. Figure 8.1 shows a visual comparison of TSP superpixels versus gPbI
superpixels (both generated with a similar number of superpixels). By design, most
classical superpixel methods have a tendency to generate superpixels of comparable
size. When requested to generate fewer superpixels, they need to trade-off quality
versus regular size. Methods based on hierarchical segmentation (such as gPbI )
generate superpixels of heterogeneous sizes and more likely to form semantic regions.
For a comparable number of superpixels techniques based on image segmentation
have more freedom to provide better superpixels for graph-based video segmentation
than classical superpixel methods.

Conclusion. Based both on quality metrics and on their direct usage for graph-
based video segmentation, boundary based superpixels extracted via hierarchical
segmentation are more effective than the classical superpixel methods in the context
of video segmentation. The hierarchical segmentation is fully defined by the estim-
ated boundary probability, thus better boundaries lead to better superpixels, which
in turn has a significant impact on final video segmentation. In the next sections we
discuss how to improve boundary estimation for video.

8.6 improving image boundaries

To improve the boundary based superpixels fed into video segmentation we seek to
make best use of the information available on the videos. We first improve boundary
estimates using each image frame separately (Section 8.6.1) and then consider the
temporal dimension (Section 8.6.2).

8.6.1 Image domain cues

A classic boundary estimation method (often used in video segmentation) is gPbI
(Arbeláez et al., 2011) (I : image domain), we use it as a reference point for boundary
quality metrics. In our approach we propose to use SEI (“structured edges”) (Dollár
and Zitnick, 2015). We also considered the convnet based boundary detector of Xie
and Tu (2015). However, employing boundaries of Xie and Tu (2015) to close the con-
tours and construct per-frame hierarchical segmentation results in the performance
similar to SEI and significantly longer training time. Therefore in our system we
employ SEI due to its speed and good quality.

8.6.1.1 Object proposals

Methods such as gPbI and SEI use bottom-up information even though boundaries
annotated by humans in benchmarks such as BSDS500 or VSB100 often follow object
boundaries. In other words, an oracle having access to ground truth semantic
object boundaries should allow to improve boundary estimation (in particular on
the low recall region of the BPR curves). Based on this intuition we consider using
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segment-level object proposal (OP) methods to improve initial boundary estimates
(SEI ). Object proposal methods (Krähenbühl and Koltun, 2014; Pont-Tuset et al.,
2016; Humayun et al., 2014, 2015) aim at generating a set of candidate segments
likely to have high overlap with true objects. Typically such methods reach ∼80%
object recall with 103 proposals per image.

Based on initial experiments we found that the following simple approach ob-
tains good boundary estimation results in practice. Given a set of object proposal
segments generated from an initial boundary estimate, we average the contours of
each segment. Pixels that are boundaries to many object proposals will have high
probability of boundary; pixels rarely members of a proposal boundary will have
low probability. With this approach, the better the object proposals, the closer we are
to the mentioned oracle case.

We evaluated multiple proposals methods (Krähenbühl and Koltun, 2014; Pont-
Tuset et al., 2016; Humayun et al., 2014) and found RIGOR (Humayun et al., 2014) to
be most effective for this use (Section 8.6.1.5). To the best of our knowledge this is
the first time an object proposal method is used to improve boundary estimation.
We name the resulting boundary map OP (SEI).

8.6.1.2 Globalized probability of boundary

A key ingredient of the classic gPbI (Arbeláez et al., 2011) method consists on
“globalizing boundaries”. The most salient boundaries are highlighted by computing
a weighted sum of the spatial derivatives of the first few eigenvectors of an affinity
matrix built based on an input probability of boundary. The affinity matrix can be
built either at the pixel or superpixel level. The resulting boundaries are named
“spectral” probability of boundary, sPb (·). We employ the fast implementation from
Pont-Tuset et al. (2016).

Albeit well known, such a globalization step is not considered by the latest work
on boundary estimation (e.g. Dollár and Zitnick (2015); Bertasius et al. (2015a)). Since
we compute boundaries at a single-scale, sPb (SEI) is comparable to the SCG results
in Pont-Tuset et al. (2016).

8.6.1.3 Re-training

Methods such as SEI are trained and tuned for the BSDS500 image segmentation
dataset (Arbeláez et al., 2011). Given that VSB100 (Galasso et al., 2013) is larger and
arguably more relevant to the video segmentation task than BSDS500, we retrain
SEI (and RIGOR) for this task. In the following sections we report results of our
system trained over BSDS500, or with VSB100. We will also consider using input
data other than an RGB image (Section 8.6.2.1).

8.6.1.4 Merging cues

After obtaining complementary probabilities of boundary maps (e.g. OP (SEI),
sPb (SEI), etc.), we want to combine them effectively. Naive averaging is inadequate
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Figure 8.3: Progress when integrating
various image domain cues (Section 8.6.1)
in terms of BPR on VSB100 validation set.

Figure 8.4: Progress when integrating im-
age and time domain cues (Section 8.6.2)
in terms of BPR on VSB100 validation set.

because boundaries estimated by different methods do not have pixel-perfect align-
ment amongst each other. Pixel-wise averaging or maxing leads to undesirable
double edges (negatively affecting boundary precision).

To solve this issue we use the grouping technique from Pont-Tuset et al. (2016)
which proposes to first convert the boundary estimate into a hierarchical segmenta-
tion, and then to align the segments from different methods. Note that we do not
use the multi-scale part of Pont-Tuset et al. (2016). Unless otherwise specified all
cues are averaged with equal weight. We use the sign “+” to indicate such merges.

8.6.1.5 Boundary results when using image domain cues

Figure 8.3 reports results when using the different image domain cues, evaluated over
the VSB100 validation set. The gPbI baseline obtains 47% AP, while SEI (trained on
BSDS500) obtains 46%. Interestingly, boundaries based on object proposals OP (SEI)
from RIGOR obtain a competitive 49%, and, as expected, provide most gain in
the high precision region of BPR. Globalization sPb (SEI) improves results to 51%
providing a homogeneous gain across the full recall range. Combining sPb (SEI)
and OP (SEI) obtains 52%. After retraining SEI on VSB100 we obtain our best result
of 66% AP (note that all cues are affected by re-training SEI ).

Conclusion. Even when using only image domain cues, large gains can be ob-
tained over the standard gPbI baseline.

8.6.2 Temporal cues

The results of Section 8.6.1 ignore the fact that we are processing a video sequence.
In the next sections we describe two different strategies to exploit the temporal
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dimension.

8.6.2.1 Optical flow

We propose to improve boundaries for video by employing optical flow cues. We
use the state-of-the-art EpicFlow (Revaud et al., 2015) algorithm, which we feed with
our SEI boundary estimates.

Since optical flow is expected to be smooth across time, if boundaries are influ-
enced by flow, they will become more temporally consistent. Our strategy consists
of computing boundaries directly over the forward and backward flow map, by
applying SE over the optical flow magnitude (similar to one of the cues used in
Fragkiadaki et al. (2015)). We name the resulting boundaries map SEF (F : optical
flow). Although the flow magnitude disregards the orientation information from
the flow map, in practice discontinuities in magnitude are related to changes in flow
direction.

We then treat SEF similarly to SEI and compute OP (SEF ) and sPb (SEF ) over it.
All these cues are finally merged using the method described in Section 8.6.1.4.

8.6.2.2 Time smoothing

The goal of our new boundaries based superpixels is not only high recall, but
also good temporal consistency across frames. A naive way to improve temporal
smoothness of boundaries consists of averaging boundary maps of different frames
over a sliding window; differences across frames would be smoothed out, but at the
same time double edge artefacts (due to motion) would appear (reduced precision).

We propose to improve temporal consistency by doing a sliding window average
across boundary maps of several adjacent frames. For each frame t, instead of
naively transferring boundary estimates from one frame to the next, we warp frames
t±i using optical flow with respect to frame t; thus reducing double edge artefacts.
For each frame t we treat warped boundaries from frames t±i as additional cues,
and merge them using the same mechanism as in Section 8.6.1.4. This merging
mechanism is suitable to further reduce the double edges issue.

8.6.2.3 Boundary results when using temporal cues

The curves of Figure 8.4 show the improvement gained from optical flow and
temporal smoothing.

Optical flow. Figure 8.4 shows that on its own flow boundaries are rather weak
(SEF , sPb (SEF )), but they are quite complementary to image domain cues (sPb (SEI)
versus sPb (SEI)+sPb (SEF )).

Temporal smoothing. Using temporal smoothing ( sPb (SEI)+sPb (SEF )+TS (SEI)
=α) leads to a minor drop in boundary precision, in comparison with sPb (SEI)+
sPb (SEF ) in Figure 8.4. It should be noted that there is an inherent tension between
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Figure 8.5: VSB100 validation set results of different video segmentation methods.
Dashed lines indicate only frame-by-frame processing (see Section 8.7.1 for details).

improving temporal smoothness of the boundaries and having better accuracy on
a frame by frame basis. Thus we aim for the smallest negative impact on BPR.
In our preliminary experiments the key for temporal smoothing was to use the
right merging strategy (Section 8.6.1.4). We expect temporal smoothing to improve
temporal consistency.

Object proposals. Adding OP (SEF ) over OP (SEI) also improves the BPR meas-
ure (see OP (SEF ) +OP (SEI)=β in Figure 8.4), particularly in the high-precision
area. Merging it with other cues helps to push BPR for our final frame-by-frame
result.

Combination and re-training. Combining all cues together improves the BPR
metric with respect to only using appearance cues, we reach 59% AP versus 52% with
appearance only (see Section 8.6.1.5). This results are better than the gPbI+gPbF
baseline (51% AP, used in Galasso et al. (2014)). Similar to the appearance-only case,
re-training over VSB100 gives an important boost (70% AP). In this case not only
SEI is re-trained but also SEF (over EpicFlow).

Figure 8.2 compares superpixels extracted from the proposed method (α+β model
without re-training for fair comparison) with other methods. Our method reaches
top results on both boundary precision and recall. Unless otherwise specified,
all following “Our SPX” results correspond to superpixels generated from the
hierarchical image segmentation (Arbeláez et al., 2011) based on the proposed
boundary estimation α+β re-trained on VSB100.

Conclusion. Temporal cues are effective at improving the boundary detection for
video sequences. Because we use multiple ingredients based on machine learning,
training on VSB100 significantly improves quality of boundary estimates on a per-
frame basis (BPR).
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Figure 8.6: Comparison of video segmentation algorithms with/without our im-
proved superpixels, on the test set of VSB100 (Galasso et al., 2013). Dashed lines
indicate only frame-by-frame processing. See Table 8.1 and Section 8.7.2 for details.

8.7 video segmentation results

In this section we show results for the video segmentation methods of Galasso et al.
(2013, 2014) with superpixels extracted from the proposed boundary estimation. So
far we have only evaluated boundaries of frame-by-frame hierarchical segmentation.
For all further experiments we will use the best performing model trained on VSB100,
which uses image domain and temporal cues, proposed in Section 8.6 (we refer to
(α + β) model, see Figure 8.4). Superpixels extracted from our boundaries help to
improve video segmentation and generalizes across different datasets.

8.7.1 Validation set results

We use two baseline methods ((Galasso et al., 2014, 2013), see Section 8.3) to show
the advantage of using the proposed superpixels, although our approach is directly
applicable to any graph-based video segmentation technique. The baseline methods
originally employ the superpixels proposed in Arbeláez et al. (2011); Galasso et al.
(2012), which use the boundary estimation gPbI+gPbF to construct a segmentation.

For the baseline method of Galasso et al. (2014) we build a graph, where super-
pixels generated from the hierarchical image segmentation based on the proposed
boundary estimation are taken as nodes. Following Galasso et al. (2014) we select
the hierarchy level of image segmentation to extract superpixels (threshold over the
ultrametric contour map) by a grid search on the validation set. We aim for the level
which gives the best video segmentation performance, optimizing for both BPR and
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BPR VPR Length NCL
Algorithm ODS OSS AP ODS OSS AP µ (δ) µ

Human 0.81 0.81 0.67 0.83 0.83 0.70 83.2(40.0) 12

Grundmann et al. (2010) 0.47 0.54 0.41 0.52 0.55 0.52 87.7(34.0) 19

Galasso et al. (2012) 0.51 0.56 0.45 0.45 0.51 0.42 80.2(37.6) 8

Yi and Pavlovic (2015) 0.63 0.67 0.60 0.64 0.67 0.65 35.8(38.9) 167

Keuper and Brox (2016) 0.56 0.63 0.56 0.64 0.66 0.67 1.1(0.7) 963

Galasso et al. (2013) 0.61 0.65 0.59 0.59 0.62 0.56 25.5(36.5) 258

Our SPX + Galasso et al. (2013) 0.64 0.69 0.67 0.61 0.63 0.57 22.2(34.4) 217

Galasso et al. (2014) 0.62 0.66 0.54 0.55 0.59 0.55 61.3(40.9) 80

Our SPX + Galasso et al. (2014) 0.66 0.68 0.51 0.58 0.61 0.55 70.4(40.2) 15

Khoreva et al. (2015) 0.64 0.70 0.61 0.63 0.66 0.63 83.4(35.3) 50

Our SPX + Khoreva et al. (2015) 0.66 0.70 0.55 0.64 0.67 0.61 79.4(35.6) 50

Table 8.1: Comparison of video segmentation algorithms with our proposed method
based on the improved superpixels, on the test set of VSB100 (Galasso et al., 2013).
The table shows BPR and VPR and length statistics (mean µ, standard deviation δ,
no. clusters NCL), see Figure 8.6 and Section 8.7.2 for details.

VPR.
Figure 8.5 presents results on the validation set of VSB100. The dashed curves

indicate frame-by-frame segmentation and show (when touching the continuous
curves) the chosen level of hierarchy to extract superpixels. As it appears in the
plots, our superpixels help to improve video segmentation performance on BPR
and VPR for both baseline methods (Galasso et al., 2013, 2014). Figure 8.5c shows
the performance of video segmentation with the proposed superpixels per video
sequence. Our method improves most on hard cases, where the performance of the
original approach was quite low, OSS less than 0.5.

8.7.2 Test set results

VSB100. Figure 8.6 and Table 8.1 show the comparison of the baseline methods
(Galasso et al., 2013, 2014) with and without superpixels generated from the proposed
boundaries, and with other video segmentation algorithms on the test set of VSB100.
For extracting per-frame superpixels from the constructed hierarchical segmentation
we use the level selected on the validation set.

As shown in the plots and the table, the proposed method improves the baselines
considered. The segmentation propagation (Galasso et al., 2013) method improves
∼5 percent points on the BPR metrics, and 1∼2 points on the VPR metrics. This
supports that employing temporal cues helps to improve temporal consistency across
frames. Our superpixels also boosts the performance of the approach from Galasso
et al. (2014).
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Video GT
Galasso et al.

(2013)

Our SPX +
Galasso et al.

(2013)

Galasso et al.
(2014)

Our SPX +
Galasso et al.

(2014)

Figure 8.7: Comparison of video segmentation results of Galasso et al. (2013) and
Galasso et al. (2014) with our proposed superpixels to one human ground truth. The
last row shows a failure case for all methods.

Employing our method for graph-based video segmentation also benefits com-
putational load, since it depends on the number of nodes in the graph (number of
generated superpixels). On average the number of nodes is reduced by a factor of
2.6, 120 superpixels per frame versus 310 in Galasso et al. (2014). This leads to ∼ 45%
reduction in runtime and memory usage for video segmentation.

Given the videos and their optical flow, the superpixel computation takes 90%
of the total time and video segmentation only 10% (for both Galasso et al. (2014)
and our SPX+Galasso et al. (2014)). Our superpixels are computed 20% faster
than gPbI+gPbF (the bulk of the time is spent in OP (·)). The overall time of our
approach is 20% faster than Galasso et al. (2014).

Qualitative results are shown in Figure 8.7. Superpixels generated from the
proposed boundaries allow the baseline methods (Galasso et al., 2013, 2014) to
better distinguish visual objects and to limit label leakage due to inherent temporal
smoothness of the boundaries. Qualitatively the proposed superpixels improve video
segmentation on easy (e.g. first row of Figure 8.7) as well as hard cases (e.g. second
row of Figure 8.7).

