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Kurzfassung

Der drastische Anstieg von verfügbaren Multimedia-Inhalten hat die Bedeu-

tung der Forschung über deren Organisation sowie Suche innerhalb der Daten

hervorgehoben. In dieser Doktorarbeit betrachten wir das Problem der Suche

nach geigneten Musikstücken als Hintergrundmusik für Diashows. Wir formu-

lieren die Hypothese, dass die für das Problem erforderlichen Kenntnisse in

öffentlich zugänglichen, zeitgenössischen Filmen enthalten sind. Unser Ansatz,

Picasso, verwendet Techniken aus dem Bereich der Ähnlichkeitssuche innerhalb

von Bild- und Musik-Domains, um basierend auf Filmszenen eine Verbindung

zwischen beliebigen Bildern und Musikstücken zu lernen.

Um einen fairen und unvoreingenommenen Vergleich zwischen verschiedenen

Ansätzen zur Musikempfehlung zu erreichen, schlagen wir einen Bewertungs-

Benchmark vor. Die Ergebnisse der Auswertung werden, anhand des vorgeschla-

genen Benchmarks, für Picasso und einen weiteren, auf Emotionen basierenden

Ansatz, vorgestellt. Zusätzlich behandeln wir zwei Effizienzaspekte, die sich aus

dem Picasso Ansatz ergeben. (i) Wir untersuchen das Problem der Ausführung

von top-K Anfragen, bei denen die Ergebnismenge ad-hoc auf eine kleine Teil-

menge des gesamten Indexes eingeschränkt wird. (ii) Wir behandeln das Pro-

blem der Ähnlichkeitssuche in hochdimensionalen Räumen und schlagen zwei

Erweiterungen des Lokalitätssensitiven Hashing (LSH) Schemas vor. Zusätzlich

untersuchen wir die Erfolgsaussichten eines verteilten Algorithmus für die Ähn-

lichkeitssuche, der auf LSH unter Verwendung des MapReduce Frameworks ba-

siert. Neben den vorgenannten wissenschaftlichen Ergebnissen beschreiben wir

ferner das Design und die Implementierung von PicassSound, einer auf Picasso

basierenden Smartphone-Anwendung.
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Abstract

The drastic increase in production of multimedia content has emphasized the

research concerning its organization and retrieval. In this thesis, we address the

problem of music retrieval when a set of images is given as input query, i.e.,

the problem of soundtrack recommendation for images. The task at hand is to

recommend appropriate music to be played during the presentation of a given

set of query images. To tackle this problem, we formulate a hypothesis that the

knowledge appropriate for the task is contained in publicly available contempo-

rary movies. Our approach, Picasso, employs similarity search techniques inside

the image and music domains, harvesting movies to form a link between the do-

mains. To achieve a fair and unbiased comparison between different soundtrack

recommendation approaches, we proposed an evaluation benchmark. The eval-

uation results are reported for Picasso and the baseline approach, using the

proposed benchmark. We further address two efficiency aspects that arise from

the Picasso approach. First, we investigate the problem of processing top-K

queries with set-defined selections and propose an index structure that aims at

minimizing the query answering latency. Second, we address the problem of

similarity search in high-dimensional spaces and propose two enhancements to

the Locality Sensitive Hashing (LSH) scheme. We also investigate the prospects

of a distributed similarity search algorithm based on LSH using the MapReduce

framework. Finally, we give an overview of the PicasSound—a smartphone ap-

plication based on the Picasso approach.
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Zusammenfassung

Jeden Tag werden atemberaubende Mengen an Multimediainhalten unter der

Benutzung von Webportalen erstellt und weiterempfohlen. Das Paradebeispiel

ist YouTube [YT], auf welches jede Minute mehr als 72 Stunden Videomaterial

hochgeladen werden1. Diese riesigen Mengen an Inhalt haben nicht nur Probleme

in der Datenorganisation und Suche zur Folge, sondern führen auch zu einem

harten Wettbewerb um die Aufmerksamkeit der Zuschauer.

Bilder werden normalerweise als Diashow mit einer Reihe an unterschied-

lichen Effekten und Stilen untermalt, um die Aufmerksamkeit des Publikums

zu gewinnen. Die Frage, wie Präsentationen automatisch generiert werden kön-

nen, hat sehr viele wissenschaftliche Arbeiten hervorgebracht [CCK+06, LS07,

CXG10], welche das Ziel verfolgen die Präsentationen ansprechender für die Zu-

hörerschaft zu gestalten. Auch Musik spielt eine wesentliche Rolle bei Diashows,

weil die visuellen Eindrücke durch passende Musik, die während der Präsentati-

on gespielt wird, verstärkt werden können. Allerdings ist die Aufgabe passende

Musik für eine gegebene Menge an Bildern auszusuchen eine nicht-triviale Auf-

gabe, da große Musiksammlungen hierbei sehr viel menschliche Aufmerksamkeit

und eine Menge Erfahrung verlangen. In der Filmwelt sind spezielle Preise eta-

bliert, zum Beispiel der Oscar für die beste Filmmusik, um Meisterwerke auszu-

zeichnen, was die Bedeutung und Komplexität der Aufgabe bestätigt. In dieser

Arbeit wird das Problem automatisch Musik als Soundtrack für gegebene Bilder

zu empfehlen analysiert.

Gegeben eine Musiksammlung und eine Menge an Bilder als Anfrage ist es

die Aufgabe eines Sountrackempfehlungsdienstes die einzelnen Lieder nach Eig-

nung als Soundtrack für die gegebenen Bilder zu ordnen. Die top-K Lieder dieser

Rangordnung werden finale Empfehlung an den Benutzer gesehen. Die Arbeit

führt Picasso ein - ein Framework das die Aufgabe Soundtracks für Bilder zu

empfehlen angeht. Picassos Entscheidungen basieren auf dem Wissen von erfah-

renen Regisseuren, welches direkt aus den Filmen selbst extrahiert wird. Auf

diese Weise können die Trainingsdaten beliebig groß sein, sind kostengünstig,

und stellen doch eine exzellente Informationsquelle dar. Das extrahierte Wissen

wird in der Form von Bild-Musik Paaren verarbeitet, wobei das Bild ein Screens-

hot aus dem Film ist und die Musik diejenige Musik ist, die zu diesem Zeitpunkt

im Film gespielt wird. Zur Anfragezeit benutzt Picasso eine Ähnlichkeitssuche

1http://www.youtube.com/yt/press/statistics.html

V



für Bilder und Musik um die finale Empfehlung zu erstellen. Zuerst findet es

die ähnlichsten Screenshots für ein gegebenes Anfragebild und wählt dann für

jeden Screenshot die ähnlichsten Lieder für die entsprechende Filmmusik aus.

Um die Umsetzbarkeit des Ansatzes zu evaluieren wurde eine Benutzerstudie

durchgeführt.

Benutzerstudien durchzuführen um den Einfluss von Verbesserungen auf das

System zu messen, oder um das System mit konkurrierenden Programmen zu

vergleichen, ist ein mühsamer Prozess und bedarf einer Menge an menschlichem

Arbeitsaufwand. Um diese Einschränkungen zu bewältigen, wird ein wiederver-

wendbarer Benchmark zur Messung der Leistung eines Soundtrackempfehlungs-

dienstes aufgestellt. Das Design wurde unabhängig von allen Soundtrackemp-

fehlungsdiensten durchgeführt, was in einem unverfälschten und voll wiederver-

wendbaren Benchmark resultiert. Der Benchmark basiert auf Vorliebebewertun-

gen, wobei die Bewertungen als Paare von Liedern im Bezug auf eine Anfrage,

das heißt eine Menge von Bildern, aufgenommen wurden. Zwei verschiedene Ty-

pen von Relevanzbewertungen machen den Benchmark aus: (i) Bewertungen, die

von einer Benutzerstudie auf dem Campus stammen, dienen als Goldstandard

für (ii) Bewertungen, welche über Amazon’s Mechanical Turk gesammelt wur-

den. Picasso und eine Basisimplementierung werden auf dem Benchmark im

Bezug auf ihre Effektivität evaluiert.

Eine Smartphoneapplikation namens PicasSound, welche das Picasso System

einem erweitertem Publikum demonstriert, wurde entwickelt. Da Smartphones

meist sowohl Musik als auch Bilder enthalten, sind sie ein perfektes Vorzeige-

projekt für ein System wie Picasso. PicasSound ist als zweistufiges Programm

implementiert. Der Empfehlungsprozess wird serverseitig ausgeführt, während

die Smartphoneapplikation benutzt wird um durch die Ergebnisse zu durchstö-

bern und die vorgeschlagene Musik anzuhören.

Wenn die Empfehlungsanfrage auf der Serverseite empfangen wird, ist es

wichtig den Empfehlungsprozess auf effiziente Weise zu erledigen, damit die Be-

nutzer das Ergebnis mit so wenig Verzögerung wie möglich erhalten. Die Aufga-

be des Empfehlungsprozesses ist es die passendsten Lieder für ein Anfragebild

auszuwählen, sodass die Lieder auf dem Smartphone des Benutzers vorhanden

sind. Das bedeutet, dass die Auswahl der top-K Lieder auf die Menge an Lie-

dern, die der Benutzer besitzt beschränkt ist. Deshalb werden Effizienzaspekte

des Verarbeitens von top-K Anfragen mit mengendefinierter Auswahl analy-

siert. Die Auswahlbeschränkung beeinflusst drastisch die Vor- und Nachteile

eines nach Ids geordneten Indexes gegenüber einem nach Werten geordneten

Index. Daher wird ein kombinierter Index eingeführt, welcher das Beste beider

Indizes ausnutzt, indem zur Anfragezeit entschieden wird, welcher eingesetzt

wird. Außerdem wird ein partitionierter Index vorgestellt, welcher die Latenz

am Break-Even-Punkt des kombinierten Indexes senkt. Des Weiteren kann der

partitionierte Index dazu eingesetzt werden approximierte top-K Ergebnisse mit

Qualitätsabschätzung zu erhalten.

Eine andere Aufgabe des Empfehlungsprozesses ist es die ähnlichsten Screens-

hots gegeben ein Anfragebild zu finden. Die Merkmalrepräsentation der Bilder



ergibt für diese Aufgabe der Ähnlichkeitssuche eine K-nächste-Nachbarn-Suche

in hochdimensionalen Räumen. Lokalitätssensitives Hashen (LSH) wurde als

effiziente Technik vorgestellt um das Problem anzugehen. Im Rahmen dieser

Arbeit werden zwei heuristische Verbesserungen zu LSH vorgestellt. Die ers-

te Verbesserung basiert auf zusätzlichen Verknüpfungen für jeden Punkt im

Merkmalsraum, die auf den exakten nächsten Nachbarn zeigen. Die zweite Ver-

besserung namens Peek-Probing spezifiziert LSH Einträge nur dann ganz zu

lesen, wenn sie ein gewisses Maß an nützlicher Information enthalten. Die Tech-

niken sind orthogonal und können deshalb in Kombination verwendet werden

um eine verbesserte Leistung zu erzielen. Zusätzlich zu den zwei Verbesserun-

gen untersuchen wir die Verteilungen der LSH Techniken unter Verwendung

des MapReduce Frameworks für verteiltes Rechnen. Sowohl die vorgeschlage-

nen LSH Verbesserungen als auch die Indices für top-K Anfragen finden eine

Vielzahl Anwendungen weit über Picasso hinaus.





Summary

Staggering amounts of multimedia content are created and shared online on a

daily basis. The prime example is YouTube [YT], having more than 72 hours

of video content uploaded to every minute2. Not only do these large amounts

give rise to the issues in data organization and retrieval but they also introduce

a strong competition for the spectators’ attention.

Images are usually presented in a slide show with a variety of transition

styles and effects used to capture the audience attention. The question how

to automatically generate slide shows has received a lot of research atten-

tion [CCK+06, LS07, CXG10] with the aim of making them more appealing

to the general audience. Music plays an important role in slide shows, as the

impressions conveyed by images can be emphasized when appropriate music

is played during the presentation. However, selecting an appropriate piece of

music for a given set of images is a non-trivial task as large music collections

require a lot of human attention and a good deal of experience. In the world

of movies, special awards are established to distinguish master pieces, e.g., the

Academy Award for Best Original Score, emphasizing the importance and the

complexity of the task. In this thesis, we study the problem of automatically

assigning appropriate music pieces to a picture or, in general, series of pictures,

that is, the problem of recommending songs as soundtracks for query images.

Given a music collection and a set of images as query the task of a soundtrack

recommendation system is to rank the song in the collection by their appropri-

ateness to serve as a soundtrack for the given images. The top-K songs from

this ranking are considered as a final recommendation to the user. We propose

Picasso—a framework to address the task of soundtrack recommendation for

images. Picasso is based on the knowledge of experienced movie directors ex-

tracted directly from the movies themselves. This way, the training set can be

arbitrarily large and is also inexpensive to obtain but still provides an excellent

source of information. The extracted knowledge is in the form of image-music

pairs, where the image is a screenshot from the movie and the music is the music

played in the movie at the time of the taken screenshot. At query time, Picasso

utilizes similarity search in image and music domains to create a final recom-

mendation. First, it finds the most similar screenshots to a given query image,

and then selects for each screenshot the most similar songs to the corresponding

2http://www.youtube.com/yt/press/statistics.html
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movie music. We report on the results of a user study conducted to evaluate

the feasibility of our approach.

Conducting user studies to evaluate the impact of improvements made to

the system, or to compare competing systems, is a cumbersome task and re-

quires a lot of human effort. To overcome this limitation, we propose a reusable

benchmark to evaluate the retrieval performance of soundtrack recommendation

systems. The building process is done independently of any soundtrack recom-

mendation approach resulting in an unbiased and fully reusable benchmark.

