Please use this identifier to cite or link to this item: doi:10.22028/D291-26602
Title: Topics in learning sparse and low-rank models of non-negative data
Author(s): Slawski, Martin
Language: English
Year of Publication: 2014
SWD key words: Komprimierte Abtastung
Dimensionsreduktion
Entfaltung <Mathematik>
Free key words: hochdimensionale Statistik
Matrixfaktorisierung
compressed sensing
dimension reduction
deconvolution
high-dimensional statistics
matrix factorizations
DDC notations: 004 Computer science, internet
Publikation type: Dissertation
Abstract: Advances in information and measurement technology have led to a surge in prevalence of high-dimensional data. Sparse and low-rank modeling can both be seen as techniques of dimensionality reduction, which is essential for obtaining compact and interpretable representations of such data. In this thesis, we investigate aspects of sparse and low-rank modeling in conjunction with non-negative data or non-negativity constraints. The first part is devoted to the problem of learning sparse non-negative representations, with a focus on how non-negativity can be taken advantage of. We work out a detailed analysis of non-negative least squares regression, showing that under certain conditions sparsity-promoting regularization, the approach advocated paradigmatically over the past years, is not required. Our results have implications for problems in signal processing such as compressed sensing and spike train deconvolution. In the second part, we consider the problem of factorizing a given matrix into two factors of low rank, out of which one is binary. We devise a provably correct algorithm computing such factorization whose running time is exponential only in the rank of the factorization, but linear in the dimensions of the input matrix. Our approach is extended to noisy settings and applied to an unmixing problem in DNA methylation array analysis. On the theoretical side, we relate the uniqueness of the factorization to Littlewood-Offord theory in combinatorics.
Fortschritte in Informations- und Messtechnologie führen zu erhöhtem Vorkommen hochdimensionaler Daten. Modellierungsansätze basierend auf Sparsity oder niedrigem Rang können als Dimensionsreduktion betrachtet werden, die notwendig ist, um kompakte und interpretierbare Darstellungen solcher Daten zu erhalten. In dieser Arbeit untersuchen wir Aspekte dieser Ansätze in Verbindung mit nichtnegativen Daten oder Nichtnegativitätsbeschränkungen. Der erste Teil handelt vom Lernen nichtnegativer sparsamer Darstellungen, mit einem Schwerpunkt darauf, wie Nichtnegativität ausgenutzt werden kann. Wir analysieren nichtnegative kleinste Quadrate im Detail und zeigen, dass unter gewissen Bedingungen Sparsity-fördernde Regularisierung - der in den letzten Jahren paradigmatisch enpfohlene Ansatz - nicht notwendig ist. Unsere Resultate haben Auswirkungen auf Probleme in der Signalverarbeitung wie Compressed Sensing und die Entfaltung von Pulsfolgen. Im zweiten Teil betrachten wir das Problem, eine Matrix in zwei Faktoren mit niedrigem Rang, von denen einer binär ist, zu zerlegen. Wir entwickeln dafür einen Algorithmus, dessen Laufzeit nur exponentiell in dem Rang der Faktorisierung, aber linear in den Dimensionen der gegebenen Matrix ist. Wir erweitern unseren Ansatz für verrauschte Szenarien und wenden ihn zur Analyse von DNA-Methylierungsdaten an. Auf theoretischer Ebene setzen wir die Eindeutigkeit der Faktorisierung in Beziehung zur Littlewood-Offord-Theorie aus der Kombinatorik.
Link to this record: urn:nbn:de:bsz:291-scidok-61429
hdl:20.500.11880/26658
http://dx.doi.org/10.22028/D291-26602
Advisor: Hein, Matthias
Date of oral examination: 25-Feb-2015
Date of registration: 11-Jun-2015
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Informatik
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
mainfull_corr.pdf3,54 MBAdobe PDFView/Open


Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.