As our approach is directly applicable to any graph-based video segmentation
technique we additionally evaluated our superpixels with the classifier-based graph
construction method of Khoreva et al. (2015). The method learns the topology
and edge weights of the graph using features of superpixels extracted from per-
frame segmentations. We employed this approach without re-training the classifiers
on the proposed superpixels. Using our superpixels allows to achieve on par
performance (see Figure 8.6 and Table 8.1) while significantly reducing the runtime
and memory load (∼ 45%). Superpixels based on per-frame boundary estimation
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Figure 8.8: Comparison of video segmentation algorithms with the proposed super-
pixels, on BMDS (Brox and Malik, 2010). Dashed lines indicate only frame-by-frame
processing (see Section 8.7.2 for details).

are also employed in Yi and Pavlovic (2015). However, we could not evaluate its
performance with our superpixels as the code is not available under open source.

BMDS. Further we evaluate the proposed method on BMDS (Brox and Malik,
2010) to show the generalization of our superpixels across datasets. We use the
same model trained on VSB100 for generating superpixels and the hierarchical level
of boundary map as validated by a grid search on the training set of BMDS. The
results are presented in Figure 8.8. Our boundaries based superpixels boost the
performance of the baseline methods (Galasso et al., 2013, 2014), particularly for the
BPR metric (up to 4-12%).

Oracle. Additionally we set up the oracle case for the baseline of Galasso et al.
(2014) (purple curve in Figure 8.8) by choosing the hierarchical level to extract
superpixels from the boundary map for each video sequence individually based on
its performance (we considered OSS measures for BPR and VPR of each video). The
oracle result indicates that the used fixed hierarchical level is quite close to an ideal
video-per-video selection.

8.8 conclusion

The presented experiments have shown that boundary based superpixels, extracted
via hierarchical image segmentation, are a better starting point for graph-based
video segmentation than classical superpixels. However, the segmentation quality
depends directly on the quality of the initial boundary estimates.
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Over the state-of-the-art methods such as SEI (Dollár and Zitnick, 2015), our
results show that we can significantly improve boundary estimates when using
cues from object proposals, globalization, and by merging with optical flow cues.
When using superpixels built over these improved boundaries, we observe consistent
improvement over two different video segmentation methods (Galasso et al., 2013,
2014) and two different datasets (VSB100, BMDS). The results analysis indicates that
we improve most in the cases where baseline methods degrade.

For future work we are encouraged by the promising results of object proposals.
We believe that there is room for further improvement by integrating more semantic
notions of objects into video segmentation.



Part III

L E A R N I N G T O T R A C K O B J E C T S
I N V I D E O S V I A C N N S

In this part of the thesis we focus on pixel-level object tracking, also
referred to as semi-supervised video object segmentation. Given the first
frame labelled with the object mask, the goal is to accurately segment the
same instance in future frames. Recently CNNs have been proposed to
solve this task. However, pixel-level tracking can be difficult to approach
via convnets, since there is a lack of large body of densely, pixel-wise
annotated video data. In this part we address this limitation and show
that fully annotated video data is not necessary to achieve high-quality
video segmentation results. We propose to use static images instead to
train the network in Chapter 9 and to generate in-domain synthetic data
in Chapter 10.

In Chapter 9 we treat the problem as guided instance segmentation and
utilize a semantic labelling convnet for frame-by-frame segmentation.
The temporal context is enabled by using the guidance from the estim-
ated mask of the previous frame as an additional input channel to the
network. We additionally fine-tune the model per-video using the first
frame annotation to make the output sensitive to the specific object being
tracked. The proposed framework is extended in Chapter 10 by efficiently
integrating motion cues along with the appearance via a two-stream
mask refinement network and by an elaborate data augmentation scheme,
which creates a large number of training examples from the first an-
notated frame and reduces the dependence on large video and image
datasets for training.





9
L E A R N I N G V I D E O O B J E C T S E G M E N TAT I O N F R O M
S TAT I C I M A G E S

Inspired by recent advances of deep learning in object segmentation and tracking,
in this chapter we introduce the concept of convnet-based guidance applied to
video object segmentation. Our model proceeds on a per-frame basis, guided by

the output of the previous frame towards the object of interest in the next frame. We
demonstrate that highly accurate object segmentation in videos can be enabled by
using a convnet trained with static images only. The key component of our approach
is a combination of offline and online learning strategies, where the former produces
a refined mask from the previous’ frame estimate and the latter allows to capture
the appearance of the specific object instance.

Our method can handle different types of input annotations such as bounding
boxes and segments while leveraging an arbitrary amount of annotated frames.
Therefore the proposed system is suitable for diverse applications with different
requirements in terms of accuracy and efficiency.

9.1 introduction

Convolutional neural networks have shown outstanding performance in many
fundamental areas in computer vision, enabled by the availability of large-scale
annotated datasets (e.g., ImageNet classification (Krizhevsky et al., 2012; Russakovsky
et al., 2015)). However, some important challenges in video processing can be difficult
to approach using convnets, since creating a sufficiently large body of densely, pixel-
wise annotated video data for training is usually prohibitive.

One example of such domain is video object segmentation. Given only one or
a few frames annotated with segmentation masks of a particular object instance,
the task of video object segmentation is to accurately segment the same instance in
all other frames of the video. Current top performing approaches either interleave
box tracking and segmentation (Xiao and Lee, 2016), or propagate the first frame
mask annotation in space-time via CRF or GrabCut-like techniques (Tsai et al., 2016;
Maerki et al., 2016).

One of the key insights and contributions of this work is that fully annotated
video data is not necessary. We demonstrate that highly accurate video object
segmentation can be enabled using a convnet trained with static images only. We
show that a convnet designed for semantic image segmentation (Chen et al., 2016b)
can be utilized to perform per-frame instance segmentation, i.e., segmentation of
generic objects while distinguishing different instances of the same class. For each
new video frame the network is guided towards the object of interest by feeding
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MaskTrack ConvNet

Input frame t

Mask estimate t-1

Refined mask t

Figure 9.1: Given a rough mask estimate from the previous frame t− 1 we train a
convnet to provide a refined mask output for the current frame t.

in the previous’ frame mask estimate. We therefore refer to our approach as guided
instance segmentation.

Our system is efficient due to its feed-forward architecture and can generate high
quality results in a single pass over the video, without the need for considering more
than one frame at a time. This is in stark contrast to many other video segmentation
approaches, which usually require global connections over multiple frames or even
the whole video sequence in order to achieve coherent results. Futhermore, our
method can handle different types of annotations and even simple bounding boxes
as input are sufficient to obtain competitive results, making our method flexible
with respect to various practical applications with different requirements in terms of
human supervision.

Key to the video segmentation quality of our approach is the combination of
offline and online learning strategies. In the offline phase, we use deformation and
coarsening on the image masks in order to train the network to produce accurate
output masks from their rough estimates. An online training phase extends ideas
from previous works on object tracking (Danelljan et al., 2016; Nam and Han, 2016)
to the task of video segmentation and enables the method to be easily optimized
with respect to an object of interest in a novel input video.

The result is a single, homogeneous system that compares favorably to most
classical approaches on three extremely heterogeneous video segmentation bench-
marks, despite using the same model and parameters across all videos. We provide
a detailed ablation study and explore the impact of varying number and types of
annotations. Moreover, we discuss extensions of the proposed model, allowing to
improve the quality even further.
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9.2 method

We approach the video object segmentation problem from a different perspective,
which we call convnet-based guided instance segmentation. For each new frame we
wish to label pixels as object/non-object of interest, for this we build upon the
architecture of the existing pixel labelling convnet and train it to generate per-frame
instance segments. We pick DeepLabv2 (Chen et al., 2016b), but our approach is
agnostic of the specific architecture selected. The challenge is then: how to inform
the network which instance to segment? We solve this by using two complementary
strategies. First we guide the network towards the instance of interest by feeding in
the previous’ frame mask estimate during offline training (Section 9.2.1). Second, we
employ online training to fine-tune the model to incorporate specific knowledge of
the object instance (Section 9.2.2).

9.2.1 Offline training

In order to guide the pixel labeling network to segment the object of interest, we
begin by expanding the convnet input from RGB to RGB+mask channels. The extra
mask channel is meant to provide an estimate of the visible area of the object in the
current frame, its approximate location and shape. We can then train the labelling
convnet to output an accurate segmentation of the object, given as input the current
image and a rough estimate of the object mask. Our tracking network is de-facto a
"mask refinement" network.

There are two key observations that make this approach practical. First, very
rough input masks are enough for our trained network to provide sensible output
segments. Even a large bounding box as input will result in a reasonable output (see
Section 9.4.2). The main role of the input mask is to point the convnet towards the
correct object instance to segment. Second, this particular approach does not require
us to use video as training data, such as done in Caelles et al. (2017b); Held et al.
(2016); Bertinetto et al. (2016); Nam and Han (2016). Because we only use a mask as
additional input, instead of an image crop as in Held et al. (2016); Bertinetto et al.
(2016), we can synthesize training samples from single frame instance segmentation
annotations. This allows us to train from a large set of diverse images, instead of
having to rely on scarce video annotations.

Figure 9.1 shows our simplified model. To simulate the noise of the previous
frame output, during offline training, we generate input masks by deforming the
annotations via affine transformation as well as non-rigid deformations via thin-plate
splines (Bookstein, 1989), followed by a coarsening step (dilation morphological
operation) to remove details of the object contour. We apply this data generation
procedure over a dataset of ∼104 images containing diverse object instances. At test
time, given the mask estimate at time t−1, we apply the dilation operation and use
the resulting rough mask as input for object segmentation in frame t.

The affine transformations and non-rigid deformations aim at modelling the
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(a) Annotated image (b) Example training masks

Figure 9.2: Examples of training masks. From one annotated image multiple masks
are generated. The generated masks mimic plausible object shapes on the preceding
frame.

expected motion of an object between two frames. The coarsening permits us to
generate training samples that resembles the test time data, simulating the blobby
shape of the output mask given from the previous frame by the convnet. These two
ingredients make the estimation more robust to noisy segmentation estimates while
helping to avoid accumulation of errors from the preceding frames. The trained
convnet has learnt to do guided instance segmentation similar to networks like
SharpMask (Pinheiro et al., 2016), DeepMask (Pinheiro et al., 2015) and Hypercolumns
(Hariharan et al., 2015), but instead of taking a bounding box as guidance, we can
use an arbitrary input mask. The training details are described in Section 9.3.

When using offline training only, the segmentation procedure consists of two
steps: the previous frame mask is coarsened and then fed into the trained network
to estimate the current frame mask. Since objects have a tendency to move smoothly
through space, the object mask in the preceding frame will provide a good guess
in the current frame and simply copying the coarse mask from the previous frame
is enough. This approach is fast and already provides good results. We also
experimented using optical flow to propagate the mask from one frame to the next,
but found the optical flow errors to offset the gains.

With only the offline trained network, the proposed approach allows us to achieve
competitive performance compared to previously reported results (see Section 9.4.2).
However, the performance can be further improved by integrating online training
strategy as described in the next section.

9.2.2 Online training

For further boosting the video segmentation quality, we borrow and extend ideas
that were originally proposed for object tracking. Current top performing tracking
techniques (Danelljan et al., 2016; Nam and Han, 2016) use some form of online
training. We thus consider improving results by adding online fine-tuning as a
second strategy.

The idea is to use, at test time, the segment annotation of the first video frame as
additional training data. Using augmented versions of this single frame annotation,
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we proceed to fine-tune the model to become more specialized for the specific object
instance at hand. We use a similar data augmentation as for offline training. On top
of affine and non-rigid deformations for the input mask, we also add image flipping
and rotations. We generate ∼103 training samples from this single annotation, and
proceed to fine-tune the model previously trained offline.

With online fine-tuning, the network weights partially capture the appearance of
the specific object being tracked. The model aims to strike a balance between general
instance segmentation (so as to generalize to the object changes), and specific instance
segmentation (so as to leverage the common appearance across video frames). The
details of the online fine-tuning are provided in Section 9.3. In our experiments we
only perform fine-tuning using the annotated frame(s).

To the best of our knowledge our approach is the first to use a pixel labelling
network (like DeepLabv2 (Chen et al., 2016b)) for the task of video object segmenta-
tion. We name our full approach, using both offline and online training, MaskTrack.

9.2.3 Variants

Additionally we consider variations of the proposed model. First, we demonstrate
that our approach is flexible and could handle different types of input annotations,
using less supervision in the first frame annotation. Second, we describe how motion
information could be easily integrated in the system, improving the quality of the
object segments.

Box annotation. In this paragraph, we discuss a variant named MaskTrackBox, that
takes a bounding box annotation in the first frame as an input supervision instead
of a segmentation mask. To this end, we train a similar convnet that fed with
a bounding-box annotation as an input outputs a segment. Once the first frame
bounding box is converted to a segment, we switch back to the MaskTrack model
that uses as guidance the output mask from the previous frame.

Optical flow. On top of MaskTrack, we consider employing optical flow as a source
of additional information to guide the segmentation. Given a video sequence, we
compute the optical flow using EpicFlow (Revaud et al., 2015) with Flow Fields
matches (Bailer et al., 2015) and convolutional boundaries (Maninis et al., 2017). In
parallel to the vanilla MaskTrack, we proceed to compute a second output mask using
the magnitude of the optical flow as input image (replicated into a three channel
image). The model is used as-is, without retraining. Although it has been trained
on RGB images, this strategy works as object flow magnitude roughly looks like a
gray-scale object, and still captures useful object shape information, see examples
in Figure 9.3. Using the RGB model allows to avoid training the convnet on video
datasets annotated with masks. We then fuse by averaging the output scores given
by the two parallel networks, respectively fed with RGB images and optical flow
magnitude as input. As shown in Table 9.1, optical flow provides complementary
information to MaskTrack with RGB images, improving the overall performance.
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Figure 9.3: Examples of optical flow magnitude images. Top: RGB images. Bot-
tom: corresponding motion magnitude estimates encoded into as gray-scale images.

9.3 network implementation and training

Following, we describe the implementation details of our approach. Specifically, we
provide additional information regarding the network initialization, the offline and
online training strategies and the data augmentation.

Network. For all our experiments we use the training and test parameters of
DeepLabv2-VGG network (Chen et al., 2016b). The model is initialized from a VGG16

network pre-trained on ImageNet (Simonyan and Zisserman, 2015). For the extra
mask channel of filters in the first convolutional layer we use gaussian initialization.
We also tried zero initialization, but observed no difference.

Offline training. The advantage of our method is that it does not require expensive
pixel-wise video annotations for training. Thus we can employ existing image
datasets. However, in order for our model to generalize well across different videos,
we avoid training on datasets that are biased towards certain semantic classes, such
as COCO (Lin et al., 2014) or Pascal (Everingham et al., 2015). Instead we combine
images and annotations from several saliency segmentation datasets (ECSSD (Shi
et al., 2016), MSRA10K (Cheng et al., 2015b), SOD (Movahedi and Elder, 2010), and
PASCAL-S (Li et al., 2014)), resulting in an aggregated set of 11 282 training images.

The input masks for the extra channel are generated by deforming the binary
segmentation masks via affine transformation and non-rigid deformations, as dis-
cussed in Section 9.2.1. For affine transformation we consider random scaling (±5%
of object size) and translation (±10% shift). Non-rigid deformations are done via
thin-plate splines (Bookstein, 1989) using 5 control points and randomly shifting the
points in x and y directions within ±10% margin of the original segmentation mask
width and height. Next, the mask is coarsened using dilation operation with 5 pixel
radius. This mask deformation procedure is applied over all object instances in the
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Figure 9.4: By propagating annotation from the 1st frame, either from segment or
just bounding box annotations, our system generates results comparable to ground
truth.

training set. For each image two different masks are generated.
The convnet training parameters are identical to those proposed in Chen et al.