We base the proposed benchmark on preference judgments, where judgments

are collected for pairs of songs with respect to a query (i.e., a set of images).

The benchmark consists of two types of relevance assessments: (i) judgments

obtained from a user study on campus, that serve as a “gold standard” for (ii)

relevance judgments gathered through Amazon’s Mechanical Turk. We eval-

uate Picasso and a baseline system using the benchmark and report on their

effectiveness results.

We have built a smarphone application, named PicasSound, which demon-

strates the Picasso system to a wider audience. As smartphones contain both

music and images this makes them an ideal showcase for a system such as

Picasso. PicasSound is implemented as two-tiered application. The recommen-

dation process is done on the server side while the smartphone application is

used to browse through the results and listen to the recommended music.

When the request for recommendation is received on the server side, it is

important to perform the recommendation process in an efficient manner such

that users receive the recommendation with as little delay as possible. The task

of the recommendation process is to select the most appropriate songs for the

query image such that they are contained on the user’s phone. This means,

selecting the top-K songs is constrained to the set of songs the user possesses.

We consider efficiency aspects of processing such top-K queries with set-defined

selections. The selections drastically influence the pros and cons of an id-ordered

index vs. a score-ordered index. We propose a combined index which harnesses

best of both indices by deciding which one to use at query time. We further

propose a partitioned index which lowers the latency of the combined index

around the break even point. When appropriate, approximate top-K results

can be retrieved using the partitioned index with an indication of the expected

results quality.

Another task in the recommendation process is to find the most similar

screenshots to a given query image. The feature representation of images trans-

lates this task of similarity search into K-Nearest Neighbor (KNN) search in

high-dimensional spaces. Locality Sensitive Hashing (LSH) has been proposed

as an efficient technique to address this problem. In this thesis, we propose two

heuristic enhancements to LSH. The first enhancement is based on additionally

introduced links for each point in the feature space, referring to its exact nearest

neighbor. The second enhancement, coined Peek-Probing, specifies reading LSH

buckets fully only if they indicate a certain amount of useful information. The

techniques are fully orthogonal and, hence, can be used in a combined way for



improved performance. In addition to two proposed enhancements, we investi-

gate the distribution of the LSH techniques using the MapReduce framework

for distributed computing. The proposed LSH enhancements, as well as the

indices for top-K processing, reach beyond the Picasso system and find their

application in multitude of settings.
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Chapter 1

Introduction and Problem

Statement

Nowadays, recording audio and video information has never been easier. Every

smartphone is a full-fledged audio/video recording device. With over one billion

smartphones in the world1 and low prices of digital content storage, production

rates of multimedia content have skyrocketed. It is estimated that there are more

than one billion photos taken every day2. This together with the production

capabilities of personal computer results in a staggering amount of multimedia

content produced on a daily basis. YouTube [YT] reports that more than 72

hours of video content is uploaded to their service every minute3. Flicker [FLI]

reports that 518 million of images have been uploaded to their service in 2012

alone, that is 1.42 million of images uploaded per day.

With the success of these content sharing portals, such as YouTube [YT],

Flickr [FLI], or SoundCloud [SND], together with the technology advances in

computer networks, the content uploaded by the users is now available to anyone

with an internet connection within a click of a mouse.

The huge quantities of multimedia content, being easily accessible through a

couple of mouse clicks, bring out a number of challenges in content organization

to achieve efficient and effective exploration and retrieval. On the other hand,

there is a strong competition for the spectators’ attention. Every produced

and uploaded piece of multimedia competes for a limited amount of spectator’s

time. This results in a constant improvement in the way multimedia content is

presented to the audience.

We can see such improvements in the presentation of images, where slide

shows, being the default means of image presentation, are constantly enhanced

and improved. There are a multitude of slide show styles originating from

various techniques in slide animations and image placement. A substantial

1http://www.businessinsider.com/15-billion-smartphones-in-the-world-22013-2
2http://blog.1000memories.com/94-number-of-photos-ever-taken-digital-and-analog-in-

shoebox
3http://www.youtube.com/yt/press/statistics.html
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2 1. Introduction and Problem Statement

Query Images Music Collection

Slide Show

Andrea Bocelli - Besame Mucho

Eminem - Without Me

Michael Jackson - Billie Jean

Belle and Sebastian - Funny Little Frog

Never Shout Never - What Is Love

Figure 1.1: Soundtrack recommendation for images

amount of research has been conducted [CCK+06, LS07, CXG10] to find a

presentation technique that appeals the most to the audience. Even online

services, such as Animoto [ANI], have been established to help users create

appealing slide shows from their images.

The effects of a visual presentation are greatly enhanced if they are supported

by the aural effects of the accompanying music. If selected properly, music can

emphasize the point being conveyed by the images. On the other hand, if

selected poorly it can distract the audience and ruin the presentation. Selecting

an appropriate music piece for a slide show is everything but trivial. A good

solution to this problem must have a big repository of music to choose from,

to allow for a high level of diversity. While the requirement of having many

songs is relatively easy to fulfill, the challenge of selecting the right one, out

of hundreds or even thousands of songs, becomes difficult and requires a lot of

human attention.

Soundtrack recommendation systems have been proposed to relieve the stress

of inspecting hundreds or thousands of songs. These systems recommend to the

users a subset of songs that are appropriate to be used as soundtracks, i.e.,

the background music. This way users need to inspect only a small subset of

a potentially huge music collection. In case of slide shows, the recommended

music subset has to be in agreement with the content of the images that are

being presented. A formal definition of the task of soundtrack recommendation

for images is given in the following.

Problem Formulation

We formally define the problem of soundtrack recommendation for images as

follows: a soundtrack recommendation system over a set of indexed songs S =

{s1, s2, ...} takes as an input query a set of images q = {img1, img2, ...} and the

size of the result set K. It returns a subset of the indexed songs Sr ⊆ S, with

|Sr| = K, ordered with respect to their relevance to act as background music
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for a slide show that features the given query images.

Figure 1.1 illustrates this problem scenario. As illustrated, the main com-

ponents of the problem are images as query, music collection, and the resulting

slide show with the selected background music.

The task of this thesis is to propose a soundtrack recommendation system

for images that will efficiently produce high quality recommendations.

1.1 Research Challenges

We identify the following three major research aspects: the connection between

music and images, measuring effectiveness, and addressing efficiency aspects

such that the proposed approach becomes usable for a large number of users in

everyday situations.

Connecting Images and Music

When addressing the problem of soundtrack recommendation for images, the

first question that arises is how the connection between images and music is

created. One common approach is to map both images and songs in a common

space, usually referred to as a pivot space, such as the space of emotions [LS07],

and find a match in that space.

In this thesis, we make the hypothesis that the connection between images

and music for soundtrack recommendation task can be made through publicly

available contemporary movies. This opens a new set of questions concerning the

concrete approach, first how can we extract this connection from the movies, and

secondly how can this extracted information be used for the recommendation

process. The proposed approach needs to support arbitrary images as queries

and arbitrary music pieces as a music collection.

Effectiveness

Once we have approaches for soundtrack recommendation in place, we need

to measure how aligned are the recommendations with the users’ preferences.

An obvious approach to this problem is to perform a user study for every new

approach or an aspect that is to be evaluated. Not only does this waste resources

as every new user study requires substantial organizational efforts, but it also

brings into question the comparability of the results between the studies.

For this reason, we create a reusable benchmark used to evaluate the effec-

tiveness of soundtrack recommendation approaches for images. The task starts

with selecting images for query collection and songs for music collection to form

the evaluation dataset. Further, relevance assessments have to be collected to

provide a large enough coverage while keeping the task tractable. The collected

relevance assessments have to be coupled with effectiveness measures that en-

able a fair and unbiased comparison between different systems. In addition, we

are interested in what knowledge, about the soundtrack recommendation task,
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we are able to gather from the large human effort put in the collected relevance

assessments. The ultimate goal of the benchmark is to elaborate on the perfor-

mance of the current state-of-the-art including our system, and provide means

for a comparison in further research with minimum of additional effort needed.

Efficiency

We identify two aspects concerning the efficiency of the recommendation process

in Picasso, namely, top-K queries with set-defined selection and similarity search

in high-dimensional data spaces.

Selecting the top-K songs, with respect to a precomputed similarity score,

constrained to a set of songs contained on a user’s phone formulates a family

of queries we refer to as top-K queries with set-defined selections. Given a

database, the question is how can we organize the data into an index structure

to allow for an efficient execution of these queries. Two basic organizations

are possible, leaving an open question which one should be used and at which

time. We look how we can improve the query latency given the queries from

historic workloads. Further, we investigate the case when approximate results

are allowed as it can introduce additional efficiency improvements.

To search in a large collection of high-dimensional data points we need an

efficient index structure. Locality Sensitive Hashing (LSH) provides such a

structure used to retrieve an approximation of the exact nearest neighbor re-

sults. We investigate if the LSH scheme can be enhanced using an additional

preprocessing on the indexed data. Additionally, we investigate how the LSH

techniques can be distributed on top of the MapReduce framework to answer

similarity search queries in large databases.

1.2 Contributions

With this thesis we make the following contribution:

• We propose Picasso—a framework to recommend music for a given set

of images. Picasso utilizes similarity search techniques together with in-

formation extracted from movies to make a match between the world of

images and the world of music.

• We put forward a reusable benchmark to evaluate the effectiveness of

soundtrack recommendation approaches for images. The benchmark con-

tains a large set of preference assessments, concerning a pair of songs with

respect to a given set of images as a query. We describe the details of the

benchmark, report on the effectiveness of Picasso, and compare it to the

performance of a baseline approach.

• We address the problem of processing top-K queries with set-defined se-

lections and propose a partitioned index to efficiently answer these kind of

queries. We further show how this index organization can be used to cal-

culate approximate answers with a tunable expected precision, resulting
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in additional performance gains. We report on the extensive evaluation

using real-world data originating from the PicasSound application profiles.

• We propose two heuristic enhancements to the Locality Sensitive Hash-

ing (LSH) techniques used to process similarity search queries in high-

dimensional data. In addition, we investigate how similarity search queries

can be processed in a distributed manner using MapReduce together with

LSH.

• We describe the implementation details behind PicasSound—the smart-

phone application built to demonstrate the features of the Picasso ap-

proach.

1.3 Selected Publications

The content of this thesis is largely based on the research results published

in [SMS10, SM11a, SM11b, SM12a, SM12b, SM13]. In the following we give a

high level overview of the most important publications.

Soundtrack Recommendation

We have presented Picasso, a soundtrack recommendation framework for images,

in [SM11a]. With Picasso, we have shown how information extracted from

publicly available movies can be used to address the problem of soundtrack

recommendation for images. The Picasso framework is a major part of this

thesis, described in Chapter 4.

• Aleksandar Stupar and Sebastian Michel. Picasso - to sing, you must

close your eyes and draw. 34th International ACM SIGIR Conference on

Research and Development in Information Retrieval (SIGIR), 2011.

We have build a reusable benchmark dataset to enable continuous reevalua-

tion of the recommendations quality as perceived by the end user. The bench-

mark and the statistics about the collected relevance assessments are published

in [SM13]. More detailed description of the proposed benchmark and its appli-

cation to the state-of-the-art systems is presented in Chapter 5.

• Aleksandar Stupar and Sebastian Michel. SRbench–A Benchmark for

Soundtrack Recommendation Systems. 22nd ACM International Confer-

ence on Information and Knowledge Management (CIKM), 2013.

Efficiency Aspects

In [SM12a] we have addressed the problem of top-K queries where the set of

possible results is constrained to a set of items. In our setting, the problem

appears when top-K songs are selected such that they are contained in a user’s

smartphone. This problem is, however, more general and appears in a multitude

of scenarios. Chapter 6 of the thesis is based on this publication.



6 1. Introduction and Problem Statement

User satisfaction: 
Chapter 5

Top-K with set-defined selections: 
Chapter 6

Andrea Bocelli - Besame Mucho
Michael Jackson - Billie Jean
Belle and Sebastian - Funny Little Frog
Never Shout Never - What Is Love

Similarity Search, LSH: 
Chapter 7

PicasSound: 
Chapter 8

Picasso Framework: 
Chapter 4

Figure 1.2: Outline with the interplay between different aspects of the thesis

• Aleksandar Stupar and Sebastian Michel. Being picky: processing top-k

queries with set-defined selections. 21st ACM International Conference on

Information and Knowledge Management (CIKM), 2012.

Locality Sensitive Hashing (LSH) is used for efficient similarity search in

high-dimensional spaces, such as image similarity search based on the feature

vector representation. We have proposed two enhancements to the LSH tech-

niques in [SM12b], described in Chapter 7 of this thesis.

• Aleksandar Stupar and Sebastian Michel. Enhancing Locality Sensitive

Hashing with Peek Probing and Nearest Neighbor Links. 15th Interna-

tional Workshop on the Web and Databases (WebDB), 2012.

1.4 Outline of the Thesis

The organization of the thesis is as follows. Chapter 2 starts with an overview

of multimedia information retrieval with a special attention given to similarity

search techniques. It further gives an insight into evaluation techniques and

MapReduce—a framework for distributed computing. Chapter 3 discusses work

related to the various aspects of the thesis. It gives an overview of the sound-

track recommendation approaches for various types of queries, recommendation

of images to music, and automated slide show generation. Additionally, it cov-

ers approaches for top-K query processing and collecting relevance assessments.

