Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-26540
Titel: Soundtrack recommendation for images
Verfasser: Stupar, Aleksandar
Sprache: Englisch
Erscheinungsjahr: 2013
SWD-Schlagwörter: Informatik
Informationssystem
Multimedia
Freie Schlagwörter: soundtrack
recommendation
images
DDC-Sachgruppe: 004 Informatik
Dokumentart : Dissertation
Kurzfassung: The drastic increase in production of multimedia content has emphasized the research concerning its organization and retrieval. In this thesis, we address the problem of music retrieval when a set of images is given as input query, i.e., the problem of soundtrack recommendation for images. The task at hand is to recommend appropriate music to be played during the presentation of a given set of query images. To tackle this problem, we formulate a hypothesis that the knowledge appropriate for the task is contained in publicly available contemporary movies. Our approach, Picasso, employs similarity search techniques inside the image and music domains, harvesting movies to form a link between the domains. To achieve a fair and unbiased comparison between different soundtrack recommendation approaches, we proposed an evaluation benchmark. The evaluation results are reported for Picasso and the baseline approach, using the proposed benchmark. We further address two efficiency aspects that arise from the Picasso approach. First, we investigate the problem of processing top-K queries with set-defined selections and propose an index structure that aims at minimizing the query answering latency. Second, we address the problem of similarity search in high-dimensional spaces and propose two enhancements to the Locality Sensitive Hashing (LSH) scheme. We also investigate the prospects of a distributed similarity search algorithm based on LSH using the MapReduce framework. Finally, we give an overview of the PicasSound|a smartphone application based on the Picasso approach.
Der drastische Anstieg von verfügbaren Multimedia-Inhalten hat die Bedeutung der Forschung über deren Organisation sowie Suche innerhalb der Daten hervorgehoben. In dieser Doktorarbeit betrachten wir das Problem der Suche nach geeigneten Musikstücken als Hintergrundmusik für Diashows. Wir formulieren die Hypothese, dass die für das Problem erforderlichen Kenntnisse in öffentlich zugänglichen, zeitgenössischen Filmen enthalten sind. Unser Ansatz, Picasso, verwendet Techniken aus dem Bereich der Ähnlichkeitssuche innerhalb von Bild- und Musik-Domains, um basierend auf Filmszenen eine Verbindung zwischen beliebigen Bildern und Musikstücken zu lernen. Um einen fairen und unvoreingenommenen Vergleich zwischen verschiedenen Ansätzen zur Musikempfehlung zu erreichen, schlagen wir einen Bewertungs-Benchmark vor. Die Ergebnisse der Auswertung werden, anhand des vorgeschlagenen Benchmarks, für Picasso und einen weiteren, auf Emotionen basierenden Ansatz, vorgestellt. Zusätzlich behandeln wir zwei Effizienzaspekte, die sich aus dem Picasso Ansatz ergeben. (i) Wir untersuchen das Problem der Ausführung von top-K Anfragen, bei denen die Ergebnismenge ad-hoc auf eine kleine Teilmenge des gesamten Indexes eingeschränkt wird. (ii) Wir behandeln das Problem der Ähnlichkeitssuche in hochdimensionalen Räumen und schlagen zwei Erweiterungen des Lokalitätssensitiven Hashing (LSH) Schemas vor. Zusätzlich untersuchen wir die Erfolgsaussichten eines verteilten Algorithmus für die Ähnlichkeitssuche, der auf LSH unter Verwendung des MapReduce Frameworks basiert. Neben den vorgenannten wissenschaftlichen Ergebnissen beschreiben wir ferner das Design und die Implementierung von PicassSound, einer auf Picasso basierenden Smartphone-Anwendung.
Link zu diesem Datensatz: urn:nbn:de:bsz:291-scidok-55267
hdl:20.500.11880/26596
http://dx.doi.org/10.22028/D291-26540
Erstgutachter: Michel, Sebastian
Tag der mündlichen Prüfung: 4-Okt-2013
SciDok-Publikation: 14-Okt-2013
Fakultät: Fakultät 6 - Naturwissenschaftlich-Technische Fakultät I
Fachrichtung: MI - Informatik
Fakultät / Institution:MI - Fakultät für Mathematik und Informatik

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
main.pdf5,14 MBAdobe PDFÖffnen/Anzeigen


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.