(2016b). Therefore we use stochastic gradient descent (SGD) with mini-batches of
10 images and a polynomial learning policy with initial learning rate of 0.001. The
momentum and weight decay are set to 0.9 and 0.0005, respectively. The network is
trained for 20k iterations.

Online training. For online adaptation we fine-tune the model previously trained
offline on the first frame for 200 iterations with training samples generated from the
first frame annotation. We augment the first frame by image flipping and rotations
as well as by deforming the annotated masks for an extra channel via affine and
non-rigid deformations with the same parameters as for the offline training. This
results in an augmented set of ∼103 training images. The network is trained with
the same learning parameters as for offline training, fine-tuning all convolutional
layers.

At test time our base MaskTrack system runs at about 12 seconds per frame
(averaged over DAVIS, amortizing the online fine-tuning time over all video frames),
which is a magnitude faster compared to ObjFlow (Tsai et al., 2016) (takes 2 minutes
per frame, averaged over DAVIS).

9.4 results

In this section we describe our evaluation protocol (Section 9.4.1), study the im-
portance of the different components of our system (Section 9.4.2), and report
results comparing to state-of-the-art techniques over three datasets (Section 9.4.3),
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as well as comparing the effects of different amounts of annotation on the resulting
segmentation quality (Section 9.4.4).

9.4.1 Experimental setup

Datasets. We evaluate the proposed approach on three different video object
segmentation datasets: DAVIS (Perazzi et al., 2016), YoutubeObjects (Prest et al., 2012),
and SegTrack-v2 (Li et al., 2013). These datasets include assorted challenges such as
appearance change, occlusion, motion blur and shape deformation.

DAVIS (Perazzi et al., 2016) consists of 50 high quality videos, totaling 3 455
frames. Pixel-level segmentation annotations are provided for each frame, where
one single object or two connected objects are separated from the background.

YoutubeObjects (Prest et al., 2012) includes videos with 10 object categories. We
consider the subset of 126 videos with more than 20 000 frames, for which the
pixel-level ground truth segmentation masks are provided by Jain and Grauman
(2014).

SegTrack-v2 (Li et al., 2013) contains 14 video sequences with 24 objects and 947
frames. Every frame is annotated with a pixel-level object mask. As instance-level
annotations are provided for sequences with multiple objects, each specific instance
segmentation is treated as separate problem.

Evaluation. We evaluate using the standard mIoU metric: intersection-over-union
of the estimated segmentation and the ground truth binary mask, also known as
Jaccard Index, averaged across videos. For DAVIS we use the provided benchmark
code (Perazzi et al., 2016), which excludes the first and the last frames from the
evaluation. For YoutubeObjects and SegTrack-v2 only the first frame is excluded.

Previous works used different evaluation procedures. To ensure a consistent
comparison between methods, when needed, we re-computed scores from the
publicly available output masks, or reproduced the results using the available open
source code. In particular, we collected new results for ObjFlow (Tsai et al., 2016) and
BVS (Maerki et al., 2016) in order to present other methods with results across the
three datasets.

9.4.2 Ablation study

We first study different ingredients of our method. We experiment on the DAVIS
dataset and measure the performance using the mean intersection-over-union metric
(mIoU). Table 9.1 shows the importance of each of the ingredients described in Section
9.2 and reports the improvement of adding extra components to the MaskTrack

model.

Add-ons. We first study the effect of adding a couple of ingredients on top of
our base MaskTrack system, which are specifically fine-tuned for DAVIS. We see
that optical flow provides complementary information to the appearance, boosting
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Aspect System variant mIoU ∆mIoU

Add-ons
MaskTrack+Flow+CRF 80.3 +1.9
MaskTrack+Flow 78.4 +3.6
MaskTrack 74.8 -

Training

No online fine-tuning 69.9 −4.9
No offline training 57.6 −17.2
Reduced offline training 73.2 −1.6
Training on video 72.0 −2.8

Mask
defor-
mation

No dilation 72.4 −2.4
No deformation 17.1 −57.7
No non-rigid deformation 73.3 −1.5

Input
channel

Boxes 69.6 −5.2
No input 72.5 −2.3

Table 9.1: Ablation study of our MaskTrack method on DAVIS. Given our full system,
we change one ingredient at a time, to see each individual contribution. See Section
9.4.2.

further the results (74.8 → 78.4). Adding on top a well-tuned post-processing
CRF (Krähenbühl and Koltun, 2011) can gain a couple of mIoU points, reaching
80.3% mIoU on DAVIS, the best known result on this dataset.

Although optical flow can provide interesting gains, we found it to be brittle when
going across different datasets. Different strategies to handle optical flow provide
1∼4% on each dataset, but none provide consistent gains across all datasets; mainly
due to failure modes of the optical flow algorithms. For the sake of presenting
a single model with fix parameters across all datasets, we refrain from using a
per-dataset tuned optical flow in the results of Section 9.4.3.

Training. We next study the effect of offline/online training of the network. By
disabling online fine-tuning, and only relying on offline training we see a ∼5 IoU
percent points drop, showing that online fine-tuning indeed expands the tracking
capabilities. If instead we skip offline training and only rely on online fine-tuning
performance drops drastically, albeit the absolute quality (57.6 mIoU) is surprisingly
high for a system trained on ImageNet+single frame.

By reducing the amount of training data from 11k to 5k we only see a minor
decrease in mIoU; this indicates that even with the small amount of training data we
can achieve reasonable performance. That being said, further increase of the training
data volume would lead to improved results.

Additionally, we explore the effect of the offline training on video data instead of
using static images. We train the model on the annotated frames of two combined
datasets, SegTrack-v2 and YoutubeObjects. By switching to train on video data we
observe a minor decrease in mIoU; this could be explained by lack of diversity in
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the video training data due to the small scale of the existing datasets, as well as the
effect of the domain shift between different benchmarks. This shows that employing
static images in our approach does not result in any performance drop.

Mask deformation. We also study the influence of mask deformations. We see that
coarsening the mask via dilation provides a small gain, as well as adding non-rigid
deformations. All-and-all, Table 9.1 shows that the main factor affecting the quality
is using any form of mask deformations when creating the training samples (both
for offline and online training). This ingredient is critical for our overall approach,
making the segmentation estimation more robust at test time to the noise in the
input mask.

Input channel. Next we experiment with different variants of the extra channel
input. Even by changing the input from segments to boxes, a model trained for this
modality still provides reasonable results. A failure mode of this approach is the
generation of small blobs outside of the object. As a result the guidance from the
previous frame produces a noisy box, yielding inaccurate segmentation. The error
accumulates forward over the entire video sequence.

We also evaluated a model that does not use any mask input. Without the
additional input channel, this pixel labelling convnet was trained offline as a salient
object segmenter and fine-tuned online to capture the appearance of the object of
interest. This model obtains competitive results (72.5 mIoU) on DAVIS, since the
object to segment is also salient for this dataset. However, while experimenting on
SegTrack-v2 and YoutubeObjects, we observed a significant drop in performance
without using guidance from the previous frame mask as these two datasets have a
weaker bias towards salient objects compared to DAVIS.

9.4.3 Single frame annotations

Table 9.2 presents results when the first frame is annotated with an object seg-
mentation mask. This is the protocol commonly used on DAVIS, SegTrack-v2, and
YoutubeObjects. MaskTrack obtains competitive performance across all three datasets.
This is achieved using our purely frame-by-frame feed-forward system, using the
exact same model and parameters across all datasets. Our MaskTrack results are
obtained in a single pass, do not use any global optimization, not even optical flow.
We believe this shows the promise of formulating video object segmentation from
the instance segmentation perspective.

On SegTrack-v2, JOTS (Wen et al., 2015) reported higher numbers (71.3 mIoU),
however, they report tuning their method parameters’ per video, and thus it is not
comparable to our setup with fix-parameters. Table 9.2 also reports results for the
MaskTrackBox variant described in Section 9.2.3. Starting only from box annotations
on the first frame, our system still generates comparably good results (see Figure
9.4), remaining on the top three best results in all the datasets covered.

By adding additional ingredients specifically tuned for different datasets, such
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Method
Dataset, mIoU

DAVIS YoutbObjs SegTrack-v2

Box oracle 45.1 55.3 56.1
Grabcut oracle 67.3 67.6 74.2
ObjFlow (Tsai et al., 2016) 71.4 70.1 67.5
BVS (Maerki et al., 2016) 66.5 59.7 58.4
NLC (Faktor and Irani, 2014) 64.1 - -
FCP (Perazzi et al., 2015) 63.1 - -
W16 (Wang et al., 2016) - 59.2 -
Z15 (Zhang et al., 2015b) - 52.6 -
TRS (Xiao and Lee, 2016) - - 69.1
MaskTrack 74.8 71.7 67.4
MaskTrackBox 73.7 69.3 62.4

Table 9.2: Video object segmentation results on three datasets. Compared to related
state of the art, our approach provides consistently good results. On DAVIS the
extended version of our system MaskTrack+Flow+CRF reaches 80.3 mIoU. See Section
9.4.3 for details.

as optical flow (see Section 9.2.3) and CRF post-processing, we can push the results
even further, reaching 80.3 mIoU on DAVIS, 72.6 on YoutubeObjects and 70.3 on
SegTrack-v2. Figure 9.5 presents qualitative results of the proposed MaskTrack model
across three different datasets.

Attribute-based analysis. Figure 9.6 presents a more detailed evaluation on DAVIS
(Perazzi et al., 2016) using video attributes. The attribute based analysis shows that
our generic model, MaskTrack, is robust to various video challenges presented in
DAVIS. It compares favorably on any subset of videos sharing the same attribute,
except camera-shake, where ObjFlow (Tsai et al., 2016) marginally outperforms our
approach. We observe that MaskTrack handles fast-motion and motion-blur well,
which are typical failure cases for methods relying on spatio-temporal connections
(Maerki et al., 2016; Tsai et al., 2016).

Due to the online fine-tuning on the first frame annotation of a new video, our
system is able to capture the appearance of the specific object of interest. This allows
it to better recover from occlusions, out-of-view scenarios and appearance changes,
which usually affect methods that strongly rely on propagating segmentations on a
per-frame basis.

Incorporating optical flow information into MaskTrack substantially increases
robustness on all categories. As one could expect, MaskTrack+Flow+CRF better
discriminates cases involving color ambiguity and salient motion. We also observe
improvements in cases with scale-variation and low-resolution objects.
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Figure 9.5: Qualitative results of three different datasets. Our algorithm is robust to
challenging situations such as occlusions, fast motion, multiple instances of the same
semantic class, object shape deformation, camera view change and motion blur.
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Conclusion. With our simple, generic system for video object segmentation we
are able to achieve competitive results with existing techniques, on three different
datasets. These results are obtained with fixed parameters, from a forward-pass only,
using only static images during offline training. We also reach good results even
when using only a box annotation as starting point.

9.4.4 Multiple frame annotations

In some applications, e.g. video editing for movie production, one may want to
consider more than a single frame annotation on videos. Figure 9.8 shows the
segmentation quality result when considering different number of annotated frames
on the DAVIS dataset. We evaluate both pixel accurate segmentation and bounding
box annotations.

For these experiments, we run our method twice, forward and backwards; and
for each frame we pick the result closest in time to the annotated frame (either from
forward or backwards propagation). Here, the online fine-tuning uses all annotated
frames instead of only the first one. For the experiments with box annotations in
Figure 9.8, we use a similar procedure to MaskTrackBox. Box annotations are first
converted to segments, and then apply MaskTrack as-is, treating these as the original
segment annotations. The evaluation reports the mean IoU results when annotating
one frame only (same as Table 9.2), and every 40th, 30th, 20th, 10th, 5th, 3rd, and 2nd
frame. Since DAVIS videos have length ∼100 frames, 1 annotated frame corresponds
to ∼ 1%, otherwise annotations every 20th is 5% of annotated frames, 10th 10%,
5th 20%, etc. We follow the same evaluation protocol as in Section 9.4.3, ignoring
first and last frames, and including the annotated frames in the evaluation (this is
particularly relevant for the box annotation results).

Other than mean IoU we also show the quantile curves indicating the cutting
line for the 5%, 10%, 20%, etc. lowest quality video frame results. This gives a hint
of how much targeted additional annotations might be needed. The higher mean
IoU of these quantiles are, the better. The baseline for these experiments consists in
directly copying the ground truth annotations from the nearest annotated neighbour.
For visual clarity, in Figure 9.8, we only include the mean value for the baseline
experiment.

Analysis. We can see that results in Figures 9.8 show slightly different trends.
When using segment annotations the baseline quality increases steadily until reach-
ing IoU 1 when all frames are annotated. Our MaskTrack approach provides large
gains with 30% of annotated frames or less. For instance when annotating 10% of
the frames we reach mIoU 0.86, with the 20% quantile at 0.81 mIoU. This means
with only 10% of annotated frames, 80% of all video frames will have a mean IoU
above 0.8, which is good enough to be used for many applications, or can serve as
initialization for a refinement process. With 10% of annotated frames the baseline
only reaches 0.64 mIoU. When using box annotations the quality of the baseline and
our method saturates. There is only so much information our instance segmenter
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Figure 9.7: Qualitative results of MaskTrackBox and MaskTrack on Davis. By
propagating annotation from the 1st frame, either from segment or just bound-
ing box annotations, our system generates results comparable to ground truth.
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Quantiles Quantiles

Segment annotations. Box Annotations.

Figure 9.8: Percent of annotated frames versus video object segmentation quality.
We report mean IoU, and quantiles at 5, 10, 20, 30, 70, 80, 90, and 95%. Results
on DAVIS, using segment or box annotations. The baseline simply copies the
annotations to adjacent frames. Discussion in Section 9.4.4.

can estimate from boxes. After 10% of annotated frames, not much additional gain is
obtained. Interestingly, the mean IoU and 30% quantile here both reach ∼0.8 mIoU.
Additionally, 70% of the frames have IoU above 0.89.

Conclusion. Results indicate that with only 10% of annotated frames we can reach
satisfactory quality, even when using only bounding box annotations. We see that
with moving from one annotation per video to two or three frames (1%→ 3%→4%)
quality increases sharply, showing that our system can adequately leverage a few
extra annotations per video.

9.5 conclusion

We have presented a novel approach to video object segmentation. By treating video
object segmentation as guided instance segmentation problem, we have proposed
to use a pixel labelling convnet for frame-by-frame segmentation. By exploiting
both offline and online training with image annotations only our approach is able
to produce highly accurate video object segmentation. The proposed system is
generic and reaches competitive performance on three extremely heterogeneous
video segmentation benchmarks, using the same model and parameters across
all videos. The method can handle different types of input annotations and our
results are competitive even when using only bounding box annotations (instead of
segmentation masks).

We provided a detailed ablation study, and explored the effect of varying the
amount of annotations per video. Our results show that with only one annotation
every 10th frame we can reach 85% mIoU quality. Considering we only do per-frame
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instance segmentation without any form of global optimization, we deem these
results encouraging to achieve high quality via additional post-processing.

We believe the use of labeling convnets for video object segmentation is a prom-
ising strategy. Future work should consider exploring more sophisticated network
architectures, incorporating temporal dimension and global optimization strategies.

In Chapter 10 we extend the proposed approach with better integration of optical
flow, making the gains across different datasets more stable. We also relax the
dependence of using ∼ 10k pixel-level image annotations for training the mask
tracking convnet by introducing the efficient data synthesis scheme.



10L U C I D D ATA D R E A M I N G F O R O B J E C T T R A C K I N G

Convolutional networks reach top quality in pixel-level object tracking but
require large scale image or video datasets for training (1k∼10k) to deliver
such results. In this chapter we propose a new training strategy which

achieves state-of-the-art results across three evaluation datasets while using 20×∼
100× less annotated data compared to the approach proposed in Chapter 9 and
other competing methods. Our approach is suitable for both single and multiple
object tracking.