The Picasso soundtrack recommendation framework for images is described in

Chapter 4. The benchmark dataset to evaluate the effectiveness of soundtrack

recommendation systems for images is proposed in Chapter 5. It also contains

the results of the evaluation of Picasso and a baseline system using the proposed
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benchmark. Chapters 6 and 7 address efficiency aspects of Picasso. Processing

top-K queries with set-defined selections is addressed in Chapter 6, while Chap-

ter 7 proposes enhancements to the Locality Sensitive Hashing (LSH) scheme.

Chapter 7 also shows how the LSH techniques can be distributed to enable

large-scale similarity search. PicasSound—a smartphone application based on

the Picasso approach is described in Chapter 8. Chapter 9 concludes the thesis

and gives an outlook on future work.

Figure 1.2 describes the interplay between different aspects of the thesis.





Chapter 2

Background

This chapter contains background knowledge helpful for understanding the work

described in this thesis. It starts with an overview of the multimedia infor-

mation field in general, and gives a detailed description of image and music

features. Similarity search using these features is described together with the

data structures for efficient retrieval. Further, evaluation techniques for infor-

mation retrieval systems are introduced with emphasis on system effectiveness

measures. The chapter ends with the brief overview of the distributed data

processing system MapReduce that we use to process similarity search queries

in case of large multimedia collections.

2.1 Multimedia Information Retrieval

Massive quantities of multimedia content in form of songs, images, and videos,

available on the Web, require search capabilities for content exploration, as well

as for plagiarism and copyright infringement detection. These search capabil-

ities are enabled by multimedia information retrieval (IR) systems in efficient

and effective manner (cf.,[BBFV07, Mue07] for an overview). Although, these

systems can be considered as traditional textual IR systems extended to sup-

port multimedia documents, peculiarities of these documents result in additional

required features, which are not considered for text retrieval.

The first challenge of multimedia IR systems is the limited power of users

for expressing their information need. The most common approach, taken from

traditional IR, is for users to formulate their information need using keyword

queries. In this case, multimedia documents are stored in the system with

their textual description and existing approaches for text retrieval are used to

answer the queries. The textual description is either provided directly by users

or extracted from text, containing references to the multimedia document. A

special form of short textual descriptions, named tags, became common for this

task.

Due to the lack of user engagement in creating textual descriptions there is

a large portion of documents without description which limits the applicability

9
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of text search. This gave rise to research on automatically describing multime-

dia documents [ELBMG07, HBC09, SWSK10]. Basic principles behind these

approaches are the usage of features in both textual and multimedia domains to

derive rules that tell when a term can by applied to a multimedia document. The

rules are learned from the documents with descriptions using machine learning

techniques.

On the other hand, querying by example tries to avoid the problem of textual

descriptions by completely avoiding keyword queries. In this case, human effort

is slightly increased when specifying a query as a rough example of the searched

document must be provided. This creation procedure requires at least sketching

an image [SB10] or whistling the melody [PT01] of a song.

In some cases, users might have an example of what they are searching

for, an existing image or a song, and want to find the most similar docu-

ments for that example [LCL04, LO04]. This kind of search provides means

for interactive exploration, where one of the search results is used as a query

in the following steps. This research direction resulted in multitude of ap-

proaches [HLES06, ZG02, CS08], trying to minimize the so called semantic gap,

i.e., the gap between the similarity calculated by the algorithms and the simi-

larity perceived by humans.

The extreme case of similarity search is near duplicate detection [KSH04,

WLLM06, BPP+05] where only duplicates of the document are of interest to be

discovered. This has applications not only in copyright and plagiarism areas but

also in tracking a document’s spread online and, hence, assessing its popularity.

Techniques for near duplicate detection are also used to remove duplicates from

search results, such that users are not overwhelmed by multiple copies of the

same document.

Another kind of systems, especially interesting for the music domain, assume

an exploration process of multimedia content without an explicitly specified

query. The idea is to allow for exploration of yet unseen (unheard) content which

might appeal to the user, based on the user’s profile containing information

about previously seen (heard) documents. This kind of systems are commonly

known as recommendation systems [Cel10b, NRSM10].

The main ingredient in all of the described tasks for multimedia IR systems

are the features that are automatically extracted from the documents. These

features are considered to contain the essence of the information from the doc-

ument, in form of a summarized, numerical representation. Different types of

features summarize documents from different perspectives. Generally, there are

two types of features: low-level and high-level features. Low-level features are

usually extracted directly from the documents, representing some patterns in

that document and are in general not understandable by the end user. High-

level features are concepts about documents that are understandable by the end

user and are usually derived from low-level features. In the following we describe

low-level features for images and music used throughout the thesis.
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2.1.1 Image Features

The Moving Experts Picture Group (MPEG) recognized the importance of fea-

tures for multimedia documents and published the MPEG-7 [CSP01] standard

on the various aspects of multimedia content descriptors, including low-level

features for images [MOVY01]. By this standard, low-level features for images

are divided in three groups based on the aspect they are summarizing, namely

color-based, texture-based, and shape-based features. The work described in

this thesis uses color- and texture-based features, thus, most of the focus will

be put in explaining these.

As information is spread over multiple regions in the image, the MPEG-7

standard introduced the concept of grid layout by dividing the image in equal

sized rectangles. The low-level features are then computed not only for the

whole image but also for the rectangle regions defined by the layout.

Color-Based Features

As the name suggests, color-based features summarize information about the

distribution of colors inside the image. The standard supports colors encoded in

a large variety of color spaces ranging from RGB, over YCrCb to Monochrome.

Information on the color space, together with information on color quanti-

zation, is the base information that accompanies all other feature descriptors.

Uniform color space quantization with configurable number of bins is supported

by the standard.

In addition to color space and color quantization there are five color descrip-

tors, namely: dominant color, scalable color, color layout, color structure, and

group of frames/group of pictures.

The dominant color descriptor summarizes the image through its most

representative colors, which are discovered through a color quantization proce-

dure. The top-N representative colors are specified together with information

on the percentage of the image containing that color. Optionally, for each dom-

inant color there is a variance specified indicating the variability of colors from

the cluster of the representative color. The overall spatial homogeneity of the

colors is calculated and presented as a single measure for the whole image.

Scalable color describes all the colors found in the image by aggregating

them in a single color histogram in the HSV color space using a fixed color

space quantization. Each bin of the histogram represents one level of the color

quantization. To lower the memory space needed for the histogram, the Haar

transform [Haa10, SS99] is used for encoding. The standard defines three possi-

ble values for the number of Haar coefficients used for representation: 128, 64,

and 32.

The color structure descriptor represents the colors found in the image in

the HMMD color space together with the structure of their appearance. With

this descriptor, two images with the same ratios of identical colors can be dis-

tinguished if the structure of the color distributions is different. The final rep-

resentation in this case is also a color histogram, where each bin represents the
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quantization of the color space. The value of the bin is the number of structur-

ing elements, of 8×8 pixels in size, in which the respective color appears. Color

appearances are counted while sliding the structural element over the whole im-

age. The number of color quantization levels is a parameter for this descriptor

and can be 184, 120, 64, and 32 as defined by the standard.

The Color layout descriptor summarizes the spatial distribution of colors

in a given image using the YCbCr color space. First, a grid layout of the image

is created by dividing the image into 64 (8 × 8) equal sized rectangles. In

the second step, one representative color for each of the 64 parts is calculated,

as recommended by the standard, by calculating an average color of all pixels

in that part. The discrete cosine transform (DCT) is performed on these 64

parts and only low frequency coefficients, for each color component, are used as

descriptor features. The number of coefficients is flexible by the standard, with

the recommendation that 6 coefficients are used for luminance and 3 for each

chrominance.

The group of frames/group of pictures descriptor extends scalable color

descriptor to the case of multiple images, usually used as a video descriptor,

summarizing information from multiple consecutive frames. The extraction of

the descriptor is performed by aggregating histograms of multiple images into a

single histogram and applying the Haar transform on this histogram as in case

of the color structure descriptor. The aggregation is simply done as the average

of all the histograms for each image. To avoid the influence of outliers to the

mean operator, median histograms can be used instead of average histograms.

Texture-Based Features

For the texture-based features MPEG-7 defines three kind of descriptors: edge

histogram, homogeneous texture, and texture browsing.

The edge histogram descriptor is used for the spatial representation of

the edges in the image. The image is divided by creating a grid layout of 16

(4× 4) parts. A local edge histogram, with five bins each, is calculated for each

part of the image. Four bins are used for edges with four different orientation

directions and one is used for non orientation specific edges. Concatenating local

histograms and applying histogram levels quantization produces final values of

the descriptor.

The homogeneous texture descriptor shows how homogeneous the texture

patterns in the image are and is usually used for the search of similarly looking

patterns in the image dataset. The feature extraction is done by applying 30

Gabor filters [Fei98], coming from the combination of 5 scale and 6 orientation

values. The first and the second moment of the energy for each of the filters are

considered as the features of homogeneous texture descriptor.

The texture browsing descriptor is a compact representation of the ho-

mogeneous texture in the image used for browsing purposes. Similarly to the

homogeneous texture descriptor, texture browsing describes textures in terms

of regularity, coarseness, and directionality. Features of the descriptor are cal-

culated by first determining two dominant orientations and then projecting the
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image on these orientations to determine regularity and coarseness.

Shape-Based Features

Defined by MPEG-7 standard, there are three kinds of shape-based features:

region shape, contour shape, and shape 3D. The distribution of the shape’s

region is summarized through the region shape descriptor supporting com-

plex objects that are consisting of multiple disconnected regions. The contour

shape descriptor summarizes the shape by the features of its contour using the

curvature scale space representation [MB11]. It is robust against partial occlu-

sions and reflects properties of the human visual system. Through shape 3D

descriptors, the MPEG-7 standard enables the description of 3D mesh models,

which are used for the search, retrieval, and browsing tasks.

2.1.2 Music Features

There is a large variety of music features currently used among researchers in the

multimedia retrieval field. Among the most known and widely accepted are Mel

Frequency Cepstral Coefficients (MFCC) and Chroma features. In addition, we

use a following set of features: spectral centroid, spectral rolloff, spectral flux,

and time domain zero crossing [TC02]. The spectral representation of a music

signal is used as a basis for extracting most of the music features described here.

Short time Fourier transform [All77] (STFT) is used as a spectral representation

for each time frame of the signal.

Mel frequency cepstral coefficients (MFCC) features originated from

the field of speech recognition [ME05], extending later to the wide area of appli-

cations in music IR [MCM01, TC02, Mue07]. The main characteristic of MFCC

features is that they are based on the mel scale—a model of the human auditory

system—emphasizing the spectral distribution of a signal in the similar manner

as perceived by humans. The mel frequency scale is defined to be linear un-

der the reference frequency of 1000Hz, and logarithmic above that frequency.

Mapping between the frequency in Hz and frequency in mel scale is given as:

M =

{
f, if f < 1000

fc · log2(1 + f
fc

), if f ≥ 1000
(2.1)

where f is the frequency in Hz and fc is the given corner (reference) frequency.

There is no universal agreement about the corner frequency, however, the value

of 1000 is frequently used.

To extract the MFCC features, first the spectral representation of a musical

signal is transformed to the presented mel scale and then the discrete cosine

transform (DCT) is performed to reduce the correlation between the final fea-

tures. Finally, the first n coefficients of the DCT are used as the MFCC feature

values. Although it is common for speech recognition tasks to use 13 DCT

coefficients, for music IR tasks the number of coefficients can be reduced with

minimal loss in quality.
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Chroma [EP07] features represent the spectrum of the music by dividing it

in twelve bins, each corresponding to one semitone. The final feature values are

the energy (intensity) values of each of the semitones in the given time frame.

The motivation for using twelve semitones is obvious as most of the western

music is based on musical scales containing a subset of twelve traditional pitch

classes. As semitones one octave away are interpreted as similar by humans

the values of their intensity are aggregated into a single value, as illustrated in

Figure 2.1.

E[0 E0 F0 E[1 E1 F1 E[2 E2 F2... ... ...

C D[ D E[ E F G[ G A[ A B[ B

Figure 2.1: Aggregating semitone energy for chroma features

Chroma is a very valuable descriptor, used for musical similarity measures, as

it strongly emphasizes melodical and harmonical characteristics of the analyzed

musical piece. In addition, these features are highly robust to the change in

instrumentation and timbre.

The spectral centroid descriptor represents a shape of the music signal

spectrum by its center of gravity. For each time frame the spectral centroid is

calculated as follows:

Ct =

∑N
f=1 f ·Mt(f)∑N
f=1Mt(f)

(2.2)

where f represents a frequency bin produced by the STFT, and Mt(f) is the

magnitude of frequency bin f for the time frame t. If spectral centroid is high

there are more high frequencies in the music, similarly when the centroid is low

there are more low frequencies. This results in a high correlation between the

perceived “brightness” of the sound and the value for the spectral centroid.

Spectral rolloff also represents a shape of the music signal spectrum by

specifying how quickly the spectrum tails down towards the high frequencies,

motivated by the fact that music signals tend to have less energy in high fre-

quencies. It is measured as 85th percentile of the spectrum, i.e., the value is

given as the frequency under which 85% of the signal’s magnitude is located,

defined as:
Rt∑
f=1

Mt(f) = 0.85 ·
N∑

f=1

Mt(f) (2.3)

where Rt is the value of spectral rolloff and f and Mt(f) are frequency and its

magnitude, respectively. Spectral rolloff can be considered as a cutoff position

between harmonic and noise frequencies.
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Spectral flux describes a local change of spectrum throughout the time

domain. It is calculated as a squared difference between two successive spectral

distributions:

Ft =

N∑
f=1

(Nt(f)−Nt−1(f))2 (2.4)

where Nt(f) is the normalized magnitude of frequency bin f at time t. Normal-

izing the magnitude of the spectrum avoids the influence of the change in the

energy and only considers the change in the distribution of spectrum. Spectral

flux is found to correlate with timber of music making it valuable for the timbre

classification. In conjunction with rising energy values it can also be effectively

used for onset detection.