Instead of using large training sets hoping to generalize across domains, we
generate in-domain training data using the provided annotation on the first frame of
each video to synthesize (“lucid dream”4) plausible future video frames. In-domain
per-video training data allows us to train high quality appearance- and motion-based
models, as well as tune the post-processing stage. This approach allows to reach
competitive results even when training from only a single annotated frame, without
ImageNet pre-training. Our results indicate that using a larger training set is not
automatically better, and that for the tracking task a smaller training set that is closer
to the target domain is more effective. This changes the mindset regarding how
many training samples and general “objectness” knowledge are required for the
object tracking task.

10.1 introduction

In the last years the field of object tracking in videos has transitioned from bounding
box (Kristan et al., 2015, 2014, 2016) to pixel-level tracking (Li et al., 2013; Prest et al.,
2012; Perazzi et al., 2016; Vojir and Matas, 2017). Given a first frame labelled with the
foreground object masks, one aims to find the corresponding object pixels in future
frames. Tracking objects at the pixel level enables a finer understanding of videos
and is helpful for tasks such as video editing, rotoscoping, and summarisation.

Top performing results are currently obtained using convolutional networks
(convnets) (Jampani et al., 2016a; Caelles et al., 2017b; Perazzi et al., 2017; Bertin-
etto et al., 2016; Held et al., 2016; Nam and Han, 2016). Like most deep learning
techniques, convnets for pixel-level object tracking benefit from large amounts of
training data. Current state-of-the-art methods rely, for instance, on pixel accurate
foreground/background annotations of ∼ 2k video frames (Jampani et al., 2016a;
Caelles et al., 2017b) or ∼ 10k images (Perazzi et al., 2017). Labelling videos at
the pixel level is a laborious task (compared e.g. to drawing bounding boxes for

4In a lucid dream the sleeper is aware that he or she is dreaming and is sometimes able to control
the course of the dream.

159
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Figure 10.1: Starting from scarce annotations we synthesize in-domain data to train
a specialized pixel-level object tracker for each dataset or even each video.

detection), and creating a large training set requires significant annotation effort.
In this work we aim to reduce the necessity for such large volumes of training

data. It is traditionally assumed that convnets require large training sets to perform
best. We show that for video object tracking having a larger training set is not
automatically better and that improved results can be obtained by using 20×∼100×
less training data than previous approaches (Caelles et al., 2017b; Perazzi et al.,
2017). The main insight of our work is that for pixel-level object tracking using
few training frames (1∼100) in the target domain is more useful than using large
training volumes across domains (1k∼10k).

To ensure a sufficient amount of training data close to the target domain, we
develop a new technique for synthesizing training data particularly tailored for the
object tracking scenario. We call this data generation strategy “lucid dreaming”, where
the first frame and its annotation mask are used to generate plausible future frames
of the videos. The goal is to produce a large training set of reasonably realistic
images which capture the expected appearance variations in future video frames,
and thus is, by design, close to the target domain.

Our approach is suitable for both single and multiple object tracking. Enabled
by the proposed data generation strategy and the efficient use of optical flow, we
are able to achieve high quality results while using only ∼100 individual annotated
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training frames. Moreover, in the extreme case with only a single annotated frame
(zero pre-training), we still obtain competitive tracking results.

In summary, our contributions are the following:

• We propose “lucid data dreaming”, an automated approach to synthesize
training data for the convnet-based pixel-level object tracking that enables to
reach the state-of-the-art results for both single and multiple object tracking.

• We conduct an extensive analysis to explore the factors contributing to our
good results.

• We show that training a convnet for object tracking can be done with only few
annotated frames. We hope these results will affect the trend towards even
larger training sets, and popularize the design of trackers with lighter training
needs.

10.2 previous work on synthetic data

Like our approach, previous works have also explored synthesizing training data.
Synthetic renderings (Mayer et al., 2016), video game environment (Richter et al.,
2016), mix-synthetic and real images (Varol et al.; Chen et al., 2016c; Dosovitskiy et al.,
2015) have shown promise, but require task-appropriate 3d models. Compositing
real world images provides more realistic results, and has shown promise for object
detection (Georgakis et al., 2017; Tang et al., 2013), text localization (Gupta et al., 2016)
and pose estimation (Pishchulin et al., 2012).

The closest work to ours is Park and Ramanan (2015), which also generates
video-specific training data using the first frame annotations. They use human
skeleton annotations to improve pose estimation, while we employ mask annotations
to improve object tracking.

10.3 lucidtracker

Section 10.3.1 describes the network architecture used, and how RGB and optical
flow information are fused to predict the next frame segmentation mask. Section
10.3.2 discusses different training modalities employed with the proposed object
tracking system. In Section 10.4 we discuss the training data generation, and sections
10.5/10.6 report results for single/multiple object tracking.

10.3.1 Architecture

Approach. We model the pixel-level object tracking problem as a mask refinement
task (mask: binary foreground/ background labelling of the image) based on
appearance and motion cues. From frame t− 1 to frame t the estimated mask Mt−1
is propagated to frame t, and the new mask Mt is computed as a function of the
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Figure 10.2: Data flow examples. It, Ft, Mt−1 are the inputs, Mt is the resulting
output. Green boundaries outline the ground truth segments. Red overlay indicates
Mt−1, Mt.

previous mask, the new image It, and the optical flow Ft, i.e. Mt = f (It, Ft, Mt−1).
Since objects have a tendency to move smoothly through space in time, there are
little changes from frame to frame and mask Mt−1 can be seen as a rough estimate of
Mt. Thus we require our trained convnet to learn to refine rough masks into accurate
masks. Fusing the complementary image It and motion Ft enables to exploits the
information inherent to video and enables the model to segment well both static and
moving objects.

Note that this approach is incremental, does a single forward pass over the video,
and keeps no explicit model of the object appearance at frame t. In some experiments
we adapt the model f per video, using the annotated first frame I0, M0. However, in
contrast to traditional techniques (Henriques et al., 2012), this model is not updated
while we process the video frames, thus the only state evolving along the video is
the mask Mt−1 itself.
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First frame. In the video object tracking task the mask for the first frame M0 is
given. This is the standard protocol of the benchmarks considered in sections 10.5 &
10.6. If only a bounding box is available on the first frame, then the mask could be
estimated using grabcut-like techniques (Rother et al., 2004; Tang et al., 2016).

RGB image I . Typically a semantic labeller generates pixel-wise labels based
on the input image (e.g. M = g (I)). We use an augmented semantic labeller
with an input layer modified to accept 4 channels (RGB + previous mask) so as to
generate outputs based on the previous mask estimate, e.g. Mt = fI (It, Mt−1). Our
approach is general and can leverage any existing semantic labelling architecture.
We select the DeepLabv2 architecture with VGG base network (Chen et al., 2016b),
which is comparable to Jampani et al. (2016a); Caelles et al. (2017b); Perazzi et al.
(2017); FusionSeg (Jain et al., 2017) uses ResNet.

Optical flow F . We use flow in two complementary ways. First, to obtain a better
initial estimate of Mt we warp Mt−1 using the flow Ft: Mt = fI (It, w(Mt−1, F t)).
Second, we use flow as a direct source of information about the mask Mt. As
can be seen in Figure 10.2, when the object is moving relative to background, the
flow magnitude ‖Ft‖ provides a very reasonable estimate of the mask Mt. We
thus consider using a convnet specifically for mask estimation from flow: Mt =
fF (Ft, w(Mt−1, F t)), and merge it with the image-only version by naive averaging

Mt = 0.5 · fI (It, . . .) + 0.5 · fF (Ft, . . .) . (10.1)

We use the state-of-the-art optical flow estimation method FlowNet2.0 (Ilg et al.,
2017), which itself is a convnet that computes Ft = h (It−1, It) and is trained
on synthetic renderings of flying objects (Mayer et al., 2016). For the optical flow
magnitude computation we subtract the median motion for each frame, average
the magnitude of the forward and backward flow and scale the values to [0; 255],
bringing it to the same range as RGB channels.

The loss function is the sum of cross-entropy terms over each pixel in the output
map (all pixels are equally weighted). In our experiments fI and fF are trained
independently, via some of the modalities listed in Section 10.3.2. Our two streams
architecture is illustrated in Figure 10.3a.

We also explored expanding our network to accept 5 input channels (RGB +
previous mask + flow magnitude) in one stream: Mt = fI+F (It, Ft, w(Mt−1, F t)),
but did not observe much difference in the performance compared to naive averaging,
see experiments in Section 10.5.4.3. Our one stream architecture is illustrated in
Figure 10.3b. One stream network is more affordable to train and allows to easily
add extra input channels, e.g. providing additionally semantic information about
objects.

Multiple objects. The proposed framework can easily be extended to multiple ob-
ject tracking. Instead of having one additional channel for the previous frame
mask we provide the mask for each object in a separate channel, expanding
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(a) Two streams architecture, where image It and optical flow information ‖Ft‖ are used to update
mask Mt−1 into Mt. See equation 10.1.

(b) One stream architecture, where 5 input channels: image It, optical flow information ‖Ft‖ and
mask Mt−1 are used to estimate mask Mt.

Figure 10.3: Overview of the proposed one and two streams architectures. See
§10.3.1.

the network to accept 3 + N input channels (RGB + N object masks): Mt =
fI
(
It, w(M1

t−1, F t), ..., w(MN
t−1, F t)

)
, where N is the number of objects annotated

on the first frame.

For multiple object tracking task we employ a one-stream architecture for the
experiments, using optical flow F and semantic segmentation S as additional
input channels: Mt= fI+F+S

(
It, Ft, St, w(M1

t−1, F t), ..., w(MN
t−1, F t)

)
. This allows

to leverage the appearance model with semantic priors and motion information. See
Figure 10.4 for an illustration.

We use the state-of-the-art semantic segmentation method PSPNet (Zhao et al.,
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Figure 10.4: Extension of LucidTracker to multiple objects. The previous frame mask
for each object is provided in a separate channel. We additionally explore using
optical flow F and semantic segmentation S as additional inputs. See §10.3.1.

2016), which itself is a convnet that computes a pixel-level labelling St = h (It) and
is trained on Pascal VOC12 (Everingham et al., 2015). Pascal VOC12 annotates 20

categories. Since we consider all semantic classes, St can also provide information
about unknown category instances by describing them as a spatial mixture of known
ones (e.g. a sea lion might looks like a dog torso, and the head of cat). As long as
the predictions are consistent through time, St will provide a useful cue for tracking.
Note that we only use St for the multi-object tracking challenge, discussed in Section
10.6. In the same way as for the optical flow we scale St to bring all the channels to
the same range.

We additionally experiment with ensembles of different variants, that allows to
make the system more robust to the challenges inherent in videos. For our main
results for multiple object tracking task we consider the ensemble of four models:
Mt=0.25 · ( fI+F+S + fI+F + fI+S + fI), where we merge the outputs of the models
by naive averaging. See Section 10.6 for more details.

Post-processing. As a final stage of our pipeline, we refine per-frame t the gener-
ated mask Mt using DenseCRF (Krähenbühl and Koltun, 2011). This adjusts small
image details that the network might not be able to handle. It is known by practition-
ers that DenseCRF is quite sensitive to its parameters and can easily worsen results.
We will use our lucid dreams to handle per-dataset CRF-tuning too, see Section 10.3.2.
We refer to our full fI+F system as LucidTracker, and as LucidTracker− when no
post-processing is used. The usage of St or model ensemble will be explicitly stated.
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10.3.2 Training modalities

Multiple modalities are available to train a tracker. Training-free approaches (e.g.
BVS (Maerki et al., 2016), SVT (Wang and Shen, 2017)) are fully hand-crafted systems
with hand-tuned parameters, and thus do not require training data. They can be used
as-is over different datasets. Supervised methods can also be trained to generate a
dataset-agnostic model that can be applied over different datasets. Instead of using a
fixed model for all cases, it is also possible to obtain specialized per-dataset models,
either via self-supervision (Wang and Gupta, 2015; Pathak et al., 2016; Yu et al.,
2016; Zhu et al., 2017b) or by using the first frame annotation of each video in the
dataset as training/tuning set. Finally, inspired by traditional tracking techniques,
we also consider adapting the model weights to the specific video at hand, thus
obtaining per-video models. Section 10.5 reports new results over these four training
modalities (training-free, dataset-agnostic, per-dataset, and per-video).

Our LucidTracker obtains best results when first pre-trained on ImageNet, then
trained per-dataset using all data from first frame annotations together, and finally
fine-tuned per-video for each evaluated sequence. The post-processing DenseCRF
stage is automatically tuned per-dataset. The experimental section 10.5 details the
effect of these training stages. Interestingly, we can obtain reasonable performance
even when training from only a single annotated frame (without ImageNet pre-
training).

Unless otherwise stated, we fine-tune per-video models relying solely on the
first frame I0 and its annotation M0. This is in contrast to traditional techniques
(Henriques et al., 2012; Breitenstein et al., 2009; Kristan et al., 2014) which would
update the appearance model at each frame It.

10.4 lucid data dreaming

To train the function f one would think of using ground truth data for Mt−1 and Mt
(like Bertinetto et al. (2016); Caelles et al. (2017b); Held et al. (2016)); however, such
data is expensive to annotate and rare. Caelles et al. (2017b) thus train on a set of
30 videos (∼2k frames) and requires the model to transfer across multiple tests sets.
Perazzi et al. (2017) side-step the need for consecutive frames by generating synthetic
masks Mt−1 from a saliency dataset of ∼10k images with their corresponding mask
Mt . We propose a new data generation strategy to reach better results using only
∼100 individual training frames.

Ideally training data should be as similar as possible to the test data, even subtle
differences may affect quality (e.g. training on static images for testing on videos
under-performs (Tang et al., 2012)). To ensure our training data is in-domain, we
propose to generate it by synthesizing samples from the provided annotated frame
(first frame) in each target video. This is akin to “lucid dreaming” as we intentionally
“dream” the desired data by creating sample images that are plausible hypothetical
future frames of the video. The outcome of this process is a large set of frame pairs
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in the target domain (2.5k pairs per annotation) with known optical flow and mask
annotations, see Figure 10.5.

Synthesis process. The target domain for a tracker is the set of future frames of
the given video. Traditional data augmentation via small image perturbation is
insufficient to cover the expect variations across time, thus a task specific strategy
is needed. Across the video the tracked object might change in illumination, de-
form, translate, be occluded, show different point of views, and evolve on top of a
dynamic background. All of these aspects should be captured when synthesizing
future frames. We achieve this by cutting-out the foreground object, in-painting the
background, perturbing both foreground and background, and finally recomposing
the scene. This process is applied twice with randomly sampled transformation
parameters, resulting in a pair of frames (Iτ−1, Iτ) with known pixel-level ground-
truth mask annotations (Mτ−1, Mτ), optical flow Fτ, and occlusion regions. The
object position in Iτ is uniformly sampled, but the changes between Iτ−1, Iτ are
kept small to mimic the usual evolution between consecutive frames.

In more details, starting from an annotated image:

1. Illumination changes: we globally modify the image by randomly altering
saturation S and value V (from HSV colour space) via x′ = a · xb + c, where
a ∈ 1± 0.05, b ∈ 1± 0.3, and c ∈ ±0.07.

2. Fg/Bg split: the foreground object is removed from the image I0 and a back-
ground image is created by inpainting the cut-out area (Criminisi et al., 2004).

3. Object motion: we simulate motion and shape deformations by applying global
translation as well as affine and non-rigid deformations to the foreground
object. For Iτ−1 the object is placed at any location within the image with a
uniform distribution, and in Iτ with a translation of ±10% of the object size
relative to τ− 1. In both frames we apply random rotation ±30◦, scaling ±15%
and thin-plate splines deformations (Bookstein, 1989) of ±10% of the object
size.

4. Camera motion: We additionally transform the background using affine deform-
ations to simulate camera view changes. We apply here random translation,
rotation, and scaling within the same ranges as for the foreground object.

5. Fg/Bg merge: finally (Iτ−1, Iτ) are composed by blending the perturbed fore-
ground with the perturbed background using Poisson matting (Sun et al., 2004).
Using the known transformation parameters we also synthesize ground-truth
pixel-level mask annotations (Mτ−1, Mτ) and optical flow Fτ.

Figure 10.5 shows example results. Albeit our approach does not capture appear-
ance changes due to point of view, occlusions, nor shadows, we see that already this
rough modelling is effective to train our tracking models.

The number of synthesized images can be arbitrarily large. We generate 2.5k
pairs per annotated video frame. This training data is, by design, in-domain with
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Figure 10.5: Lucid data dreaming examples. From one annotated frame we generate
pairs of images (Iτ−1, Iτ) that are plausible future video frames, with known optical
flow (Fτ) and masks (green boundaries). Note the inpainted background and
foreground/background deformations.
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(a) Original image I0 and mask annotation M0

(b) Generated image Iτ and mask Mτ

(c) Generated flow magnitude ‖Fτ‖

Figure 10.6: Lucid data dreaming examples with multiple objects. From one annot-
ated frame we generate a plausible future video frame (Iτ), with known optical flow
(Fτ) and mask (Mτ).

regard of the target video. The experimental section 10.5 shows that this strategy is
more effective than using thousands of manually annotated images from close-by
domains.

The same strategy for data synthesis can be employed for multiple object tracking
task. Instead of manipulating a single object we handle multiple ones at the same
time, applying independent transformations to each of them. We model occlusion
between objects by adding a random depth ordering obtaining both partial and full
occlusions in the training set. Including occlusions in the lucid dreams allows to
better handle plausible interactions of objects in the future frames. See Figure 10.6
an example illustration.

10.5 single object tracking results

We present here a detailed empirical evaluation on three different datasets for single
object tracking task: given a first frame labelled with the foreground object mask,
the goal is to find the corresponding object pixels in future frames. (Section 10.6 will
discuss the multiple objects case.)
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10.5.1 Experimental setup

Datasets. We evaluate our method on three video object segmentation datasets:
DAVIS16 (Perazzi et al., 2016), YouTubeObjects (Prest et al., 2012; Jain and Grauman,
2014), and SegTrackv2

(Li et al., 2013). The goal is to track an object through all
video frames given a foreground object mask in the first frame. These three datasets
provide diverse challenges with a mix of high and low resolution web videos, single
or multiple salient objects per video, videos with flocks of similar looking instances,
longer (∼400) and shorter (∼10) sequences, as well as the usual tracking challenges
such as occlusion, fast motion, illumination, view point changes, elastic deformation,
etc.

The DAVIS16 (Perazzi et al., 2016) video segmentation benchmark consists of 50

full-HD videos of diverse object categories with all frames annotated with pixel-level
accuracy, where one single or two connected moving objects are separated from the
background. The number of frames in each video varies from 25 to 104.

YouTubeObjects (Prest et al., 2012; Jain and Grauman, 2014) includes web videos
from 10 object categories. We use the subset of 126 video sequences with mask
annotations provided by Jain and Grauman (2014) for evaluation, where one single
object or a group of objects of the same category are separated from the background.
In contrast to DAVIS16 these videos have a mix of static and moving objects. The
number of frames in each video ranges from 2 to 401.

SegTrackv2
(Li et al., 2013) consists of 14 videos with multiple object annotations

for each frame. For videos with multiple objects each object is treated as a separate
problem, resulting in 24 sequences. The length of each video varies from 21 to
279 frames. The images in this dataset have low resolution and some compression
artefacts, making it hard to track the object based on its appearance.

The main experimental work is done on DAVIS16, since it is the largest densely
annotated dataset out of the three, and provides high quality/high resolution data.
The videos for this dataset were chosen to represent diverse challenges, making it
a good experimental playground. We additionally report on two other datasets as
complementary test set results.

Evaluation metric. To measure the accuracy of video object tracking we use the
mean intersection-over-union overlap (mIoU) between the per-frame ground truth
object mask and the predicted segmentation, averaged across all video sequences.
We have noticed disparate evaluation procedures used in previous work, and we
report here a unified evaluation across datasets. When possible, we re-evaluated
certain methods using results provided by their authors. For all three datasets we
follow the DAVIS16 evaluation protocol, excluding the first frame from evaluation
and using all other frames from the video sequences, independent of object presence
in the frame.

Training details. For training all the models we use SGD with mini-batches of 10
images and a fixed learning policy with initial learning rate of 10−3. The momentum
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Figure 10.7: LucidTracker single object tracking qualitative results. Frames sampled
along the video duration (e.g. 50%: video middle point). Our model is robust to
various challenges, such as view changes, fast motion, shape deformations, and
out-of-view scenarios.
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and weight decay are set to 0.9 and 5 · 10−4, respectively.
Models using pre-training are initialized with weights trained for image classifica-

tion on ImageNet (Simonyan and Zisserman, 2015). We then train per-dataset for 40k
iterations with the RGB+Mask branch fI and for 20k iterations for the Flow+Mask
fF branch. When using a single stream architecture (Section 10.5.4.3), we use 40k
iterations. Models without ImageNet pre-training are initialized using the “Xavier”
strategy (Glorot and Bengio, 2010). The per-dataset training needs to be longer,
using 100k iterations for the fI branch and 40k iterations for the fF branch. For
per-video fine-tuning 2k iterations are used for fI . To keep computing cost lower,
the fF branch is kept fix across videos. All training parameters are chosen based on
DAVIS16 results. We use identical parameters on YouTubeObjects and SegTrackv2

,
showing the generalization of our approach.

It takes ~3.5h to obtain each per-video model, including data generation, per-
dataset training, per-video fine-tuning and per-dataset grid search of CRF parameters
(averaged over DAVIS16, amortising the per-dataset training time over all videos). At
test time our LucidTracker runs at ~5s per frame, including the optical flow estima-
tion with FlowNet2.0 (Ilg et al., 2017) (~0.5s) and CRF post-processing (Krähenbühl
and Koltun, 2011) (~2s).

10.5.2 Key results

Table 10.1 presents our main result and compares it to previous work. Our full
system, LucidTracker, provides the best tracking quality across three datasets while
being trained on each dataset using only one frame per video (50 frames for DAVIS16,
126 for YouTubeObjects, 24 for SegTrackv2

), which is 20×∼100× less than the top
competing methods. Ours is the first method to reach > 75 mIoU on all three
datasets.

Oracles and baselines. Grabcut oracle computes grabcut (Rother et al., 2004) using
the ground truth bounding boxes (box oracle). This oracle indicates that on the
considered datasets separating foreground from background is not easy, even if a
perfect box-level tracker was available.

We provide three additional baselines. “Saliency” corresponds to using the
generic (training-free) saliency method EQCut (Aytekin et al., 2015) over the RGB
image It. “Flow saliency” does the same, but over the optical flow magnitude ‖Ft‖.
Results indicate that the objects being tracked are not particularly salient in the image.
On DAVIS16 motion saliency is a strong signal but not on the other two datasets.
Saliency methods ignore the first frame annotation provided for the tracking task.
We also consider the “Mask warping” baseline which uses optical flow to propagate
the mask estimate from t to t + 1 via simple warping Mt = w(Mt−1, F t). The bad
results of this baseline indicate that the high quality flow (Ilg et al., 2017) that we
use is by itself insufficient to solve the tracking task, and that indeed our proposed
convnet does the heavy lifting. The large fluctuation of the relative baseline results
across the three datasets empirically confirms that each of them presents unique
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Method
# training Flow Dataset, mIoU

images F DAVIS16 YoutbObjs SegTrckv2

Box oracle (Perazzi et al., 2017) 0 % 45.1 55.3 56.1

Grabcut oracle (Perazzi et al., 2017) 0 % 67.3 67.6 74.2

Ig
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Saliency 0 % 32.7 40.7 22.2

NLC (Faktor and Irani, 2014) 0 ! 64.1 - -

TRS (Xiao and Lee, 2016) 0 ! - - 69.1

MP-Net (Tokmakov et al., 2017a) ~22.5k ! 69.7 - -

Flow saliency 0 ! 70.7 36.3 35.9

FusionSeg (Jain et al., 2017) ~95k ! 71.5 67.9 -

U
se
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1
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no
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on

Mask warping 0 ! 32.1 43.2 42.0

FCP (Perazzi et al., 2015) 0 ! 63.1 - -

BVS (Maerki et al., 2016) 0 % 66.5 59.7 58.4

N15 (Nagaraja et al., 2015) 0 ! - - 69.6

ObjFlow (Tsai et al., 2016) 0 ! 71.1 70.1 67.5

STV (Wang and Shen, 2017) 0 ! 73.6 - -

VPN (Jampani et al., 2016a) ~2.3k % 75.0 - -

OSVOS (Caelles et al., 2017b) ~2.3k % 79.8 72.5 65.4

MaskTrack (Perazzi et al., 2017) ~11k ! 80.3 72.6 70.3

LucidTracker 24~126 ! 84.8 76.2 77.6

Table 10.1: Comparison of segment tracking results across three datasets. Numbers
in italic are reported on subsets of DAVIS16. Our LucidTracker consistently improves
over previous results, see §10.5.2.

challenges.

Comparison. Compared to flow propagation methods such as BVS, N15, ObjFlow,
and STV, we obtain better results because we build per-video a stronger appearance
model of the tracked object (embodied in the fine-tuned model). Compared to
convnet learning methods such as VPN, OSVOS, MaskTrack, we require significantly
less training data, yet obtain better results.

Figure 10.7 provides qualitative results of LucidTracker across three different
datasets. Our system is robust to various challenges present in videos. It handles well
camera view changes, fast motion, object shape deformation, out-of-view scenarios,
multiple similar looking objects and even low quality video. We provide a detailed
error analysis in Section 10.5.5.

Conclusion. We show that using less training data, does not necessarily lead to
poorer results. We report top results for this task while using only 24∼126 training
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Variant I F
warp.

per-video

fine-tun.
Dataset, mIoU

w F DAVIS16 YoutbObjs SegTrckv2

LucidTracker ! ! ! % 84.8 76.2 77.6

LucidTracker− ! ! ! % 83.7 76.2 76.8

No warping ! ! % % 82.0 74.6 70.5

No OF ! % % % 78.0 74.7 61.8

OF only % ! ! % 74.5 43.1 55.8

Table 10.2: Ablation study of flow ingredients. Flow complements image only results,
with large fluctuations across datasets. See §10.5.3.1.

Variant
Optical Dataset, mIoU

flow DAVIS16 YoutbObjs SegTrckv2

LucidTracker−
FlowNet2.0 83.7 76.2 76.8

EpicFlow 80.2 71.3 67.0

No flow 78.0 74.7 61.8

No ImageNet

pre-training

FlowNet2.0 82.0 74.3 71.2

EpicFlow 80.0 72.3 68.8

No flow 76.7 71.4 63.0

Table 10.3: Effect of optical flow estimation.

frames.

10.5.3 Ablation studies

In this section we explore in more details how the different ingredients contribute to
our results.

10.5.3.1 Effect of optical flow

Table 10.2 shows the effect of optical flow on LucidTracker results. Comparing
our full system to the "No OF" row, we see that the effect of optical flow varies
across datasets, from minor improvement in YouTubeObjects, to major difference in
SegTrackv2

. In this last dataset, using mask warping is particularly useful too. We
additionally explored tuning the optical flow stream per-video, which resulted in a
minor improvement (83.7→83.9 mIoU on DAVIS16).

OSVOS (Caelles et al., 2017b) also does not use optical flow, but instead uses a
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Variant
ImgNet

pre-train.

per-dataset

training

per-video

fine-tun.

Dataset, mIoU

DAVIS16 YoutbObjs SegTrckv2

LucidTracker− ! ! ! 83.7 76.2 76.8

(no ImgNet) % ! ! 82.0 74.3 71.2

No per-video

tuning

! ! % 82.7 72.3 71.9

% ! % 78.4 69.7 68.2

Only per-

-video tuning

! % ! 79.4 - 70.4

% % ! 80.5 - 66.8

Table 10.4: Ablation study of training modalities. ImageNet pre-training and per-
video tuning provide additional improvement over per-dataset training. Even with
one frame annotation for only per-video tuning we obtain good performance. See
§10.5.3.2.

per-frame mask post-processing based on a boundary detector (trained on further
external data), which provides ∼2 percent point gain. Accounting for this, our "No
OF" (and no CRF) result matches theirs on DAVIS16 and YouTubeObjects despite
using significantly less training data (see Table 10.1, e.g. 79.8− 2 ≈ 78.0 on DAVIS16).

Table 10.3 shows the effect of using different optical flow estimation methods.
For LucidTracker results, FlowNet2.0 (Ilg et al., 2017) was employed. We also
explored using EpicFlow (Revaud et al., 2015), as in Perazzi et al. (2017). Table
10.3 indicates that employing a robust optical flow estimation across datasets is
crucial to the performance (FlowNet2.0 provides ∼ 1.5− 15 points gain on each
dataset). We found EpicFlow to be brittle when going across different datasets,
providing improvement for DAVIS16 and SegTrackv2

(∼ 2 − 5 points gain), but
underperforming for YouTubeObjects (74.7→71.3 mIoU).

Conclusion. The results show that flow provides a complementary signal to RGB
image only and having a robust optical flow estimation across datasets is crucial.
Despite its simplicity our fusion strategy ( fI + fF ) provides gains on all datasets,
and leads to competitive results.

10.5.3.2 Effect of training modalities

Table 10.4 compares the effect of different ingredients in the LucidTracker− train-
ing. Results are obtained using RGB and flow, with warping, no CRF; Mt =

f (It, w(Mt−1,Ft)). We see that ImageNet pre-training does provide 2∼ 5 percent
point improvement (depending on the dataset of interest; e.g. 82.0→83.7 mIoU on
DAVIS16). Per-video fine-tuning (after doing per-dataset training) provides an addi-
tional 1∼2 percent point gain (e.g. 82.7→83.7 mIoU on DAVIS16). Both ingredients
clearly contribute to the tracking results.
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Method
CRF Dataset, mIoU

parameters DAVIS16 YoutbObjs SegTrckv2

LucidTracker− - 83.7 76.2 76.8

LucidTracker default 84.2 75.5 72.2

LucidTracker tuned per-dataset 84.8 76.2 77.6

Table 10.5: Effect of CRF tuning. Without per-dataset tuning DenseCRF will under-
perform.

In the bottom row ("only per-video tuning"), the model is trained per-video
without ImageNet pre-training nor per-dataset training, i.e. using a single annotated
training frame. Our network is based on VGG16 (Chen et al., 2016b) and contains
∼ 20M parameters, all effectively learnt from a single annotated image that is
augmented to become 2.5k training samples (see Section 10.4). Even with such
minimal amount of training data, we still obtain a surprisingly good performance
(compare 80.5 on DAVIS16 to others in Table 10.1). This shows how effective is, by
itself, the proposed training strategy based on lucid dreaming of the data. Note
that training a model using only per-video tuning takes about one full GPU day per
video sequence; making these results insightful but not decidedly practical.

Preliminary experiments evaluating on DAVIS16 the impact of the different
ingredients of our lucid dreaming data generation showed, depending on the exact
setup, 3∼10 percent mIoU points fluctuations between a basic version (e.g. without
non-rigid deformations nor scene re-composition) and the full synthesis process
described in Section 10.4. Having a sophisticated data generation process directly
impacts the tracking quality.

Conclusion. Both ImageNet pre-training and per-video tuning of the models
provide complementary gains over the default per-dataset training. Per-video
training by itself, despite using a single annotated frame, provides already much of
the needed information for the tracking task.

10.5.3.3 Effect of CRF tuning

As a final stage of our pipeline, we refine the generated mask using DenseCRF
(Krähenbühl and Koltun, 2011) per frame. This captures small image details that
the network might have missed. It is known by practitioners that DenseCRF is quite
sensitive to its parameters and can easily worsen results. We use our lucid dreams
to enable automatic per-dataset CRF-tuning.

Following Chen et al. (2016b) we employ grid search scheme for tuning CRF
parameters. Once the per-dataset tracking model is trained, we apply it over a subset
of its training set (5 random images from the lucid dreams per video sequence),
apply DenseCRF with the given parameters over this output, and then compare to
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Figure 10.8: Effect of CRF tuning. The shown DAVIS16 videos have the highest
margin between with and without CRF post-processing (based on mIoU over the
video).

the lucid dream ground truth.
The impact of the tuned parameter of DenseCRF post-processing is shown in

Table 10.5 and Figure 10.8. Table 10.5 indicates that without per-dataset tuning
DenseCRF is under-performing. Our automated tuning procedure allows to obtain
consistent gains without the need for case-by-case manual tuning.