Time domain zero crossing is one of the rare features not directly based

on the spectrum of the signal. It is defined in the time domain as a number of

times a signal crosses between positive and negative values in the time frame,

calculated as:

Zt =
1

2

T∑
t=1

|sgn(x[t])− sgn(x[t− 1])| (2.5)

where x[t] is the value of the signal at time point t and sgn is the sign function

returning 1 for positive arguments and 0 otherwise. Time domain zero crossing

provides a good measure of the noisiness of the signal, the noisier the signal is

the higher the value is. It has applications in the field of rhythm extraction and

percussive sound classification.

2.2 Similarity Search

Searching for the most similar documents plays an important part in multimedia

IR. Not only does it enable exploration tasks and retrieval of similar documents,

but it also enables inference of document attributes based on the similarity with

other documents. A common way of performing similarity search is to calculate

the distance between the feature representation of the documents; the closer the

features are the higher the similarity between documents is.

As we saw in previous sections, all described feature representations repre-

sent a document as a point in a multidimensional space where the dimensionality

of the space is defined by a specific feature descriptor. In these cases, searching

for the most similar document translates into a more general problem of search-

ing for the closest data points in the feature space. This problem is commonly

known as the K-Nearest Neighbor problem.

The K-Nearest Neighbor (KNN) problem is defined for a metric space

M and a collections of data points C as follows: given a query point q find the

K closest points from C, i.e., find a set of points N ⊆ C, |N | = K, such that

d(q, n) ≤ d(q, p) for each n ∈ N and p ∈ C \ N , where d(x, y) is the distance

between two points x and y. Alternatively, similarity search is done using range

queries which have a similar notion to KNN queries.
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Figure 2.2: Similarity search: a) range query b) K-Nearest Neighbor query

A range query over a metric space M and a collection of data points C is

defined by a query point q and a range r. The result of a range query is a subset

of points whose distances to q are smaller than r, that is, a set of points N ⊆ C
such that d(q, n) ≤ r and d(q, p) > r for each n ∈ N and p ∈ C \N . Figure 2.2

illustrates a range query (a) and a KNN query (b) in two-dimensional space.

A straightforward solution to both of the stated problems is achieved by

calculating the distance between the query point q and each of the points p ∈
C. While the distances are calculated the closest K points are maintained for

the case of KNN queries and all the points in the range r are kept for range

queries. As we can see, this approach does not require any additional space

utilization for indexing but requires distance calculation for each point in the

collection. A large number of indexing approaches have been developed to tackle

this problem and minimize the effort used to answer similarity queries. Among

the most prominent are approaches based on space partitioning such as the

k-d tree [Ben90], R-tree [Gut84], and X-tree [BKK96] (cf., see [Sam06] for an

overview of multidimensional indexing structures).

The k-d tree [Ben90] is a binary tree used to index a set of data points

with an arbitrary dimensionality k. This is achieved by splitting points into

two sets at each level of the tree by inspecting the point’s value at one of

the dimensions. Choosing a partitioning dimension at each level of the tree is

dependent on the variant of the k-d tree. However, the most common approach

is to partition based on the values of the points inserted in the tree and in the

constant predefined order of dimensions. For instance, in two dimensions (x, y),

we adopt a strategy that dimension x is compared at levels {0 (root), 2, 4,...}
and dimensions y is compared at levels {1, 3, 5,...}, such that smaller values than

the node value are placed in left subtree and larger and equal values are placed

in the right subtree. An example of the space partitioning for two-dimensional

data is shown in Figure 2.3(a), where numbers indicate the level of the tree

defining a split.

When inserting points in the k-d tree we perform the traversal of the tree

according to the point that is inserted until the first empty subtree is found.

A new node is created with the value taken from the inserting point at the

dimension that corresponds to the depth of the empty subtree. The created
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Figure 2.3: Space partitioning: a) k-d tree b) R-tree

node is then added to the tree at the place of the empty subtree. It is important

to note that this inserting algorithm can lead to an unbalanced tree, which can

be avoided in case all data points are known upfront. In that case, the median of

the values at the corresponding dimension is taken for the node value, resulting

in a balanced tree.

To remove a data point from the k-d tree we can employ a simple solution

by first locating the node of the point and then removing the subtree of that

node. Once the subtree is removed, we add each data point again to the tree

except the point that is to be removed. A more elegant method would be to

remove the node directly from the tree but find an adequate substitution from

the subtree and apply this procedure recursively for the substitution node. An

adequate substitution is a node from the right subtree having the smallest value

for the dimension at level of the removed node, or a node from the left subtree

having the largest value at the same dimension.

A range query with a query point q and a range r can easily be answered

using a k-d tree. The tree is traversed from the root using a distance r from

the value of q at the corresponding dimension to prune away subtrees that can

not contain points in the range. On the other hand, answering KNN queries

using k-d tree is more complicated as we do not know the radius r containing

the closest K points. To answer a KNN query we first traverse the tree using

the query point q as a guiding reference until the leaf node is encountered. The

leaf node is then added to a priority queue containing results and we move one

node up the tree. At this node we check if we need to visit the other branch in

which case we visit it recursively. It is important to note that branch needs to

be visited only if it might contain points closer than the current Kth farthest

neighbor.

The R-tree [Gut84] is based on the principle of minimal bounding rectan-

gles, i.e., a minimal rectangle that bounds the area containing a set of data

points. These bounding rectangles are used as a rough approximation of the

contained data points such that it can easily be determined when the query

region or a query point does not intersect with an area of the represented point

set.

An R-tree is organized such that each node contains between m and M

bounding rectangles representing corresponding subtrees, with m ≤
⌈
M
2

⌉
, while
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indexed data points are contained in the leaf nodes of the tree. When inserting

or removing an element all affected bounding rectangles have to be updated.

In addition to this, care must be taken that each node still has between m and

M elements. This is achieved by removing nodes with less than m elements

and reinserting their children elements and by splitting nodes with more than

M elements. Figure 2.3 (b) illustrates an example of space partitioning with

minimum bounding rectangles in two dimensions with M = 3 and m = 2.

Inserting elements in an R-tree is done by starting from the root node and

following the path of the child whose bounding rectangle needs to be extended

the least to include the inserting object. This strategy minimizes the coverage of

the resulting bounding rectangles. Alternative strategies can be used taking into

account the overlap between the rectangles, as done in the R*-tree [BKSS90].

In a similar manner, different strategies can be used to split a node with more

than M elements into two nodes. The proposed approach for the original R-tree

consists of finding two seed rectangles and extending them for each remaining

rectangle always choosing the one with the smaller extension. Seed rectangles

are chosen either by looking at pairs of rectangles, resulting in a quadratic algo-

rithm, or by looking at individual rectangles at individual dimensions resulting

in a linear algorithm.

Answering range and KNN queries using an R-tree is done in a similar man-

ner as with the k-d tree. Answering range queries starts from the root node and

continues by traversing all the child nodes whose bounding rectangle intersects

with the region of the range queries. For KNN queries, the query point q is used

to initially navigate through the tree until the leaf element is encountered. Af-

terwards, a recursive unwinding is done with the pruning of bounding rectangles

using the fact that the distance of the query point to the bounding rectangles

is smaller or equal than the distance to the points contained in them.

The X-tree [BKK96] is based on the R-tree structure trying to address

problems caused by high-dimensional data. The increased dimensionality often

results in a unavailability of good data partitioning resulting in a low pruning

power of bounding rectangles. The idea behind the X-tree is to avoid splitting

nodes in case the overlap between two split partitions is too large. In such cases,

the node size is enlarged and the node becomes a so called supernode.

Splitting of node data into partitions is done along a single dimension in two

phases. In the first phase, a topological split is done, minimizing the overlap

between two partitions. If a good enough partitioning is produced in the first

phase it is used, otherwise, a partitioning is done based on the split history in

the second phase. The partitioning of the second phase always results with the

minimal overlap between the partitions, however, the sizes of the partitions may

be very unbalanced. In the case of unbalanced partitions a supernode is created.

As the X-tree only redefines splitting policy and enlargement of the nodes,

the search through the tree to answer range and KNN queries is performed as

in an R-tree.
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2.2.1 Locality Sensitive Hashing

With increasing number of dimensions, answering range and KNN queries be-

comes intrinsically hard to solve. This stems from the fact that increasing

dimensions increases the volume of the space exponentially. This results in

increase of the data sparseness, commonly referred to as the “curse of dimen-

sionality”. Beyer et al. [BGRS99] inspected the meaningfulness of the KNN

search with respect to the increasing number of dimensions and conclude that

KNN is not meaningful in cases when

lim
k→∞

V ariance[d(p, q)]

Expected[d(p, q)]
= 0 (2.6)

where p and q are two randomly chosen data points, d is a distance measure,

and k the dimensionality of the space. That is, KNN search makes sense if the

distance between the farthest and the closest neighbor does not converge to the

same value with increasing dimensionality.

Due to the curse of dimensionality, the pruning power of tree structures

becomes very weak. This often results in scanning the whole tree structure

which, due to complexity of the data structure, downgrades the performance

below the full scan of the data, starting with dimensionality as low as 10 to 15

dimensions [WSB98].

To avoid these problems in high-dimensional spaces, range and KNN queries

are reformulated into approximate queries. For a range query with a range r

approximate methods return results that are in range r(1 ± ε), where ε > 0

is given as a parameter to trade off between the accuracy and the processing

effort. Similarly, approximate KNN methods return K data points that lie in the

r(1 + ε) range, in which case r is the distance to the real Kth nearest neighbor.

Locality Sensitive Hashing (LSH) [AI06, DIIM04, GIM99] is proposed as

a solution to approximate KNN problem, rendering KNN processing efficient

in high-dimensional space. The basic principle behind LSH is the usage of

locality preserving hash functions which map, with high probability, close points

from the high-dimensional space to the same hash value (i.e., hash bucket).

Formally defined: function f is said to be (r1, r2, P1, P2)-sensitive for metric

space M = (M,d) if for any two points p and q from M following holds:

d(p, q) ≤ r1 ⇒ P (f(p) = f(q)) > P1∧
d(p, q) ≥ r2 ⇒ P (f(p) 6= f(q)) > P2

(2.7)

where P (f(p) = f(q)) denotes a probability of points colliding and P (f(p) 6=
f(q)) denotes the probability of points not colliding at the same hash value. A

family of hash functions F is said to be (r1, r2, P1, P2)-sensitive if each function

f ∈ F is (r1, r2, P1, P2)-sensitive.

In this thesis, we consider a family of LSH functions based on p-stable distri-

butions [DIIM04] which are most suitable for lp norms, including the ubiquitous

Euclidean l2 norm. In this case, for each data point v, the hashing scheme con-
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siders k independent hash functions of the form

ha,B(v) =

⌊
a · v +B

W

⌋
(2.8)

where a is a d -dimensional vector whose elements are chosen independently

from a p-stable distribution, W ∈ IR, and B is chosen uniformly from [0,W ].

Each hash function maps a d-dimensional data point into an integer. With k

such hash functions, the final result is a vector of length k of the form g(v) =

(ha1,B1(v), ..., hak,Bk
(v)), representing a hash label for a given point v.

To increase the probability of collision for close points and decrease the prob-

ability of collision for points that are far apart, multiple hash tables are used,

each with its own hash function drawn randomly from the same family of hash

functions. At query time, the query point is hashed using the hash function of

the corresponding hash table and the resulting label is used to retrieve a bucket

containing potential nearest neighbors. The distance to all points contained

in that bucket is calculated and the nearest K points are returned as the final

result.

Looking at the family of hash functions based on p-stable distributions we

see that we have several ways to create a hash function, varying not only the

vector a but also varying the parameters W and k. These two parameters have

a direct impact on the r1 and r2 values determining how many neighboring

points will end up in the same bucket. Clearly, the more points end together

will result in a higher accuracy but will downgrade the performance. Modeling

of LSH has been done in [DWJ+08] such that appropriate values of parameters

can be chosen depending on the data being indexed. However, once parameters

are chosen at index creation time they are not adapting in case a newly added

data changes the distribution.

To solve this problem, LSH Forest was proposed [BCG05], with the basic

idea of varying the value k for each data point and storing data points into a

tree structure. At query time, the tree structure is traversed first top-down to

locate the node with the highest overlap in labels with the query labels, and

then bottom-up to expand the search to nodes with smaller overlap but may

contain potentially relevant data points. This way, an adaptive quality can be

achieved at query answering time rather than having it constrained upfront at

index creation.

Multi-Probe Locality Sensitive Hashing

At query time, the LSH index is used to retrieve all points that have the same

hash value as the query point. The observation that a significant fraction of

the closest neighbors are located in the buckets with neighboring hash values

led to the development of the Multi-Probe approach [LJW+07], an alternative

approach to query an LSH index.

At query time, the distance between query point and a set of buckets is

calculated and the closest buckets are used to retrieve the points contained in

them. The distance measure between the query point and a bucket is given as
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a sum of distances for each locality sensitive function of that hash table, which

is given as

d(v, L) = (L− hR)2 = (L− a · v +B

W
)2, L > hR (2.9)

d(v, L) = (L+ 1− hR)2 = (L+ 1− a · v +B

W
)2, L ≤ hR (2.10)

where L is the label (the integer value) of the bucket, obtained by hashing any

point of the bucket with a given LSH function, and hR is a real value obtained

by projecting the query point onto the hashing vector of the corresponding LSH

function. The other symbols are the same as for the basic LSH approach above.