Conclusion. Using default DenseCRF parameters will degrade performance. Our
lucid dreams enable per-dataset CRF-tuning which allows to further improve the
results.

10.5.4 Additional experiments

Other than adding or removing ingredients, as in Section 10.5.3, we also want to
understand how the training data itself affects the obtained results.

10.5.4.1 Generalization across videos

Table 10.6 explores the effect of tracking quality as a function of the number of
training samples. To see more directly the training data effects we use a base model
with RGB image It only (no flow F , no CRF), and per-dataset training (no ImageNet
pre-training, no per-video fine-tuning). We evaluate on two disjoint subsets of 15
DAVIS16 videos each, where the first frames for per-dataset training are taken from
only one subset. The reported numbers are thus comparable within Table 10.6, but
not across to the other tables in the chapter. Table 10.6 reports results with varying
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# training # frames
mIoU

Training set videos per video

Includes 1st frames

from test set

1 1 78.3

2 1 75.4

15 1 68.7

30 1 65.4

30 2 74.3

Excludes 1st frames

from test set

2 1 11.6

15 1 36.4

30 1 41.7

30 2 48.4

Table 10.6: Varying the number of training videos. A smaller training set closer to
the target domain is better than a larger one. See Section 10.5.4.1.

number of training videos and with/without including the first frames of each test
video for per-dataset training. When excluding the test set first frames, the image
frames used for training are separate from the test videos; and we are thus operating
across (related) domains. When including the test set first frames, we operate in the
usual LucidTracker mode, where the first frame from each test video is used to build
the per-dataset training set.

Comparing the top and bottom parts of the table, we see that when the annotated
images from the test set videos are not included, tracking quality drops drastically
(e.g. 68.7→36.4 mIoU). Conversely, on subset of videos for which the first frame
annotation is used for training, the quality is much higher and improves as the
training samples become more and more specific (in-domain) to the target video
(65.4→78.3 mIoU). Adding extra videos for training does not improve the perform-
ance. It is better (68.7→78.3 mIoU) to have 15 models each trained and evaluated
on a single video (row top-1-1) than having one model trained over 15 test videos
(row top-15-1). Training with an additional frame from each video (we added the
last frame of each train video) significantly boosts the resulting within-video quality
(e.g. row top-30-2 65.4→74.3 mIoU), because the training samples cover better the
test domain.

Conclusion. These results show that, when using RGB information (It), increasing
the number of training videos does not improve the resulting quality of our system.
Even within a dataset, properly using the training sample(s) from within each video
matters more than collecting more videos to build a larger training set.
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Training set
Dataset, mIoU

Mean
DAVIS16 YoutbObjs SegTrckv2

DAVIS16 80.9 50.9 46.9 59.6

YoutbObjs 67.0 71.5 52.0 63.5

SegTrackv2
56.0 52.2 66.4 58.2

Best 80.9 71.5 66.4 72.9

Second best 67.0 52.2 52.0 57.1

All-in-one 71.9 70.7 60.8 67.8

Table 10.7: Generalization across datasets. Results with underline are the best per
dataset, and in italic are the second best per dataset (ignoring all-in-one setup). We
observe a significant quality gap between training from the target videos, versus
training from other datasets; see §10.5.4.2.

10.5.4.2 Generalization across datasets

Section 10.5.4.1 has explored the effect of changing the volume of training data within
one dataset, Table 10.7 compares results when using different datasets for training.
Results are obtained using a base model with RGB and flow (Mt = f (It, Mt−1), no
warping, no CRF), ImageNet pre-training, per-dataset training, and no per-video
tuning to accentuate the effect of the training dataset.

The best performance is obtained when training on the first frames of the target
set. There is a noticeable ∼10 percent points drop when moving to the second best
choice (e.g. 80.9→ 67.0 for DAVIS16). Interestingly, when putting all the datasets
together for training ("all-in-one" row, a dataset-agnostic model) the results degrade,
reinforcing the idea that "just adding more data" does not automatically make the
performance better.

Conclusion. Best results are obtained when using training data that focuses on the
test video sequences, using similar datasets or combining multiple datasets degrades
the performance for our system.

10.5.4.3 Experimenting with the convnet architecture

Section 10.3.1 and Figure 10.3 described two possible architectures to handle It and
Ft. Previous experiments are all based on the two streams architecture.

Table 10.8 compares two streams versus one stream, where the network to
accepts 5 input channels (RGB + previous mask + flow magnitude) in one stream:
Mt = fI+F (It , Ft, w(Mt−1, F t)). Results are obtained using a base model with
RGB and optical flow (no warping, no CRF), ImageNet pre-training, per-dataset
training, and no per-video tuning. We observe that both one stream and two stream
architecture with naive averaging perform on par. Using a one stream network makes
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Architecture
ImgNet

pre-train.

per-dataset

training

per-video

fine-tun.

DAVIS16

mIoU

two streams ! ! % 80.9

one stream ! ! % 80.3

Table 10.8: Experimenting with the convnet architecture. See §10.5.4.3.

the training more affordable and allows more easily to expand the architecture with
additional input channels.

Conclusion. One stream network performs as well as a network with two streams.
We will use the one stream architecture in Section 10.6.

10.5.5 Error analysis

Table 10.9 presents an expanded evaluation on DAVIS16 using evaluation metrics
proposed in Perazzi et al. (2016). Three measures are used: region similarity in terms
of intersection over union (J), contour accuracy (F, higher is better), and temporal
instability of the masks (T, lower is better). We outperform the competitive methods
(Perazzi et al., 2017; Caelles et al., 2017b) on all three measures.

Table 10.10 reports attribute based evaluation on DAVIS16. LucidTracker is best
on 13 out of 15 video attribute categories. This shows that LucidTracker can handle
various video challenges present in DAVIS16.

We present the per-sequence and per-frame results of LucidTracker over DAVIS16

in Figure 10.9. On the whole we observe that the proposed approach is quite robust,
most video sequences reach an average performance above 80 mIoU. However, by
looking at per-frame results for each video (blue dots in Figure 10.9) one can see
several frames where our approach has failed (IoU less than 50) to correctly track the
object. Investigating closely those cases we notice conditions where LucidTracker is
more likely to fail. The same behaviour was observed across all three datasets. A
few representatives of failure cases are visualized in Figure 10.10.

Since we are using only the annotation of the first frame for training the tracker,
a clear failure case is caused by dramatic view point changes of the object from its
first frame appearance, as in row 5 of Figure 10.10. The proposed approach also
under-performs when recovering from occlusions: it takes several frames for the
full object mask to re-appear (rows 1-2 in Figure 10.10). This is mainly due to the
convnet having learnt to follow-up the previous frame mask. Augmenting the lucid
dreams with plausible occlusions might help mitigate this case. Another failure
case occurs when two similar looking objects cross each other, as in row 6 in Figure
10.10. Here both cues: the previous frame guidance and learnt via per-video tuning
appearance, are no longer discriminative to correctly continue tracking.

We also observe that the LucidTracker struggles to track the fine structures or
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Method
# training

images

Flow

F

DAVIS16

J F T

Mean ↑Recall ↑Decay ↓Mean ↑Recall ↑Decay ↓Mean ↓

Box oracle 0 % 45.1 39.7 -0.7 21.4 6.7 1.8 1.0

Grabcut oracle 0 % 67.3 76.9 1.5 65.8 77.2 2.9 34.0

Ignores

1st frame

Saliency 0 % 32.7 22.6 -0.2 26.9 10.3 0.9 32.8

NLC (Faktor and Irani, 2014) 0 ! 64.1 73.1 8.6 59.3 65.8 8.6 35.8

MP-Net (Tokmakov et al., 2017a) ~22.5k ! 69.7 82.9 5.6 66.3 78.3 6.7 68.6

Flow saliency 0 ! 70.7 83.2 6.7 69.7 82.9 7.9 48.2

FusionSeg (Jain et al., 2017) ~95k ! 71.5 - - - - - -

Uses

1st frame

Mask warping 0 ! 32.1 25.5 31.7 36.3 23.0 32.8 8.4

FCP (Perazzi et al., 2015) 0 ! 63.1 77.8 3.1 54.6 60.4 3.9 28.5

BVS (Maerki et al., 2016) 0 % 66.5 76.4 26.0 65.6 77.4 23.6 31.6

ObjFlow (Tsai et al., 2016) 0 ! 71.1 80.0 22.7 67.9 78.0 24.0 22.1

STV (Wang and Shen, 2017) 0 ! 73.6 - - 72.0 - - -

VPN (Jampani et al., 2016a) ~2.3k % 75.0 - - 72.4 - - 29.5

OSVOS (Caelles et al., 2017b) ~2.3k % 79.8 93.6 14.9 80.6 92.6 15.0 37.6

MaskTrack (Perazzi et al., 2017) ~11k ! 80.3 93.5 8.9 75.8 88.2 9.5 18.3

LucidTracker 24~126 ! 84.8 94.6 4.3 82.3 90.5 7.0 15.8

Table 10.9: Comparison of segment tracking results on DAVIS16 benchmark. Num-
bers in italic are computed based on subsets of DAVIS16. Our LucidTracker improves
over previous results.

details of the object, e.g. wheels of the bicycle or motorcycle in rows 1-2 in Figure
10.10. This is the issue of the underlying choice of the convnet architecture, due
to the several pooling layers the spatial resolution is lost and hence the fine details
of the object are missing. This issue can be mitigated by switching to more recent
semantic labelling architectures (e.g. Pohlen et al. (2017); Chen et al. (2017a)).

Conclusion. LucidTracker shows robust performance across different videos.
However, a few failure cases were observed due to the underlying convnet ar-
chitecture, its training, or limited visibility of the object in the first frame.
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Figure 10.9: Per-sequence results on DAVIS16.
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Figure 10.10: Failure cases. Frames sampled along the video duration (e.g. 50%:
video middle point). For each dataset we show 2 out of 5 worst results (based on
mIoU over the video).
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Attribute
Method

BVS ObjFlow OSVOS MaskTrack
LucidTracker

(Maerki et al., 2016) (Tsai et al., 2016) (Caelles et al., 2017b) (Perazzi et al., 2017)

Appearance change 0.46 0.54 0.81 0.76 0.78

Background clutter 0.63 0.68 0.83 0.79 0.85
Camera-shake 0.62 0.72 0.78 0.78 0.87
Deformation 0.7 0.77 0.79 0.78 0.87

Dynamic background 0.6 0.67 0.74 0.76 0.77
Edge ambiguity 0.58 0.65 0.77 0.74 0.78

Fast-motion 0.53 0.55 0.76 0.75 0.80
Heterogeneous object 0.63 0.66 0.75 0.79 0.83

Interacting objects 0.63 0.68 0.75 0.77 0.84
Low resolution 0.59 0.58 0.77 0.77 0.76

Motion blur 0.58 0.6 0.74 0.74 0.83
Occlusion 0.68 0.66 0.77 0.77 0.83

Out-of-view 0.43 0.53 0.72 0.71 0.84
Scale variation 0.49 0.56 0.74 0.73 0.76

Shape complexity 0.67 0.69 0.71 0.75 0.81

Table 10.10: Attribute evaluation. LucidTracker improves across the bulk of tracking
challenges.

10.6 multiple object tracking results

We present here an empirical evaluation of LucidTracker for multiple object tracking
task: given a first frame labelled with the masks of several object instances, one aims
to find the corresponding masks of objects in future frames.

10.6.1 Experimental setup

Dataset. For multiple object tracking we use the 2017 DAVIS Challenge on Video
Object Segmentation5 (Pont-Tuset et al., 2017) (DAVIS17). Compared to DAVIS16

this is a larger, more challenging dataset, where the video sequences have multiple
objects in the scene. Videos that have more than one visible object in DAVIS16 have
been re-annotated (the objects were divided by semantics) and the train and val
sets were extended with more sequences. In addition, two other test sets (test-dev
and test-challenge) were introduced. The complexity of the videos has increased
with more distractors, occlusions, fast motion, smaller objects, and fine structures.
Overall, DAVIS17 consists of 150 sequences, totalling 10 474 annotated frames and
384 objects.

We evaluate our method on two test sets, the test-dev and test-challenge sets,

5http://davischallenge.org/challenge2017
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1st frame,
GT segment 20% 40% 60% 80% 100%

Figure 10.11: LucidTracker qualitative results on DAVIS17, test-dev set. Frames
sampled along the video duration (e.g. 50%: video middle point). The videos are
chosen with the highest mIoU measure.

each consists of 30 video sequences, on average ∼ 3 objects per sequence, the length
of the sequences is ∼ 70 frames. For both test sets only the masks on the first frames
are made public, the evaluation is done via an evaluation server. Our experiments
and ablation studies are done on the test-dev set.

Evaluation metric. The accuracy of multiple object tracking is evaluated using the
region (J) and boundary (F) measures proposed by the organisers of the challenge.
The average of J and F measures is used as overall performance score. Please refer to
Pont-Tuset et al. (2017) for more details about the evaluation protocol.

Training details. All experiments in this section are done using the single stream
architecture discussed in sections 10.3.1 and 10.5.4.3. For training the models we
use SGD with mini-batches of 10 images and a fixed learning policy with initial
learning rate of 10−3. The momentum and weight decay are set to 0.9 and 5 · 10−4,
respectively. All models are initialized with weights trained for image classification
on ImageNet (Simonyan and Zisserman, 2015). We then train per-video for 40k
iterations.
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10.6.2 Key results

Tables 10.11 and 10.12 presents the results of the 2017 DAVIS Challenge on test-dev
and test-challenge sets (Pont-Tuset et al.). Our main results for the multi-object
tracking challenge are obtained via an ensemble of four different models ( fI , fI+F ,
fI+S , fI+F+S ), see Section 10.3.1.

The proposed system, LucidTracker, provides the best tracking quality on the
test-dev set and shows competitive performance on the test-challenge set, holding
the second place in the competition. The full system is trained using the standard
ImageNet pre-training initialization, Pascal VOC12 semantic annotations for the St
input (∼10k annotated images), and one annotated frame per test video, 30 frames
total on each test set. As discussed in Section 10.6.3, even without St LucidTracker

obtains competitive results (only 2 score points drop).
The top entry lixx (Li et al., 2017b) uses a deeper convnet model (ImageNet

pre-trained ResNet), a similar pixel-level tracking architecture, trains it over external
segmentation data (using ∼120k pixel-level annotated images from MS-COCO and
Pascal VOC for pre-training, and akin to Caelles et al. (2017b) fine-tuning on the
DAVIS17 train and val sets, ∼10k annotated frames), and extends it with a box-level
object detector (trained over MS-COCO and Pascal VOC, ∼500k bounding boxes)
and a box-level object re-identification model trained over ∼60k box annotations (on
both images and videos). We argue that our system reaches comparable results with
a significantly lower amount of training data.

Figure 10.11 provides qualitative results of LucidTracker on the test-dev set.
The video results include successful handling of multiple objects, full and partial
occlusions, distractors, small objects, and out-of-view scenarios.

Conclusion. We show that top results for multiple object tracking can be achieved
via our approach that focuses on exploiting as much as possible the available
annotation on the first video frame, rather than relying heavily on large external
training data.

10.6.3 Ablation study

Table 10.13 explores in more details how the different ingredients contribute to our
results. We see that adding extra information (channels) to the system, either optical
flow magnitude or semantic segmentation, or both, does provide 1 ∼ 2 percent
point improvement. The results show that leveraging semantic priors and motion
information provides a complementary signal to RGB image and both ingredients
contribute to the tracking results.

Combining in ensemble four different models ( fI+F+S + fI+F + fI+S + fI ) allows
to enhance the results even further, bringing 3 percent point gain. Our lucid dreams
enable automatic CRF-tuning (see Section 10.5.3.3) which allows to further improve
the results (65.2→66.6 mIoU).
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Method

DAVIS17, test-dev set

Rank
Global

mean
↑

J F

Mean ↑ Recall ↑ Decay ↓ Mean ↑ Recall ↑ Decay ↓

sidc 10 45.8 43.9 51.5 34.3 47.8 53.6 36.9

YXLKJ 9 49.6 46.1 49.1 22.7 53.0 56.5 22.3

haamooon (Shaban et al., 2017) 8 51.3 48.8 56.9 12.2 53.8 61.3 11.8

Fromandtozh (Zhao, 2017) 7 55.2 52.4 58.4 18.1 57.9 66.1 20.0

ilanv (Sharir et al., 2017) 6 55.8 51.9 55.7 17.6 59.8 65.8 18.9

voigtlaender (Voigtlaender and Leibe, 2017a) 5 56.5 53.4 57.8 19.9 59.6 65.4 19.0

lalalafine123 4 57.4 54.5 61.3 24.4 60.2 68.8 24.6

wangzhe 3 57.7 55.6 63.2 31.7 59.8 66.7 37.1

lixx (Li et al., 2017b) 2 66.1 64.4 73.5 24.5 67.8 75.6 27.1

LucidTracker 1 66.6 63.4 73.9 19.5 69.9 80.1 19.4

Table 10.11: Comparison of segment tracking results on DAVIS17, test-dev set. Our
LucidTracker shows top performance.

Method

DAVIS17, test-challenge set

Rank
Global

mean
↑

J F

Mean ↑ Recall ↑ Decay ↓ Mean ↑ Recall ↑ Decay ↓

zwrq0 10 53.6 50.5 54.9 28.0 56.7 63.5 30.4

Fromandtozh (Zhao, 2017) 9 53.9 50.7 54.9 32.5 57.1 63.2 33.7

wasidennis 8 54.8 51.6 56.3 26.8 57.9 64.8 28.8

YXLKJ 7 55.8 53.8 60.1 37.7 57.8 62.1 42.9

cjc (Cheng et al., 2017) 6 56.9 53.6 59.5 25.3 60.2 67.9 27.6

lalalafine123 6 56.9 54.8 60.7 34.4 59.1 66.7 36.1

voigtlaender (Voigtlaender and Leibe, 2017a) 5 57.7 54.8 60.8 31.0 60.5 67.2 34.7

haamooon (Shaban et al., 2017) 4 61.5 59.8 71.0 21.9 63.2 74.6 23.7

vantam299 (Le et al., 2017) 3 63.8 61.5 68.6 17.1 66.2 79.0 17.6

LucidTracker 2 67.8 65.1 72.5 27.7 70.6 79.8 30.2

lixx (Li et al., 2017b) 1 69.9 67.9 74.6 22.5 71.9 79.1 24.1

Table 10.12: Comparison of segment tracking results on DAVIS17, test-challenge set.
Our LucidTracker shows competitive performance, holding the second place in the
competition.
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Variant I F S ensemble CRF tuning

DAVIS17

test-dev test-challenge

global mean mIoU mF global mean mIoU mF

LucidTracker

(ensemble)

! ! ! ! ! 66.6 63.4 69.9 67.8 65.1 70.6

! ! ! ! % 65.2 61.5 69.0 - - -
! ! % ! ! 64.9 61.3 68.4 - - -
! ! % ! % 64.2 60.1 68.3 - - -

LucidTracker ! ! ! % ! 62.9 59.1 66.6 - - -
I +F + S ! ! ! % % 62.0 57.7 62.2 64.0 60.7 67.3

I +F ! ! % % % 61.3 56.8 65.8 - - -
I + S ! % ! % % 61.1 56.9 65.3 - - -
I ! % % % % 59.8 63.1 63.9 - - -

Table 10.13: Ablation study of different ingredients. DAVIS17, test-dev and test
challenge sets.

Conclusion. The results show that both flow and semantic priors provide a com-
plementary signal to RGB image only. Despite its simplicity our ensemble strategy
provides additional gain and leads to competitive results. Notice that even without
the semantic segmentation signal St our ensemble result is competitive.

10.6.4 Error analysis

We present the per-sequence results of LucidTracker on DAVIS17 in Figure 10.12

(per frame results not available from evaluation server). We observe that this dataset
is significantly more challenging than DAVIS16 (compare to Figure 10.9), with only
1/3 of the test videos above 80 mIoU. This shows that multiple object tracking is a
much more challenging task than tracking a single object.

The failure cases discussed in Section 10.5.5 still apply to the multiple objects
case. Additionally, on DAVIS17 we observe a clear failure case when tracking
similar looking object instances, where the object appearance is not discriminative to
correctly track the object, resulting in label switches or bleeding of the label to other
look-alike objects. Figure 10.13 illustrates this case. This issue could be mitigated
by using object level instance identification modules, like Li et al. (2017b), or by
changing the training loss of the model to more severely penalize identity switches.

Conclusion. Albeit the LucidTracker results remain robust across different videos,
overall results are lower than for the single object tracking case showing that there is
more room for improvement in the multiple object pixel-level tracking task.
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Figure 10.12: Per-sequence results on DAVIS17, test-dev set.

1st frame,
GT segment 20% 40% 60% 80% 100%

Figure 10.13: LucidTracker failure cases on DAVIS17, test-dev set. Frames sampled
along the video duration (e.g. 50%: video middle point). We show 2 results mIoU
over the video below 50.

10.7 conclusion

We have described a new convnet-based approach for pixel-level object tracking in
videos. In contrast to previous work in Chapter 9, we show that top results in single
and multiple object tracking can be achieved without requiring external training
datasets (neither images with saliency annotation nor annotated videos). Even more,
our experiments indicate that it is not always beneficial to use additional training
data, synthesizing training samples close to the test domain is more effective than
adding more training samples from related domains.

Our extensive analysis decomposed the ingredients that contribute to our im-
proved results, indicating that our new training strategy and the way we leverage
additional cues such as semantic and motion priors are key.

Showing that training a convnet for object tracking can be done with only
few (∼ 100) training samples changes the mindset regarding how much general
"objectness" knowledge is required to approach this problem (Perazzi et al., 2017; Jain
et al., 2017; Voigtlaender and Leibe, 2017b), and more broadly how much training
data is required to train large convnets depending on the task at hand.

We hope these new results will fuel the ongoing evolution of convnet techniques
for single and multiple object tracking.
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Significant progress has been achieved in image and video segmentation over
the last years (Long et al., 2015; Bansal et al., 2017; He et al., 2017; Tokmakov
et al., 2017b; Caelles et al., 2017b). To a large extent the success of the current

methods can be attributed to the strong appearance models completely learned from
data, in particular using deep convolutional neural networks. As the complexity of
methods increases and so the number of model parameters that have to be estimated
from data, large representative training sets are crucial for best performance. For
instance, the common practice is to pre-train the convnet on ∼106 training samples
for ImageNet classification (Russakovsky et al., 2015)), and then in order to shift
from the pre-training domain to the application domain by fine-tuning on thousands
of images with pixel-level annotations (Everingham et al., 2015; Lin et al., 2014; Pont-
Tuset et al., 2017). However, the large-scale segmentation datasets which enable these
high-quality results require a lot of human labor to be annotated and sometimes
prohibitive to obtain, e.g. in case of video segmentation. This considerably restricts
the potential to transfer these models to approach different domains or various object
categories. As a consequence, methods with alternative weaker forms of supervision
(Jain et al., 2017; Papandreou et al., 2015; Kolesnikov and Lampert, 2016b) or synthetic
data (Mayer et al., 2016; Tokmakov et al., 2017a) for training have received a lot of
attention recently as well as unsupervised and self-supervised techniques (Li et al.,
2015; Sermanet et al., 2017; Xiao and Lee, 2016).

In this thesis we have looked at three research directions, which we briefly
summarize in the following. In the first direction, image segmentation with weaker
forms of supervision, we focused on training convolutional networks with bounding
box or image label supervision for object boundary and semantic/instance labelling
tasks. We proposed approaches to generate pixel-level approximate groundtruth
from these weaker forms of annotations to train a network, which allows to achieve
high-quality results without any modifications of the architecture or the training
procedure. We also contributed with the investigated recursive training of convnets
for weakly supervised image labelling and to the best of our knowledge we were the
first to address the problems of weakly supervised object boundaries and instance
segmentation. In the second direction, graph-based video segmentation, we moved
from images to learning to segment in videos. We addressed the problem of the
excessive computational and memory costs inherent to solving video segmentation
via graphs and contributed with learning a better and more efficient representation
of the graph from the available training data. In the third direction, pixel-level
object tracking via CNNs, we considered the task of propagating the mask of an
object throughout a video given its annotation in the first frame. We addressed
the challenge of the limited amount of densely annotated consequent video data

189



190 chapter 11. conclusions and future perspectives

for training by introducing a way to train the network from static images only and
generating in-domain synthetic data from the given first frame mask. In all three
directions we have advanced the state of the art on multiple challenging benchmarks.
Furthermore, we contributed to the field by making the source code, trained models
and generated data for training freely available to the community.

In this chapter we further discuss and detail the contributions of the thesis
(Section 11.1) and then review open problems and potential future perspectives
(Section 11.2).

11.1 discussion of contributions

The overall goal of this thesis was to exploit learning to segment in images and
videos using different levels of supervision during training and test time. We tackled
three specific sub-topics, namely image segmentation with weaker forms of supervision,
video segmentation via graphs and pixel-level object tracking via CNNs, as introduced
earlier. In the following we will discuss the main results and insights that this thesis
contributes with respect to the individual chapters.

11.1.1 Image segmentation with weaker forms of supervision

In the first two chapters we explore how to train the model using bounding box
supervision. In Chapter 3 we introduced the problem of weakly supervised object
boundary detection. We mainly focused on external object boundaries, which can be
seen as contours of object mask, as well as class-specific (semantic) object boundaries.
For the experiments we considered using two types of the boundary detectors: a
decision forest (Dollár and Zitnick, 2015) and a convnet-based edge detector (Xie
and Tu, 2015). We demonstrated that noisy boundaries generated from unsupervised
methods (Canny, 1986; Felzenszwalb and Huttenlocher., 2004) can be a source
for supervision for learning based detectors and that training methods are quite
robust to the noise in the generated annotations. Since accurate boundaries tend
to have consistent appearance, while erroneous detections are mostly inconsistent
they are able to pick-up the correct signal. Based on this insight we proposed to
generate pixel-level approximate groundtruth for object boundary detection using
the supervision from a bounding box object detector (Girshick, 2015; Ren et al., 2015).
For generating boundary annotations we fused unsupervised image segmentation
(Felzenszwalb and Huttenlocher., 2004), GrabCut (Rother et al., 2004) and object
proposal methods (Uijlings et al., 2013; Pont-Tuset et al., 2016) using the consensus
strategy to de-noise the predictions. We showed that this approximate groundtruth
alone suffice to train a boundary detector and as a result to achieve high-quality
object boundary estimates. We reported state-of-the-art performance on the Pascal
VOC12 (Everingham et al., 2015) and SBD (Hariharan et al., 2011) benchmarks. With
the proposed weak supervision technique we achieved the top performance for
object and class-specific boundaries, outperforming by a large margin previously
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reported fully supervised results. We demonstrated that while training bounding
box detector one could have the object boundary detector for free, without any
additional annotation effort.

In Chapter 4 we extend the proposed in Chapter 3 approach to other closely
related tasks, such as semantic labelling and instance segmentation. We contributed
with providing new insights on how to train pixel-labelling convnets from bounding
boxes only. We observed that when applying the model over the training set, the
network outputs capture the object shape significantly better than just boxes. This
motivated us to explore recursive training as a de-noising strategy of box annotations,
where convnet predictions of the previous training round are used as supervision
for the next round. We showed that when carefully employing the available cues
given by the shape of the box and object priors, recursive training with rectangles
as input can be surprisingly effective. Even more, generated training labels via
classic techniques for box-guided instance segmentation (Rother et al., 2004; Pont-
Tuset et al., 2016) can serve as good supervision for pixel-labelling convnet. When
finding a good balance between accuracy and recall in the noisy training segments,
a single training round is enough to get high-quality results. With the proposed
technique we improved over previously reported weakly supervised results for
semantic segmentation on Pascal VOC12 (Everingham et al., 2015) and reached
∼95% of the quality of the same network trained on the ground truth segmentation
annotations over the same data. By employing extra training data with bounding
box annotations from COCO (Lin et al., 2014) we matched the full supervision results.
Furthermore, we were the first to show that similar results for weakly supervised
instance segmentation.

In Chapter 5 we moved to a weaker form of supervision to train a semantic
segmentation convnet - image label annotations. Training a convnet with image-level
supervision is a much harder task compared to box supervision, as image labels
can only provide a constraint of the presence of the class. Therefore, one of the
main challenges is outputting the full extent of the object. To deal with this issue we
decomposed the problem into two: finding the object location and finding it’s extent.
We used high confidence points of the activation maps of the trained classifiers
(seeds) to locate the object (Zhou et al., 2016). We analyzed different factors that
influence the seeds generation. Our experiments showed that better classifiers do
not automatically make better seeders and higher resolution networks are usually
better localisers. For finding the object extent we employed a weakly-supervised
class-agnostic saliency model, exploiting the assumption that a large number of
photos aim at capturing a subject and thus finding the object extent can be seen as
finding the background area in an image. We then combined cues from the seeds
and saliency via the proposed “guide labeller” to produce a rough segmentation
annotation for training a convnet in a regular fully-supervised fashion. With this
approach we were able to recover 80% of the fully supervised performance, which
was the new state of the art in semantic labelling with image label supervision.
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11.1.2 Video segmentation via graphs

In the next three chapters we focused on learning to segment in videos using graphs.
We addressed one of the important limitation of graph-based methods - significant
computational and memory costs - by learning from the available training data
how to construct a smaller, sparser and better graph. Our contributions allowed to
improve the scalability of graph-based approaches and made their use possible for
today’s high quality video data.

In Chapter 6 we showed that graph-based video segmentation methods could
greatly benefit from the integration of information learned from training data in
terms of must-link constraints. We formalized the use of learned must-link con-
straints in conjunction with spectral techniques and proposed the relevant learning
and inference algorithms. Experimentally we demonstrated on two different bench-
marks that learned must-link constraints improve the performance by guiding
spectral clustering towards a desired segmentation and reduce the required runtime
and memory footprint by building a graph on coarser superpixels merged based on
learned must-link constraints.

In Chapter 7 we focused how to construct a graph in order to improve video
segmentation performance as well as to reduce the problem size without changing
the graph partitioning method. We proposed an empirical approach to learn both
the edge topology and weights of the graph. We combined well-established features
by means of a random forest classifier and learnt to calibrate the classifier output
scores by its accuracy. In addition, we altered the graph topology by selecting the
most confident edges. Our method of learning the graph improved the results of the
best performing video segmentation algorithm by 6% on the challenging VSB100

benchmark (Galasso et al., 2013), while reducing its runtime by 55%, as the learnt
graph is much sparser.

In Chapter 8 we improved superpixels - the graph nodes themselves - which are
the starting point for estimating pairwise terms, and thus directly influence the final
quality of graph-based video segmentation techniques. We provided the comparative
evaluation of existing superpixel/voxel methods, indicating the importance of the
initial superpixels/voxels for graph-based video segmentations. Our finding was
that classical superpixel/voxel methods (Chang et al., 2013; Achanta et al., 2012;
Bergh et al., 2013) underperform and boundary based superpixels, extracted via
hierarchical image segmentation, are more effective for the task. Based on this insight,
we proposed an approach to improve boundary estimates, and therefore superpixels,
specifically for videos. We fused image and time domain cues as well as integrated
high-level object-related cues into the local image segmentation processing. With this
technique we significantly enhanced boundary estimation in video frames and as a
result obtained improved per-frame superpixels. When using superpixels built over
these improved boundaries, we observed consistent improvement over two different
video segmentation methods (Galasso et al., 2013, 2014) and two different datasets.
Our analysis of the results indicated that the improvement was at most in the cases
where baseline methods degraded.
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11.1.3 Pixel-level object tracking via CNNs

In the last two chapters we focused on pixel-level object tracking via convolutional
networks and addressed the inherent challenges of limited densely annotated video
data for training and the problem of domain shift.