A set of buckets, for which the distance to the query point is calculated, is

restricted to the buckets whose hash value differs to the query hash value at

only one hash function with the difference not larger than 1. This restriction

is empirically motivated as the largest fraction of closest neighbors is contained

in this set of buckets. An efficient algorithm based on perturbations is used to

find the closest buckets to a query point from this restricted subset.

The Multi-Probe approach results in a higher precision with the same num-

ber of hash tables used and the same query answering time. When the set of

previously seen queries is available, probing multiple buckets can be done based

on learned probability distributions, as described in [JB08], resulting in further

improvements.

2.3 Evaluation Techniques

With the introduction of information retrieval systems, one of the biggest con-

cerns has been the quality of the systems as perceived by the users. Although

low retrieval time is important too, the satisfaction of a user’s information need

expressed through a query is essential. As it may be simple to measure the

system quality in terms of efficiency, e.g., measuring query response time, it is

intrinsically hard to measure its performance in terms of perceived result quality.

The common approach to measuring effectiveness in IR is based on the notion

of relevance. Retrieved documents are considered either relevant or not relevant

to a specified query. Clearly, high quality is achieved by retrieving as many

relevant documents as possible and omitting the irrelevant ones. This binary

view on relevance is further extended into a graded perspective where relevance

is measured on a scale from completely irrelevant to highly relevant. Figure 2.4

shows an example of graded relevance assessments for image retrieval. The

impression of the document’s relevance may highly depends on other documents

in the collection, which is not captured with absolute relevance measures. To

capture this, preference-based relevance is proposed [Ror90, CBCD08], where

more relevant document is selected from usually a pair of documents. Relevance

can further be considered based on the topic of the document, the task user

is solving, the current context, and so on (cf., for historical development of

relevance [Miz97]).
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Query: nature

Not relevant Relevant Highly Relevant

Figure 2.4: Graded relevance for image retrieval

Documents have to be assessed by human judges to determine whether they

are relevant for a given query or not. This task requires a large human effort

as there is most of the time a multitude of documents that have to be assessed

for each query. In addition, there is an unlimited space of queries that can be

explored. To alleviate this problem, a collective effort is made through venues

such as TREC [Voo07, TRE], TRECVID [TVI], ImageCLEF [ICL], and MIREX

[MIR]. These venues result in standardized document and query collections to-

gether with a set of relevance assessments gathered by the participants. Ideally,

the collected relevance assessments are reusable, such that they can be used to

test newly created systems.

Despite the collective efforts, assessing the relevance of the whole document

collection for a given query is practically infeasible. To reduce the number

of assessed documents, an initial filtering is performed based on the results of

the existing systems. Existing systems execute a given query and the resulting

documents are merged into a pool of documents, for which the assessments are

done. This technique is commonly known as pooling.

2.3.1 Effectiveness Measures

Relevance assessments for documents enable us to calculate various measures

of a system’s effectiveness. Among the most used measures are precision and

recall, together with their combination, the F measure [MRS08].

Precision is defined as the ratio between the number of retrieved relevant

documents and all retrieved documents:

Precision =
|relevant documents retrieved|
|documents retrieved|

(2.11)

Recall is defined as the number of relevant documents retrieved compared

to the number of all relevant documents:

Recall =
|relevant documents retrieved|

|relevant documents|
(2.12)

As we can see from the definitions, these two measures are opposing each

other. We can easily achieve a recall of 1.0 by retrieving all the documents

but this would ruin the precision. On the other hand, we can retrieve the

documents we are completely sure about, increasing the precision but decreasing

the recall. Thus, these two measures are often combined into a single measure by
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calculating a harmonic mean between them, commonly referred to as F measure:

F =
1

α 1
P + (1− α) 1

R

=
(β2 + 1)PR

β2P +R
; β =

1− α
α

(2.13)

where P stands for precision, R for recall, and α ∈ [0, 1] is a weight parameter

giving more weight to the precision or to the recall.

As defined, the precision and recall measures are rank agnostic, i.e., the

importance of the retrieved documents is not dependent on the rank at which it

was retrieved. In ranked retrieval, a simple extension is to look at the precision

and recall depending on the number of retrieved documents k, resulting in a

precision@k and recall@k.

The precision@k for multiple values of k can be aggregated into a single

measure by computing the average, commonly known as the average precision.

Precision@k is averaged for the values of k at which a relevant document has

been retrieved. Calculating the mean value of an average precision over a set of

queries results in the mean average precision (MAP) measure.

The normalized discounted cumulative gain (NDCG) [JK02] was proposed as

a measure that is directly taking into account the rank information, discounting

the gain of lower ranked relevant documents. NDCG supports graded relevance

scores, i.e., multiple levels of relevance. NDCG for a ranking with k ranked

documents is calculated as follows:

NDCGk = Zk

k∑
i=1

2reli − 1

log2(i+ 1)
(2.14)

where reli is the graded relevance for document at position i, and Zk is the

normalization factor, calculated such that the perfect ranking gets a score of 1.

It is important to note that graded relevance has higher values for more relevant

documents.

2.4 MapReduce Framework

MapReduce [DG04] is a framework for a large-scale, distributed computation.

It is built on top of the Google Distributed File System [GGL03], which enables

distribution of data over the cluster machines in a scalable and fault tolerant

manner. Fault tolerance is achieved through data replication, such that com-

mon failures of commodity machines are easily handled. Further, MapReduce

supports fail tolerance by replication results of the partially processed tasks so

that they are not repeated after node failures. Tight integration of MapReduce

with the distributed file system enables it to move initial calculations where

data resides, minimizing network bandwidth bottlenecks caused by data ship-

ping during processing.

The MapReduce framework gained a lot of attention in the open source

community which resulted in a multitude of available implementations. The

one most widely used is Hadoop [HAD], maintained by the Apache Foundation,
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Figure 2.5: The MapReduce framework

which provides a Java-based implementation of both the MapReduce frame-

work [DG04] and the Google like Distributed File System [GGL03] (coined

HDFS for Hadoop Distributed File System). In the last years, Hadoop gained a

lot of popularity in the open source community and is also part of many research

efforts investigating large data processing [KBHR12, ZCW12, MBGZ13].

MapReduce provides a fairly simple programming model, based on two

developer-supplied functions: Map and Reduce. Both functions are based on

key-value pairs. The Map function receives a key-value pair as input and emits

multiple (or none) key-value pairs as output. The output from all Map func-

tions is grouped by key, and for each such key, all values are fed to the Reduce

function, which then produces the final output from these values.

In the Hadoop implementation, the input data is grouped in so-called input

splits, which often correspond to blocks in the distributed file system. A number

of so-called mapper processes call the Map function for each key-value pair in

such an input split. A number of mappers can run concurrently on each node in

the cluster, and the mapper processes are in addition distributed over all nodes

in the cluster. Ideally, a mapper is run on the same node where the input block

resides, but this is not always possible due to workload imbalance.

Similarly, after all mappers have finished, dedicated reducer processes are

run on nodes in the cluster. Each reducer handles a fraction of the output key

space, copies those key-value pairs from all mappers’ outputs (in the so-called

shuffle phase), sorts them by key, and feeds the to the Reduce function. The

output of the reducers is usually considered the final result but can also be used

as input for following MapReduce jobs.

Optionally, users of MapReduce framework can specify a Combine function

which operates on the same type of key-value pairs as does the Reduce func-

tion. Combine function is used as an optimization step, running a potential

aggregation of Map results before they are shuffled and sent over a network.

Figure 2.5 illustrates a MapReduce framework with the well-known word

count example. The task of the word count application is to count the number
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of occurrences for each word appearing in a given document collection. As

an input to the Map function a <line number, line> pair is given. The Map

function emits a <word, 1> pair for each word in a given line. After shuffle and

sort phase, reducers sum up individual occurrences of the word to produce the

total count as a result.





Chapter 3

Related Work

In this chapter, we give an overview of the state of the art in soundtrack rec-

ommendation, first describing competing approaches that address soundtrack

recommendation for images, followed by approaches when a video or a context

of a user is given as a query. Further, approaches that retrieve images for a

given music piece, solving the inverted problem of soundtrack recommendation,

are discussed. Having images and music selected, we discuss approaches that

automatically arrange them in an appealing slide show video. We discuss ap-

proaches to collect relevance assessments that are related to the approach we

utilize while building the benchmark to evaluate soundtrack recommendation

systems. Last, we give an overview of the approaches for efficient top-K query

processing focusing on the queries with constraints.

3.1 Soundtrack Recommendation

There is a growing interest in the problem of soundtrack recommendation, which

resulted in a variety of approaches (cf., [KR12] for an overview). The problem is

considered for a wide spectrum of available input data types, i.e., query types.

Soundtrack recommendation with images given as a query has already been

addressed in couple of approaches [LS07, DPC11, Woo09], and given the vast

amount of potential users, in particular with the increasing number of digital

cameras and the big success of portals like Youtube [YT] and Flickr [FLI] we

can expect further growth in interest. The same potential is recognized also

for the problem of soundtrack recommendation for videos, resulting in a range

of approaches [MKYH03, CPD+10, NSK03]. Still, the majority of soundtrack

recommendation approaches address the problem of context-aware music rec-

ommendation [LL07, BKL+11, RM06, CZW+07, KFTRC12], where a user’s

context, such as the currently performed activity or current weather state, is

considered as a query.

27
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Figure 3.1: Detecting emotions in query images

3.1.1 Soundtrack Recommendation for Images

The approach developed by Li and Shan [LS07] addresses the problem of sound-

track recommendation for images. It was originally developed with the aim

of recommending music to impressionism paintings, but it can be applied to

arbitrary sets of query images. The key idea behind the approach is to detect

emotions in both images and music and to employ this information for the match

making. That is, emotions are the common ground that connects both worlds.

The detection of emotions and the recommendation of music is done through

methods based on the graph representation of multimedia objects, called mixed

media graph [PYFD04].

In the mixed media graph, each multimedia object and the associated at-

tributes are represented as vertices. Usually, there are two vertice types for

associated attributes: one for the labels associated with the object and one for

the low-level features extracted from the object. Edges connect object vertices

to the label vertices that describe the object and to the low-level feature vertices

that are extracted from the object. Additional edges are created between the

vertices containing low-level features based on K-Nearest Neighbor search (cf.,

Section 2.2): For each feature vector, edges are created to its K closest neighbor

vertices that contain the same type of features.

To detect emotions in the given query images, a training set of images with

labeled emotions is represented in the mixed media graph. Additional vertices

are added for each query image together with the vertices of the extracted

low-level features. After creating the nearest neighbor edges, a random walk

with restarts is applied to find the labels, i.e., emotions, with the larges weight.

Figure 3.1 illustrates the emotion discovery with two emotions: happy and sad,

using the mixed media graph.

The mixed media graph is again used in the second step of the soundtrack

recommendation—this time with songs as multimedia objects. In this step a

“dummy” object is created as a query, with emotions from the previous step as

labels. Once the edges are created between the labels, again a random walk

with restarts is applied, but this time with the aim of finding the songs with the
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highest weight. Two sets of songs are contained in the graph, songs from the

training set being labeled with emotions and songs from the song collection used

for the recommendation. These sets are interconnected through the nearest-

neighbor edges. The songs from the collection are recommended in decreasing

order of their weight.

Another approach to recommend soundtrack for images, also based on the

detected emotions, has been proposed in [DPC11]. The approach is based on the

classification of emotions expressed in music into the emotional valance/arousal

space [Rus80]. At query time, faces are detected in images together with the

analysis of their expressions indicating the mood. In addition to face detec-

tion, color intensity, and brightness of the images are also mapped into the

valance/arousal space. This way the closest song in the emotional space is used

as the soundtrack. The dependence on the face detection limits the approach to

images with faces, falling back to using only brightness and colorfulness infor-

mation when faces are not detected. There has not been a user study performed

evaluating the effects of the soundtrack recommendation with this approach.

Recommending soundtrack for images of an event have been addressed

in [Woo09]. Submitted images are analyzed to detect event type they repre-

sent, scene and material they contain, place of their creation and the holidays

they may relate to. A set of classifiers is used to detect the event, scene and

material types. These classifiers provide membership results to classes such as

party, outdoor sport, beach, urban, snow, or water. Latitude and longitude of

captured images are used to detect features describing the location through a

database of location-feature mappings. Detecting whether an image is related

to holidays is done solely based on the date of the image capturing. This im-

age analysis together with user provided keywords is used to generate a set of

keyword queries, where each detected class of events, scenes or material types

has a corresponding set of keywords. These queries are then used to query the

database of songs indexed by their lyrics. This approach is clearly constrained to

the use of music with lyrics only, not addressing large amounts of instrumental

music including the whole classical music corpus.

3.1.2 Soundtrack Recommendation for Videos

The problem of soundtrack recommendation in a video setting has been ad-

dressed by Mulhem et al. [MKYH03]. It is based on the vector space model for

both music and video where the number of dimensions depends on the num-

ber of features used. These vector space models are further mapped to a unified

pivot vector space to make a match between different media, i.e., match between

video and music.

The approach uses light, color, and motion features extracted from videos.

Light features describe the contrast in brightness between lighted and shaded

objects, while color features represent the distribution of colors in the frame.

Motion vectors between frames are used as the motion features. Beside low-level

features, such as spectral centroid, zero crossing, and volume (cf., Section 2.1.2
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for an overview of music low-level features), the approach is based on the per-

ceptual features of the music such as dynamics, tempo, and pitch. Dynamics

relate to the change in music loudness and softness, while tempo indicates the

periodical flow of music in the time. The pitch indicates how many high or low

tones exist and how their volume is perceived by a listener.
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Figure 3.2: Fuzzy mapping of feature values to feature buckets

For each feature used, three levels of values are created, namely attribute

low, attribute medium, and attribute high, using fuzzy linguistic variables, as

illustrated in Figure 3.2. As we can see, the value of the membership to the

attribute low, medium, or high is defined based on the mapping from the actual

value of the extracted feature. This mapping is defined by the membership

function which is learned from the distribution of values for the corresponding

feature. For each video frame, or a music excerpt, one value is calculated for each

feature at all three quantization levels, resulting in a point in a multidimensional

vector space.