In Chapter 9 we presented MaskTrack, a novel convnet-based approach to video
object segmentation that uses only static images for training instead of relying on
consequent video data. We employed a pixel labelling convnet to process video
sequence per-frame, using the output of the previous frame as an additional input
channel, that served as a guidance towards the object of interest in the next frame.
In this way the network was designed to consider as input only one frame and the
rough binary mask (the previous frame estimate), which could be easily synthesized
from the ground truth mask via affine and non-rigid transformations. This enabled to
train the network with existing large-scale image datasets and avoid using expensive
densely annotated video data for training. The proposed system reached state-of-the-
art performance on three extremely heterogeneous video segmentation benchmarks,
using the same model and parameters across all videos in contrast to previous work.
We provided a detailed ablation study of different ingredients of the model. The
key component of the proposed approach was online fine-tuning of the network
on the given first frame annotation of the test video, which allowed to capture the
appearance of the specific object instance and thus made the performance more
robust to challenging situations inherent in video data, such as occlusions and
fast motion. We showed that our method could handle different types of input
annotations and our results were competitive even when using only bounding box
annotations, instead of segmentation masks. In addition, we explored the effect of
varying the amount of annotated frames per video during online fine-tuning. We
demonstrated that with only one annotation every 10th frame we can reach 85%
mIoU quality. This makes the proposed system suitable for diverse applications with
different requirements in terms of accuracy and efficiency.

In Chapter 10 we extended the approach proposed in the previous chapter
with better integration of motion cues as well as semantic information, making
the gains across different datasets more stable. For this we altered the network
architecture to accept optical flow magnitude and semantic priors as additional input
channels. Combining the appearance with motion and semantic cues enabled the
model to segment better and improved the temporal coherency. We also relaxed the
dependence of using ∼10k pixel-level image annotations for training, as in Chapter 9,
by introducing Lucid Data Dreaming, an automated approach to synthesize training
data for pixel-level object tracking. We proposed to generate multiple plausible future
frames using the given first frame image and its mask of the test video, ensuring a
sufficient amount of training samples close to the test domain. Employing the lucid
dream images for training enabled to achieve the top results while using only ∼100
individual annotated training frames, which was 20×∼ 100× less than previous
approaches (Caelles et al., 2017b; Voigtlaender and Leibe, 2017b). We conducted an
extensive analysis to explore the factors contributing to our results. Our experiments
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indicated that it is not always beneficial to employ additional external training data
and using few training frames close to the test domain is more effective than using
larger training volumes across domains. Furthermore, we explored training the
pixel-level object tracking network with only a single annotated frame and zero
pre-training. With such minimal amount of training data we obtained competitive
performance, demonstrating the effectiveness of Lucid Data Dreaming and changing
the mindset how much training data is required for the object tracking task. We
showed that our approach is suitable for both single and multiple object tracking,
taking the second place in the DAVIS Challenge6 (Pont-Tuset et al., 2017).

11.2 future perspectives

In this section we first discuss limitations of the presented work as well as potential
next steps towards image and video segmentation and speculate about promising
research directions. Then, we conclude this section with giving a broader view on
the topic in Section 11.2.3.

11.2.1 Image segmentation

In the thesis we have discussed several challenges towards image segmentation
with different levels of supervision and provided possible solutions to address them
(Chapters 3 – 5). However, our research in this thesis leads to some open issues that
we would like to discuss in the following.

Exploring different convnet architectures. Improving the boundary adherence
of the convnet predictions as well as segmenting objects at multiple scales is still
an open problem for image segmentation. Several solutions have been proposed
recently that showed promising results, such as different variants of spatial pyramid
pooling (Zhao et al., 2016; Chen et al., 2016b) or exploiting image-level features for
global context information (Liu et al., 2015; Chen et al., 2017a). We believe that
combining multi-scale information with global context is a promising direction.
However, so far very little analysis has been performed to showcase the advantages
and limitations of these different architecture alternations. Comparing the behavior
of these network variants in terms of different appearance factors would help to
understand how to better represent and handle visual information at different scales,
which is crucial for advancing the state of the art.

Data synthesis. Although deep learning methods are quite powerful, they are
dependent on data to be able to learn the necessary representation. Therefore, a
straightforward way to boost the performance is to provide more data for training.
However, obtaining pixel-level annotations is tedious and expensive. One of the
alternatives is to generate synthetic data by recomposing real world images, su-

6http://davischallenge.org/challenge2017
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perimposing the objects into different scenes. This provides more realistic results
and has better generalization qualities compared to renderings of 3D models. Us-
ing synthetically generated composite images for training has shown promise for
object detection (Debidatta Dwibedi, 2017; Georgakis et al., 2017) and human pose
estimation (Park and Ramanan, 2015), but yet to be shown for semantic and instance
segmentation. Special care should be taken of differences in lighting conditions,
scaling, blending of boundaries and selection of the object position in a new scene
and their impact on the performance of the learned models. Another and more
appealing option is to generate more training data by doing labels-to-image trans-
lation via Generative Adversarial Networks (GANs), which recently showed high
quality results (Zhu et al., 2017a), comparable to natural images. Besides, multiple
new scenes can be generated by recomposing label maps, which is a much easier
task than synthesizing realistic looking images via classic computer graphics tools.
We believe that the proposed strategies can further boost the results and help to
relax the data dependency constraint.

Exploiting unlabeled/weakly-labeled data. A huge amount of unlabeled/weakly-
labeled data with diverse context is being generated every second around the world
and in many cases becomes immediately available on the Internet. New deep
learning algorithms should be designed to take advantage of such data. Recently
a few works have explored using web-crawled images and videos with class label
annotations as additional training data for semantic segmentation convnets (Jin et al.,
2017; Hong et al., 2017). The main challenge in this line of research is de-noising
the data crawled from the Internet. Another line of work proposed to learn a visual
representation using only the innate structure of images and videos as a source of
supervision (Doersch et al., 2015; Goyal et al., 2017; Wang and Gupta, 2015; Zhang
et al., 2017). Although these approaches showed promising results, so far they could
not match the full supervision results. There is still much to explore and to enhance.
One interesting direction might be to exploit temporal coherence and dynamics
in videos as supervision since video data contains richer information than static
images.

Domain adaptation. Synthesizing or web-crawling additional training data can
lead to statistical deviations from the target domain. While the differences between
domains might appear mild to a human, it can make the benefits of training with
additional data non-existent and in the extreme case result in the much lower per-
formance. The problem of domain shift could be mitigated with domain adaptation
techniques. In consequence of ever growing demand for more data of deep learning
methods this topic has received a lot of attention recently (Ganin and Lempitsky,
2015; Long et al., 2016; Bousmalis et al., 2017; Tzeng et al., 2017). We see the problem
of domain adaptation as one of the main challenges for exploiting synthetic and
weakly-labeled data to boost convnets performance for image segmentation and
other related vision tasks.
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Integrating higher-level information. Image segmentation can be improved by
incorporating high-level concepts. However, while semantic reasoning is natural for
humans, it is not trivial for machines. Specifically, integrating external knowledge
into deep learning methods is challenging. One possible direction would be to
leverage the structure of objects in order to constrain better convnet predictions. For
instance, the model can learn that a car has four wheels, a bumper and a hood, while
a motorcycle has two wheels and a fork that connects a front wheel to the frame.
This knowledge of the object structure would help to better recover the object mask
and decrease the misclassification error. Another approach would be to integrate
the global scene aspects, i.e. how natural and plausible is the predicted scene, in
order to avoid occurrence of classes in improbable situations, e.g. it is very unlikely
to see zebra in the urban scene or a car flying in the air. A few early works took
steps towards these directions (Gould et al., 2009; Socher et al., 2011); however, they
considered a restricted semantic setting. Future works should look into providing
richer external knowledge to the networks.

11.2.2 Video segmentation

We have discussed different aspects of video segmentation via graphs (Chapters 6 –
8) and CNNs (Chapters 9, 10) in this thesis. The challenges and next steps related
to learning to segment in images, discussed previously, are also inherent to video
segmentation. In the following we review the possible extensions of the approaches
proposed in Chapters 9, 10, open problems for addressing video segmentation with
deep learning and future research directions.

Online adaptation. Since the pixel-level object tracking convnets in Chapters 9,
10 uses only the first frame annotation for per-video fine-tuning, they sometimes
have troubles to adapt to drastic changes in object appearance or camera viewpoint,
causing the loss of the object or the drift of the mask. One of the possible solutions
to this problem is online adaption of the network to the future frames (Nam and
Han, 2016; Ellis and Zografos, 2013; Bai et al., 2010). Recently Voigtlaender and
Leibe (2017b) proposed to update the convnet online on each frame using training
examples selected based on the confidence of the network and the spatial distance.
However, relying on the network predictions for online adaptation can result in error
propagation and cause identity-switches when tracking multiple interacting objects.
One way to resolve this issue it to integrate instance level semantic information (Dai
et al., 2016a; He et al., 2017) and in addition to rely on temporal consistency (e.g.
using forward and backward flow (Ilg et al., 2017) to propagate labels) to de-noise
the training examples for online tuning.

Improving data synthesis for object tracking. In Chapter 10 we introduced the
lucid data dreaming synthesis scheme which has proven to be successful for pixel-
level object tracking. However, there are several possible ways to enhance it. The
drawbacks of the proposed approach are a very naive modeling of the foreground
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and background motion and random placement of the object while recomposing
the scene. We believe that incorporating semantic knowledge of the object and the
scene into the simulation of object and camera motion as well as the new scene
compositing would help to produce more realistic images. Furthermore, more care
should also be taken of modeling changes in lighting conditions and blending of
object boundaries.

Weaker forms of supervision in the first frame. One of the main disadvantages
of semi-supervised video object segmentation is using an expensive object mask
supervision at test time. In Chapters 4 and 5 we have shown that an object mask can
be recovered with weaker forms of supervision, such as bounding box or object class
label. A natural extension would be to integrate these approaches with the method
proposed in Chapter 10. Another possible way obtaining the object mask is to use
language descriptions of the object. It is much easier for the user to say: “I want
a person on the right in a white t-shirt to be tracked”, than provide a pixel-level
annotation, which is a tedious task. Recently, it has been shown that textual phrases
can be grounded (localized) in images and videos using an attention mechanism
(Ramanishka et al., 2017; Rohrbach et al., 2016). We consider combining language
grounding with video segmentation an interesting research direction.

Exploiting long-range temporal context. Methods proposed in Chapters 9, 10

propagate the mask only across neighbouring frames relying on temporal continuity.
However, real-life videos may exhibit severe deformations and occlusions. As
a consequence using only the information from the previous frame can lead to
difficulties handling large displacement of objects and loss of the object. To cope
with inter-object occlusions and pose variations in dynamic scenes, Li et al. (2017b)
have recently proposed to employ object re-identification to retrieve instances that
are missing during the mask propagation process. We believe that exploiting long-
range temporal context of the video data is the key to obtaining robust and globally
consistent segmentation.

Encoding temporal dimension. Incorporating temporal information inherent in
video data into deep architectures is challenging and not straightforward. Some
works have proposed to use different variants of recurrent neural networks (Siam
et al.; Tokmakov et al., 2017b,b). However, these methods suffer from the lack of
large-scale densely annotated video datasets and extensive computational demands.
The other group of approaches has successfully employed spatio-temporal 3D con-
volutions for action recognition and scene classification (Varol et al., 2016; Tran et al.,
2015). Though, employing the fixed-sized spatio-temporal receptive fields might be
not suitable for dense predictions as association of the pixels in temporal dimension
is different from the spatial due to the large displacements in the dynamic scenes.

Extending semantic and instance image segmentation to videos. Many advances
have been made in semantic and instance segmentation of static images (e.g. (Chen
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et al., 2016b; Pohlen et al., 2017; Dai et al., 2016c; He et al., 2017)). However, so far
extending these tasks to video data has received less attention (Liu and He, 2015;
Kundu et al., 2016; Nilsson and Sminchisescu, 2016), especially in the context of deep
learning. One of the obvious reasons is the lack of a large volume of annotated
training data. Recently, a new benchmark (Richter et al., 2017) has been released,
which provides ground truth for low-level as well as higher-level tasks, including
semantic instance segmentation and tracking, for ∼ 250k frames. Availability of the
large-scale training data creates new opportunities for progress and development of
deep network architectures that leverage the temporal structure of video.

Convnets on graphs. In Chapters 6–8 and Chapters 9, 10 we discussed approach-
ing video segmentation via “old school” graphs or by using popular convolutional
networks respectively. An interesting future research direction is to combine the
best of both worlds. Recently, variants of neural networks which operate on graphs
have been introduced (Kipf and Welling, 2017; Defferrard et al., 2016; Li et al., 2016c;
Manessi et al., 2017), including applications to computer vision tasks (Liang et al.,
2016; Li et al., 2017a). Research on this topic is just getting started. Exciting develop-
ments have been made, but it remains to be seen how neural networks on graphs
can be further tailored to specific types of problems, including image and video
segmentation.

11.2.3 A broader outlook

While in the previous sections we have discussed concrete ideas to approach limita-
tions and future steps with respect to the contributions of this thesis, in this section
we outline a broader view on the topic.

More labelled data and effort in its sharing. Over the last few years, significant
progress has been made in the field of static image understanding, in particular
image segmentation. Most of the advances have come with the creation of large-scale
datasets, such as ImageNet (Russakovsky et al., 2015), Pascal VOC (Everingham et al.,
2015) and COCO (Lin et al., 2014). However, when it comes to video segmentation
we are still struggling to figure out how to encode the whole video volume and
what are the most promising directions to move forward. One of the reasons for
this is the absence of large diverse datasets for video segmentation. A few video
benchmarks have been released recently (Richter et al., 2017; Pont-Tuset et al., 2017),
which have helped and will help to advance as well as reveal the shortcomings of
existing approaches. Still, in terms of video sequence number those datasets do not
match in scale the existing image datasets. Therefore, collaborations in data sharing
among the research groups and the industry companies, which have much more
resources at hand, are strongly encouraged. Availability of annotated video data
for training and evaluation will accelerate the development of this highly dynamic
research area.
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Bringing in multiple modalities. Enabled by the recent development and accessib-
ility of data acquisition hardware, multi-modal data, which contains the observation
from multiple modalities such as image, audio, motion, depth, etc., has become
omnipresent. Capturing appearance of the visual world into a 2D plane is not
enough to describe the complex environment that surrounds us. Combining data
from multiple sources can not only lead to additional observations, but also result
in complementary information across modalities. This gives an opportunity for
computer vision systems to better understand real-word scenes, e.g. extending
monocular system with stereo-vision or depth-perception sensors provides inform-
ation of the 3D structure of the scene. Hence, in the real-world applications the
segmentation approaches should be able to make the best use of easier access to
multi-modal data, by combining it as well as employing it to resolve ambiguities
caused by partial observations of a specific modality.

Learning in the wild. The challenge of putting computer vision systems into real-
life settings is that the environments are constantly changing. Deep learning systems
are biased towards the data they were trained with and the task they were trained
for. Therefore these approaches would have troubles generalizing to new scenes,
objects or tasks, even if they are very similar to the ones that they were originally
trained on/for. Besides these systems do not employ any high-level processes such
as conceptual abstraction or causal reasoning. In contrast, humans have no troubles
adapting to new environments by learning through interaction with external world
and as a result sensorimotor activity (Smith and Gasser, 2005). New computer
vision systems should not entirely rely on ever growing labelled amount of training
data and explore other paradigms, mimicking the way humans learn. We believe
that future works should move from the controlled environments to the open sets,
enabling the system to learn in the wild through trial and error as well as integrating
higher-level knowledge and reasoning. In this context, reinforcement learning, self-
supervised learning and recurrent neural networks with memory mechanisms seem
like a promising research directions.
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