The mapping from the feature vector space to a pivot vector space is done

using a projection matrix. This allows for mapping of one or more dimensions

of one vector space onto one or more dimensions of the other vector space.

The mapping used by this approach is shown in Table 3.1. Once the features

are projected onto the pivot space the distance between them (e.g., Euclidean

distance) is taken as a measure of similarity between media, used to recommend

the closest songs to the video.

Color

Video feature: Light Energy Hue Brightness Motion

Music feature: Dynamics Dynamics Pitch Dynamics Tempo

Table 3.1: Mapping between video and music features

Similarly, Cristani et al. [CPD+10] consider as input a video of the scenery

taken by the camera installed in the car. The authors propose a recommendation

policy based on discovered correlations between audio and video features. The

idea is that given a video, features are extracted and the required values for

highly correlated audio features are identified. These values are then used to

retrieve the music that contain such features. The details of the recommendation

process are mentioned as left for future work as the focus of the current approach

is only to investigate the correlations between the audio and video features.
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To discover these correlations a set of professional documentary movies is

used, each movie belonging to one of the following three categories: cities, na-

ture, and mountains. Movies are processed by hand to remove scenes containing

speech and human or animal acting.

The approach uses brightness, dynamics, and rhythm as audio features and

saturation, brightness, and optical flow as video features. All of these features

are based on the low-level features directly extracted from the medium. As in

the previous approach, for each of the features their values are divided into three

buckets with the labels: high, medium, and low. The correlation between all

nine pairs of features are calculated and only the statistically significant ones

(p < 0.05) would be used for the recommendation policy.

The identified correlations have been evaluated using music generated from

midi files, showing that user decisions are in agreement with correlations ex-

tracted from the documentary movies.

The approach in [NSK03] also addresses the problem of having an appropri-

ate music for a given video. However, the task that is considered is to synthesize

customized music piece for a given video, rather than to select among existing

ones. The idea is to extract low-level features of a video and apply them in

music synthesis, resulting in a music that follows the video rhythm.

The approach uses two steps in generating the music. In the first step,

mapping rules are used to map the values of video features to the values of

music features, resulting in a generated music contour, i.e., a sequence of music

notes. In the second step, a given example of the music piece is used to adjust

the generated contour giving it form and structure. The matching of the given

example music and the generated music contour is done minimizing the edit

distance between the two sequences of notes.

3.1.3 Context-Aware Music Recommendation

Advances in mobile phone technology have drastically increased the number

of sensors available in our everyday life. This resulted in a variety of systems

that are context-aware, i.e., are dependent on the current context of the user.

Likewise, a large interest has been developed in context-aware music recom-

mendation which resulted in a variety of approaches [LL07, BKL+11, RM06,

CZW+07, KFTRC12]. The approaches differ among each other based on their

perception of the user’s context. Considered context factors vary from weather

information, over users’ location and mood, to traffic conditions.

Beside demographic data of the users, such as age and gender, the approach

in [LL07] considers the context of the current user by inspecting the current

date, location of the user, season, month, weekday, and the weather. Contex-

tual information is utilized for music recommendation using a training dataset

and a case-based reasoning procedure. Case-based reasoning methodology as-

sumes that similar problems will have similar solutions. Based on this, solution

to new problems are found by analyzing old problems and their solutions. The

recommendation process starts by retrieving users from the training dataset who
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listened to the music in context similar to the query context. Further on, these

users are filtered to include only the users similar to the user for whom the rec-

ommendation is done. In the last step, the listening history of the retrieved users

is used to make a final recommendation. A cross-fold evaluation showed that

the usage of environmental data increases the precision of the system compared

to the case when only listening history is used.

Music recommendation for a specific context of a user while driving a car has

been addressed in [BKL+11]. Characteristic contextual factors for this scenario

are driving style, road type, and traffic conditions. Beside these additional

factors like weather are also used. The list of all used contextual factors and

their conditions is shown in Table 3.2.

Contextual factor Contextual condition

driving style relaxed driving, sport driving

road type city, highway, serpentine

landscape coast line, country side, mountains/hills, urban

sleepiness awake, sleepy

traffic conditions free road, many cars, traffic jam

mood active, happy, lazy, sad

weather cloudy, snowing, sunny, rainy

natural phenomena day time, morning, night, afternoon

Table 3.2: Contextual factors used for in car music recommendation

The approach is based on the techniques of matrix factorization, extending

them to context-aware scenarios. The score for each song, given a user and a

context, is calculated as the product between the user and song latent vectors

adjusted for the score calculated based on the genre information of the song

and the dependence between the genre and the context. Latent vectors and the

dependencies between contexts and genres are learned using stochastic gradient

descent [Ber99] minimizing a squared error to a given training set together

with a regularization term for achieving better generalization. Results of the

evaluation show that context information improve the precision compared to

the personalized recommendation without contextual information.

Similar to other context-aware approaches, Lifetrak [RM06] uses the infor-

mation about the users’ location, time of usage, users’ movement speed, and

urban environment while recommending music to the users. For the urban envi-

ronment weather, traffic, and sound loudness factors are used. The approach is

based on the one-time user effort to tag all songs for a certain set of contextual

situations using a fixed vocabulary of tags. A sample of tags from the vocabu-

lary is shown in Table 3.3. Once the songs are tagged, sensor information are

continuously translated into the context information corresponding to the used

tags. Ranking of songs is done through a vector space model where dimensions

are the tags in the vocabulary. Scores for each dimension (tag) for songs and

current context are one if the tag is applicable otherwise they are zero. The

score for the song is given as the vector product between the context values and
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the song values. Feedback about selected songs is used to adjust the scores of

the tags for that song and a given context.

MusicSense [CZW+07] has been proposed to recommend music based on

the currently read Web documents. It is based on the proposed Emotional

Allocation Model that characterizes both Web pages and the music in a common

emotion space. Each page and music piece are represented as a mixture of a

fixed set of emotions and relatedness between them is calculated using Kullback-

Leibler [KL51] divergence. The closest songs for a given Web page are used for

recommendation. Mapping songs and Web pages to emotions is done based

on the text of the Web page and the text on the Web describing the song,

obtained through search engines. A probabilistic model is used to detect the

emotions in text with parameters learned from the co-occurrences of the words

with the word describing an emotion. Hand-labeled data is used to evaluate

both emotion allocation and music recommendation. Results show that there

is a positive correlation between labeled emotions and allocated emotions and

that the precision for music recommendation is stable around 45% with recall

increasing to 70% for top-10 recommendations.

Context describing tags

inside afternoon friday run calm rain sunny

outside morning monday driving chaotic haze clear

Table 3.3: Tags used for context description

Recommending musicians that are suited for a place of interest (POI) has

been addressed in [KFTRC12]. In this work, a structured knowledge base DB-

pedia [ABK+07] is used as a basis to create a mapping between the musicians

and POIs. The recommendation process is done in three phases. In the first

phase, domain experts identify class nodes in the knowledge base graph that are

relevant for the task together with the relevant paths between these classes. An

example are “City” and “Opera composer” as class nodes, and a location path

as a path that specifies that musician is linked to the place where he was born,

lived, or died. Identified classes and paths are used as an input in the second

phase to create a full network of class instances and the paths between them

by aggregating all subgraphs that link POIs and musicians. In the final stage,

a graph algorithm based on the weight spreading strategy is proposed to find

the musicians that are most relevant to a certain POI node. A user study was

performed indicating high precision values of the approach.

3.2 Image Retrieval for Soundtracks

The soundtrack recommendation problem for images can also be inverted, which

is then a problem of retrieving relevant images for a given soundtrack [SPH05,

CZJ+07, XJL08, CWJC08]. This task considers images only as a support to

enhance the presentation of a song. Although an effective and appealing slide
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show is a common goal for both tasks, the means and the final result differ

substantially.

In their work, Shamma et al. [SPH05] propose a retrieval of images from the

Web to automatically generate a video for a given music piece. The retrieval

of images is based on the lyrics and the meta-data of a song. First, the meta-

data of a song, such as the title and the author, are used to retrieve its lyrics,

which are then used to create queries to image search engines. This is done by

removing the stop words (i.e., frequently occurring words like the, at, etc.) from

the lyrics and using the remaining ones as keywords to formulate search queries.

The approach in [CZJ+07] builds also on the principle of retrieving images

from the Web based on the lyrics and the song meta-data. However, the ap-

proach is based on a more sophisticated keyword identification and style match-

ing between the music and the images. After removing stop words from lyrics,

keywords are identified using heuristic rules such as identifying a location or a

mention of a person, or identifying nouns and noun phrases. Once the images

are retrieved using these keywords, they are further re-ranked based on face

detection and scenery classification. The images that contain faces or a nature

scenery are ranked higher than the rest of the images. A final post-filtering step

is performed to ensure all the retrieved images are in one style and that this style

matches the emotions expressed in music. This is achieved by color mapping:

blue and cyan colors are mapped to sad emotions while red and orange colors

are mapped to happy emotions. The emotion classification is done for music

piece based on its content and the images with corresponding colors are selected

in the final step.

Retrieving personal photos instead of photos retrieved from Web to gener-

ate a video for a given music piece has been proposed in [XJL08]. The retrieval

process starts with the detection of the song’s keyframes by comparing dis-

tances between frame pairs. Subsequently an image is retrieved for each of the

keyframes using corresponding lyrics. After removing the stop words, lyrics are

used to retrieve images from the Web which are then used to calculate the simi-

larity to the images in the personal collection. Low-level features extracted from

images are used to calculate the similarity between them. Images, which are

most similar to the images retrieved from the Web, are used for video generation.

An emotion-based approach [CWJC08] has been proposed to retrieve images

for a given music piece by detecting and matching emotions. Emotion detection

is done based on the low-level features using trained classifiers. The music piece

is split in parts up to five seconds long using beat detection. The emotion de-

tection is done through classification for each of the parts. As detected emotion

retrieves a large number of images additional constraints are used when selecting

an image. The first constraint is based on the matching between the brightness

and contrast of an image with the timber of music. While the second constraint

requires visual coherence between the successive images.

A user study was performed for the emotion-based approach showing that

results are preferred to the results of randomly chosen image. For all other ap-

proaches, the authors present example results achieved by their systems. How-
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ever, none of them have been evaluated by users, measuring the user perceived

quality.

3.3 Automated Slide Show Generation

Once both music and a set of images are selected for the slide show, the prob-

lem of creating an effective and appealing slide show video remains. This is

not an easy task as it requires determining image sequence, overlays, and tran-

sitions which in addition need to be synchronized with the music. Multiple

approaches [CCK+06, LS07, CXG10] have been proposed addressing this task.

1
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Figure 3.3: Slide layouts for multiple images

The tiling slide show approach [CCK+06] is a new form of slide show pre-

sentations where multiple images are displayed at the same time, coordinated

with the pace of music. Photos with similar features are clustered together and

displayed in form of tiles such that one larger image represents the topic of the

slide and multiple smaller images support the topic, as illustrated in Figure 3.3.

Determining the layout of the images is modeled as a constrained optimization

problem taking into account an assessed importance of each photo. The im-

portance of the photo is assessed based on user-attention models that take into

account detected faces in the image and the contrast between objects and the

background of the image. Detected beats in the incidental music are used as

a time points at which new images are introduced or the transitions between

slides are made. A performed user study shows that this form of slide show pre-

sentations provides a significantly higher level of satisfaction to the users than

traditional one-after-another image slide show.

Besides the soundtrack recommendation task, the approach by Li and

Shan [LS07] also addresses the problem of slide show generation. Similar to the

tiling slide show approach, images are first clustered based on their content,

more precisely based on the emotions detected from the extracted low-level fea-

tures. A linear arrangement between images in one cluster and between clusters

is determined using a modified traveling salesman algorithm to minimize the

overall distance between consecutive displayed images. Each image is presented

using a motion pattern such as panning or zooming to highlight detected regions

of interest. The presented approach is evaluated through a user study, showing

improvements in user satisfaction over system without accompanying music.

The approach in [CXG10] supports two modes for automatic slide show

creation: story-telling and person-highlighting mode. In the story-telling mode,
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first, images are clustered based on the distance in time, colors, and detected

faces. Images from one cluster are combined in one slide using dynamic tiling

and seamless blending on the edges. Transitions between frames are created

simulating camera motions of zooming and panning. In a person-highlighting

mode face detection is utilized to create clusters of images. The transition

between images in this case is based on the regions of interest of an image,

such as detected faces. Pixels in regions of interest of one image are distorted

using one of the predefined distortion functions and undistorted to the region of

interest of the other image, forming a transition between these images. A user

study was conducted showing that users prefer results of this approach to the

results achieved by the tiling slide show approach.

3.4 Collecting Relevance Assessments through

Pairwise Comparisons

We have built a reusable benchmark to evaluate the effectiveness of soundtrack

recommendation systems for images. To collect user assessments for the bench-

mark we use the notion of pairwise comparisons, as described in Chapter 5.

Pairwise comparisons refer to the process of comparing pairs of objects to de-

termine the preference towards one of them. They were first mentioned and

analyzed in the field of psychology by Fechner [Fec60] and made popular later

by Thurstone [Thu27]. Thurstone was mainly concerned how pairwise compar-

isons can be used to determining the scale of perceived stimuli. He formulated a

general model to obtain scale measurements from a set of pairwise comparisons

and referred to it as the law of comparative judgment.

Figure 3.4: Pairwise comparisons to determine the final ranking

Moreover, a general problem of reconstructing the final ranking from a set

of pairwise comparisons has received a substantial amount of research [Mik03,

CP06, Jan08]. The approaches vary substantially from fuzzy numbers with

linear programming optimization [Mik03] to learning approaches with logistic
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regression models or SVM classification [CP06]. Figure 3.4 illustrates the process

of creating a final ranking of flowers based on a set of pairwise comparisons.

For information retrieval tasks, Thomas and Hawking [TH06] use pairwise

comparisons in order to compare systems in real settings, where interactive re-

trieval is used in specific context over ever-changing heterogeneous data. The

comparison is achieved by presenting the results of two system side-by-side dur-

ing the query session and asking the users to indicate the preferred result set.

The evaluation of the approach showed that click-through data highly corre-

lates with perceived preference judgments. The method of displaying results in

side-by-side manner was also used by Sanderson et al. [SPCK10] to obtain the

correlation between user preference for text retrieval results and the effectiveness

measures computed from a test collection.

Using preference-based test collections is introduced by Rorvig [Ror90] and

later developed for text retrieval by Carterette et al. [CBCD08]. In this work, the

authors show that preference judgments are faster to collect and provide higher

levels of agreement, compared to absolute relevance judgments. Preference-

based effectiveness measures are proposed by Carterette and Bennett in [CB08],

showing that they are stable and adhere to the measures based on absolute

relevance judgments. Preference judgments between blocks of results are used

by Arguello et al. [ADCC11] to evaluate aggregated search results. The small

number of such blocks enabled the collection of preferences between all pairs

of blocks. A suitable effectiveness measure in this case is the distance between

the ranking produced by the system and the reference ranking created based

on the all-pair preferences. In our setting, the huge number of possible song

pairs prohibits an exhaustive evaluation, in which case the quality measure is

more appropriate based directly on pairwise comparisons rather than using the

reference ranking.

For music similarity, Typke et al. [TdHdN+05] conclude that coarse levels

of relevance measure, usually used in text retrieval, are not applicable. Instead,

they use a large number of relevance levels created from partially ordered lists.

The ground truth in this case is given as ranked list of document groups, such

that documents in one group have the same relevance. The work by Urbano et

al. [UMML10] addresses some limitations of this approach by proposing differ-

ent measures of similarity between groups of retrieved documents. Measuring

retrieval effectiveness with these large number of levels is achieved using the

Average Dynamic Recall [TVW06] measure.

Due to its low price and high scalability, crowd sourcing is a popular tech-

nique to obtain relevance assessments for information retrieval tasks [ABY11,

AST10, SPCK10, KMFC09]. The work by Alonso and Baeza-Yates [ABY11] ad-

dresses the design and implementation of assessments tasks in a crowd-sourcing

setting, indicating that workers perform as good as experts at TREC [TRE]

tasks. Similar results have also been achieved by Alonso et al. [AST10] in the

context of XML retrieval. Snow et al. [SOJN08] show that Mechanical Turk

workers were successful in annotating data for various natural language pro-

cessing tasks, even correcting the gold standard data in specific occasions.
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3.5 Processing Top-K Queries with Constraints

In our approach to soundtrack recommendation, we are concerned with retriev-

ing K songs that have the largest similarity score to a specific movie music,

constrained to a set of songs that user possesses on a smartphone. Retrieving

K top ranked objects constitutes a set of queries commonly known as top-K

queries. There is a large body of existing work in the area of processing top-

K queries, ranging from database systems [LCIS05, IBS08, BCG02], over dis-

tributed systems [CW04, MTW05], to information retrieval [FLN03, TWS04,

DS11, AdKM01]. Among the most prominent approaches are the so called

threshold algorithms [Fag99, GBK00, FLN03], used to answer top-K queries

when the score of an item is aggregated from multiple different sources. These

approaches scan the score-sorted lists of items and, at the same time, maintain

a score threshold used for early termination. Accessing sorted lists is done in a

sequential manner, usually complemented with random accesses based on item

ids.

Although top-K queries provide focus on the top of the ranking, alone they

do not provide enough flexibility to constrain rankings to a specific subset of

items. For this reason, selection constraints are used in addition to ranking func-

tions. The work in [XHCL06, XH08], supports selection constraints on multiple

categorical attributes (e.g., producer = ’Ford’ and production year=2011) for

top-K queries. The mentioned approaches extend the well known principle of

data cubes for data warehousing [CD97] to incorporate ranking functionality. To

achieve this, the P-cube approach [XH08] proposes the partitioning in the space

of ranking dimensions and maintaining a signature for each of the partitions

indicating its content. At query time, partitions are accessed in order of how

promising they are for the ranking while using signatures to prune away the

ones that do not satisfy selection constraints.

Retrieving the top-K documents that contain a certain phrase is another form

of top-K queries with constraints, where constraints are phrases which must be

contained in the retrieved documents. These queries can be transformed into

a top-K queries with range selection using data structures such as suffix trees.

Data structures and algorithms for processing top-K queries with range selec-

tion, also known as top-K color queries, have been proposed in [Mut02, KN11].

Efficient processing of these queries is in general achieved by supplementing the

suffix tree structure to contain information about the number of suffix occur-

rences in a document.

In traditional information retrieval problems, the part of the data to look at

is determined by query terms, not upfront by a set of documents concerning their

characteristics. In this case, the formulated query is a top-K query with score

aggregation. A notable exception is the work by Singh et al. [SSL07] on efficient

enterprise search, where results are restricted based on the file access rights.

Knowing all access rights upfront with a clear grouping in a small number of

disjunctive groups enables the creation of so called access control barrels—sets

of files accessible by the same group of users. At query time only the barrels
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with appropriate access rights are queries. This way, the trade off between

index blow up (index materialized for each user) and query processing time

(querying over non accessible files) is achieved. Another exception is the work

by Bast and Weber [BW06, BW07] on auto-completion search where query is

executed while user is typing it in the search box. In this case, the selection

constraint is given as a set of documents that correspond to the last entered

query prefix. However, the work does not consider ranking documents, hence,

early termination techniques can not be applied.

Ranking join results based on aggregated scores obtained from multiple ta-

bles (i.e., top-K join processing) and embedding such ranking concepts in a query

optimizer have been addressed in [IAE04, WBEM+10]. These approaches again

utilize the concept of accessing sorted lists of items while maintaining a thresh-

old that corresponds to join criterion to enable early termination. In general,

the problem of joining multiple tables with corresponding indices requires iden-

tification of the break-even point between index lookups (e.g., a B+ tree) vs.

a full table scan—for which standard textbook solutions based on cost models

exist [GMUW08]. However, this “index join” has not been considered in top-K

setting yet. For general top-K join queries [IAE04, WBEM+10], our studies in

Chapter 6 can be of use for the direct access to the base tables in a rank-aware

query plan.

To achieve lower latency for top-K queries with set-defined selections, we cre-

ate partitioned index based on the query logs (i.e., historic workloads). Using

query logs with the aim of tuning a system’s performance is encountered quite

frequently [NPS11, IKM07, WMB+07, CZJM10]. Applications where the work-

load is used to improve performance vary from index defragmentation [NPS11],

over cache replacement [WMB+07] to range queries [IKM07]. Query logs have

been used in [CZJM10] with the aim to reduce the number of distributed parti-

tions by allocating tuples that are frequently used together to the same partition.

In our index organization, the graph based approach proposed in [CZJM10] is

used for data partitioning.





Chapter 4

Picasso–A Soundtrack

Recommendation

Framework

This chapter gives a detailed description of Picasso—our approach to soundtrack

recommendation for images. The content of this chapter is based on our previous

publication [SM11a] where Picasso was initially introduced. The naming of the

system was inspired by the famous painter, Pablo Picasso, and his quote “To

draw you must close your eyes and sing.” We tamper a bit with Pablo Picasso’s

quote trying to figure out if the inverse holds too, namely, if we are able to find

music (singing) by looking at pictures (drawings), that is “To sing you must

close your eyes and draw.” At the same time the name stands as an acronym

for PIcture CAtegorization for Suggesting SOundtracks.

The basic hypothesis behind Picasso approach is that the connection between

the world of music and the world of images can be made through the knowledge

of experienced movie directors, extracted directly from the movies themselves.

Picasso extracts this knowledge in a fully automated way, utilizing it to create a

match between query images and the songs in the collection and provide a final

soundtrack recommendation.

Sketch of the approach: Given a set of movies, we take samples of them

at equidistant time points. For a given sample point, we investigate if the

corresponding sound surrounding the sample by a couple of seconds resembles

a piece of music. If so, we take the screenshot and the music piece and consider

it as training data. We do this for very many samples, for dozens of movies.

The set of considered movies should be large enough and also diverse such that

the training base is big enough and the resulting categorization captures all (or

almost all) situations appearing in pictures people take.

At query time, two levels of similarity search are used to retrieve songs for the

recommendation. In the first level, screenshots similar to the query image are

retrieved. In the second level, songs similar to the music played at corresponding

41
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places in movies are retrieved. This process is performed for each query image

individually and the results are combined to recommend songs for a group of

images.

With Picasso we make the following contributions:

(i) We present an algorithm for soundtrack recommendation for an arbitrary

wide range of user generated images as input. Besides complete image

support, the presented approach also supports arbitrary variants of music,

without limitations to songs with lyrics or specific music format such as

midi files.

(ii) We show how a training dataset can be extracted out of popular common

movies in a fully automated way, capturing the knowledge of experienced

movie directors.

(iii) The soundtrack recommendation process for one submitted image is de-

scribed, together with the approach of combining individual recommenda-

tions when multiple images are submitted. An additional feature of image

grouping based on soundtrack recommendation is proposed.

(iv) We report on the results of a user study evaluating the feasibility of our ap-

proach. The detailed and extensive evaluation concerning the effectiveness

of Picasso and the baseline approach is given in the Chapter 5.

In the following, we first present our framework with the detailed description

of training data extraction and a brief recap of basic techniques and similarity

measures in Section 4.1. Section 4.2 presents the core concepts of Picasso de-

scribing the recommendation process and soundtrack-based image grouping in

details. User study results are shown in Section 4.3.

4.1 Framework

Picasso is based on the expertise of movie directors to select appropriate songs

for specific scenes in their movies. This knowledge is made public, natu-

rally, when movies are presented in cinemas, TV, or DVD, generating a huge

knowledge base that perfectly fits our goal. We extract samples of screen-

shot/soundtrack pairs from a certain amount of these movies and form a training

dataset creating a basis for our framework.

As a final training dataset we aim at having, for each of the screenshots taken,

a list of songs (for instance, the user’s private mp3 collection), which are available

for recommendation, in decreasing order of likelihood to be recommended for a

specific screenshot. The structure of the training dataset is shown in Figure 4.1.

Building this dataset is done in the following steps:

(i) the soundtrack of the movie is extracted

(ii) music/speech classification is done on the soundtrack

(ii) speech parts are discarded
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(iv) screenshots, during the musical part, are taken

(v) parts of the same scene are detected

(vi) the soundtrack is split according to the scenes

(vii) for each soundtrack part the distance to all songs is calculated

(viii) the song lists are sorted in increasing order of distance, resulting in our

training set

Soundtrack and image extraction, from the movies, is easily achievable using

one of many available tools and will not be covered here in depth. However, mu-

sic/speech classification is not that straightforward. For this task, we use a Naive

Bayes [Ris01] classifier, trained using the labeled dataset available at [MAR].

This training dataset contains 64 speech samples with spoken text coming from

different languages, and 64 music samples, covering variety of music genres.

Low-level music features described in Section 2.1.2 are used for classifier train-

ing and for the later classification task. The Marsyas [Tza09] tool is used for

both the features extraction and the classification. The output of the classifier

for a given soundtrack is a label—“music” or “speech”—for each second of the

soundtrack together with a confidence value in the performed classification. To

be sure to use only the music parts of the soundtrack, all parts that are clas-

sified as a music with the confidence value less than 95% and all speech parts

are discarded. Music parts of the soundtrack with length shorter than five sec-

onds are also discarded, as they do not contain enough information to make the

similarity measurement with songs meaningful.

Screenshots Music parts Song lists

Figure 4.1: Training dataset structure

Screenshots are taken from the movies at each second of the remaining music

parts. To obtain a more logical grouping, we divide these music parts further into

scenes. The scene detection is implemented by splitting a sequence of screen-

shots on positions where the image-to-image distance, measured as described in
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Screenshots

Soundtrack

Split  point

Music overlap

Figure 4.2: Splitting of a long scene

Section 4.1.1, is larger than a given threshold. The sequence of the screenshots

from one split to the second one is considered a scene. This approach may not

lead to exact movie scenes but, as we are only interested in image-to-image sim-

ilarities for the further processing, it provides a reasonable grouping of similar

images. To eliminate abrupt scene changes, for the same reason we have elim-

inated short music parts, i.e., we filter out and discard detected scenes whose

length is shorter than 5 seconds.

Additionally, very long music themes can cause problems as a too large

amount of information can render them too specific and, hence, would not match

to any parts of the available songs. This is why scenes that are longer than 10

seconds are split in multiple parts. Splitting these long scenes in multiple parts

also improves the locality connection between the soundtrack part and the taken

screenshot. To split the long scenes into smaller parts and to make music parts

of approximately the same length, we split the long scenes such that screenshots

sequences are disjunctive, but with the possibility of having overlap between the

music parts, as illustrated in Figure 4.2. The splitting algorithm starts greedily

and chops away the first 8 seconds of the scene as a separate part, repeating this

until the last piece is left. The last piece is either 8 seconds long or less than

that. In case the last piece is less than 8 seconds the music part is extended to

include previous missing seconds to make the total length of 8 seconds, creating

an overlap in the soundtrack parts but no overlap between images. Screenshots

together with links to theirs corresponding music parts are then saved for further

processing.

After the music parts are cut, first based on the music/speech classification

and then based on scene detection, the distances between each of the music

parts of the soundtrack and all of the given songs are calculated. The distance

measure between the music parts and the songs is described in Section 4.1.2.

Songs are then ordered in increasing order of their distance to each of the music

parts.

These ordered lists of songs together with the links from the taken screen-

shots represent our training dataset, which is later used for soundtrack recom-
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Figure 4.3: Training dataset extraction process

mendation, c.f., Figure 4.1 for an illustration. Each screenshot taken from the

movie has a link to the part of the accompanying soundtrack which has a list

of songs ordered by their distance to the soundtrack. The complete process

of building the training dataset, from soundtrack extraction to song distance

calculation, is illustrated in Figure 4.3.

4.1.1 Image Similarity Measure

For the image-to-image similarity measure we use low-level features proposed by

the MPEG-7 standard [CSP01], namely: scalable color, color structure, color

layout, and edge histogram. All the features are extracted directly from the

image and represent color and edge distributions in the image. In the follow-

ing, we give a brief description of the used features, for more details refer to

Section 2.1.1.

Scalable color describes all the colors found in the image by aggregating

them in a color histogram. Each bin of the histogram represent one level of the

color quantization. To lower the memory space needed for the histogram, the

Haar transform [Haa10, SS99] is used for encoding. The standard defines three

possible values for the number of Haar coefficients used: 128, 64, and 32.

The color structure descriptor is represented also by a histogram, where

the value of the bin is a counter for the structuring elements, of 8 × 8 size, in

which the respective color appears. Counting these values is done while sliding

the structural element over the whole image. The number of color quantization

levels is a parameter for this descriptor and can by 184, 120, 64, and 32 as

defined by the standard.

Color layout summarizes the distribution of colors in a given image, first

by dividing the image into 64 (8×8) equal sized parts and, and then calculating

the average color for each of the parts. The discrete cosine transform (DCT)
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is performed on these 64 parts and only low frequency coefficients are used for

each component. The number of coefficients used is defined as a parameter as

well.

The edge histogram descriptor is used for the spatial representation of

edges in the image. The image is divided into 16 (4 × 4) equal sized parts

and the local edge histogram for each part is calculated. Each histogram has

5 bins representing 4 orientation directions and one used for non orientation-

specific edges. Concatenation of the local histograms with the histogram levels

quantization produces the final descriptor.

In this thesis, we use common configurations of the MPEG-7 image descrip-

tor coefficients, with 64 Haar coefficients for scalable color descriptor, 64 color

quantization levels for color structure descriptor and 6 coefficients for the Y

component, 3 for the Cr component and 3 for the Cb component of the color

layout descriptor.

After the distance calculation, for each of the descriptors, we need to com-

bine them in one distance measure for further comparison. We do this by first

calculating the standard score (z-score) for each of the descriptors and then

summing up all of the standard scores into a single score. The standard score is

calculated by Formula 4.1, where µ is the expected value (mean) of the distances

for the given descriptor and σ is the standard deviation of the distances for the

same descriptor.

z =
x− µ
σ

(4.1)

The mean µ and the standard deviation σ for the descriptors are approxi-

mated from the training dataset. The distances between each pair of the images,

for each of the descriptors, are calculated, and then the mean and the standard

deviation for the descriptor are approximated by the estimated mean and stan-

dard deviation of this set of calculated distances.

4.1.2 Music Similarity Measure

For the music similarity measures, the following low level music descriptors are

used: MFCC, Chroma, spectral centroid, spectral rolloff, spectral flux, and time

domain zero crossing, c.f., [TC02] for an overview.

The Mel Frequency Cepstral Coefficients (MFCC)descriptor is based

on the mel scale, a model of the human auditory system. First, the spectral

representation of a musical signal is transformed by the model and then the

coefficients of the discrete cosine transform (DCT) are used as features.

As western music is based on a musical scales containing a subset of twelve

basic musical semitones, the Chroma descriptor [EP07] represents the inten-

sity of each of the twelve semitones in the analyzed music part. It is a very

valuable descriptor, used for musical similarity measure, as it highly emphasizes

melodical and harmonical characteristics of the analyzed musical piece.
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Figure 4.4: Song to soundtrack part distance

The spectral centroid is defined as a center of gravity of a musical signal’s

spectral representation, while the spectral rolloff represents the frequency un-

der which 85% of the signal’s magnitude is located. The local spectral change,

in the time domain, is represented by the spectral flux which is calculated as

a squared difference between two successive spectral distributions. The time

domain zero crossing, describing the noisiness of the signal, is defined as a

number of times a musical signal crosses between positive and negative values

in the time domain. For more details on the used music low-level features see

Section 2.1.2.

To calculate the similarity between two songs first the feature vectors of

each of the descriptors are extracted for every 23.25 milliseconds of the song,

resulting in 43 feature vectors per second (the default configuration for the

Marsyas tool). Then, the pairwise similarity between the feature vectors is

calculated and combined. The combination of distances of different descriptors

into one distance measurement is done also using the sum of standard scores

for each descriptor, as described in Section 4.1.1. The mean and the standard

deviation for the standard scores are approximated using the mean and the

standard deviation of the pairwise distances between the songs in the training

dataset.

Calculating only pairwise distances between feature vectors is not enough

as music also has a time dimension. One option to handle the time dimension

is to calculate the sum of successive pairwise distances. As this option results

in a rigid comparison in time, we use a more flexible option called Dynamic

Time Warping [SC78]. Dynamic Time Warping (DTW) enables sequence

matching with the variations in speed, making it possible to compare songs

that are similar in content but with different speed measures. As speed change

can be beneficial for flexibility it also has to be limited such that the similarity
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between songs with different speed measures is less than between the songs with

the same speed measure. This is also achievable using DTW by specifying the

slope constrained condition and by specifying Weighting Coefficient for the case

of speed change (time warp) and the case of no speed change (no time warp). In

this work, we use a symetric variant of DTW with slope constrained condition

set to 1, and with the value of
√

2 for the Weighting Coefficient in case of speed

change and value 1 for the case of no speed change.

Beside giving us a distance DTW also gives us a part of the song that

matches the best to the other song. Because soundtrack parts are a lot shorter

than the songs in general, we use DTW to find three positions in the song that

are most similar to the soundtrack part. The sum of distances between the

soundtrack part and these three positions in the song is used as the resulting

distance between the song and the soundtrack part, as illustrated in Figure 4.4.

4.2 Approach

Once the training dataset is extracted we can use it for soundtrack recommenda-

tion. We consider two types of recommendations, single image recommendation

and multiple images recommendation.

- In the single image recommendation, one image is submitted as a query

and a list of songs is returned, in decreasing order of their suitability to

the query image.

- In case of multiple images, we consider the images as the input for the slide

show generation and try to recommend a grouping of the images together

with the songs recommended for each of the groups. We base the grouping

of the images on the similarity between the lists of recommended songs

for each of the image. Obviously, the grouping step may be left out if the

grouping is specified upfront.

The key idea of finding the most suitable song for a query image is to employ

two phases of similarity search, first, in the image domain, and second, between

music pieces. As we saw in the Section 2.2, the similarity search translates into

a K-Nearest Neighbors (KNN) search, with documents represented as points in

multidimensional space. Selecting the K-Nearest Neighbors (KNN) means that,

for a given feature vector, the K nearest feature vectors are selected, that is,

the K most similar images/songs are retrieved.

Phase 1: When the query image is submitted, its distance to each of the

images in the training dataset is calculated. The images in the training dataset

are then ordered in increasing order of distances to the query image and only

the top-K images (i.e., the K-Nearest Neighbors) are used for the further rec-

ommendation process. This process is known as linear scan, as the distance

to every image in the training dataset is calculated. To optimize for efficiency

we could use approximate techniques for KNN search, described in Section 2.2,
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and we will see in Chapter 7 how these techniques can further be enhanced to

increase the efficiency and also distributed for large scale similarity search.

Phase 2: After the top-K images are found, the list of the songs together

with the score for each image is retrieved. First, the name of the soundtrack

sample for each image is retrieved and then the list of songs, ordered in increas-

ing order of distance to the soundtrack sample, is retrieved for each soundtrack

sample. As a result, each image, retrieved from the training set, has a list of

songs in decreasing score order to that image. We aggregate these lists to create

one final list that serves as a recommendation for a given image. Aggregating

song lists could be avoided if only the closest screenshot, i.e., top-1 screenshot,

is used with its song lists as a final recommendation. However, this would intro-

duce a negative impact of outliers to the recommendation process. Retrieving

multiple screenshots and aggregating their song lists can be considered as a

smoothing technique enabling multiple movies to have an impact of recommen-

dation to one query image.

To aggregate the song lists, we first assign a score to each of the top-K

retrieved images based on the similarity. The score is normalized to the [0.1, 1]

interval by Formula 4.2, where d is the distance of the image to the query image,

m is the distance to the most similar image (i.e., the smallest distance), and

M is the distance to the least similar image (i.e., the largest distance). Each

of the image scores is then further assigned to the top-K songs in the list of

corresponding images. An average score for each song is then calculated and

used to reorder the songs. The ordered list of songs, by their new calculated

score, is returned as the final list of recommendations.

z = 1− 0.9 ∗ d−m
M −m

(4.2)

For each of the K images we get K songs, leading to a final number of songs

between K (in case of heavy redundancy) and K2 (in case of no redundancy),

which, after duplicate elimination and a final ranking, assembles the final result

list. In all of our setups we used K = 10.

While a fully automated process requires only one suggestion, in a semi-

automated approach we return the top-K results to let users do the final as-

signment. However, rarely would users submit only one image to get a recom-

mendation. For that reason we have to address the case when multiple images

are submitted as a query.

4.2.1 The Case of Multiple Images

Given multiple images as input, we group them using a clustering algorithm

and recommend a soundtrack for each of the groups. To achieve this, we first

perform the recommendation for each of the images. This results in the list

of recommended soundtracks for each input image. The similarity between

these recommendation lists is then used as the grouping criteria. Computing
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similarity between ranked recommendation lists is done using a slightly modified

Spearman’s footrule distance measure [FKM+06], as follows.

First, we find the length of the shortest list as the length of the list depends

on the number of unique songs in the top-K songs for each of the top-K similar

images from the dataset. The lists are cut at the length of the shortest list to

make the pairwise similarity measure comparable. The similarity between two

lists l1 and l2 is calculated by Formula 4.3, where L is the length of the lists,

and pos1 and pos2 are positions where the song s is located in each of the lists.

If a song is found in only one of the lists, score is left unchanged, as specified

by the formula.

sim(l1, l2) =
∑

s∈l1∧s∈l2

L− |pos1 − pos2| (4.3)

As we can see, this kind of similarity measure takes into account not only

the overlap between the lists but also an ordering of songs in the lists, imposing

that the lists with the same ordering will be more similar than the ones with

the same overlap but different ordering. As the Spearman’s footrule distance is

defined over full (i.e., complete) rankings, we adjust it to be used also for our

partial rankings (top-K lists) (cf., [FKM+06]) by ignoring the songs not present

in one of the lists. Also, the list length L is added to the formula with subtracted

L1 distance, turning the measure into a similarity measure.

In case of the large music collection it can happen that recommendation

lists have no overlap in terms of songs they contain, which can easily be solved

by increasing the value of K, resulting in more songs being recommended.

The similarity matrix, containing all pairwise similarities between the lists,

is calculated and used for a bottom-up hierarchical clustering which produces

a grouping of images as a result. We use a hierarchical clustering with the

explicit number of clusters and the maximum cluster size specified. The process

of clustering begins with creating a cluster for each image instance (i.e., list)

and then iteratively merging the clusters until the required number of clusters is

achieved. In each step, all pairs of clusters, except those whose cumulative size

becomes larger than the specified cluster size limit, are considered for merging.

Two clusters whose pairwise similarity is smallest, compared to other cluster

pairs, are merged. The pairwise similarity between clusters is defined as the

average pairwise similarity between their instances as shown in Formula 4.4,

where c1 and c2 are clusters, i1 and i2 are their instances respectively. Cluster

sizes, represented by |c1| and |c2|, are defined as the number of instances in each

of the clusters.

sim(c1, c2) =
1

|c1| · |c2|
∑

i1∈c1∧i2∈c2

sim(i1, i2) (4.4)

In our setup, we use the floor of the number of input images divided by 5

for the number of clusters, aiming at the clusters with average size of 5 images,
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Figure 4.5: Group recommendation strategies used for soundtrack recommen-

dation task

and we use 7 as the specified cluster size maximum.

After the grouping of the images is finished, a soundtrack needs to be rec-

ommended for each of the groups. The problem again is to aggregate the rec-

ommendation lists of the individual image recommendations into a final recom-

mendation. To achieve this, we cast the problem into a group recommendation

problem [AYRC+09]. Group recommendation is nicely illustrated with an ex-

ample of a movie recommendation for a group of people where each person has

her own preferences. In our case, the images are persons and songs are movies,

where the preferences are specified in terms of individual recommendation lists.

We use two common strategies for group recommendation, namely average

position and least misery. First, we find all the songs that are present in all of

the n lists and calculate a score based on the group recommendation strategy

that is chosen. We form a final ranking and add these songs, ranked by the

calculated score. Then the songs that are found in n − 1 lists are ranked and

appended to the final ranking. The step continues for the songs found in n− 2

lists, n − 3 lists, and so on. The aggregation step with both average position

and least misery strategies is illustrated in Figure 4.5.

- For the average position strategy, the final score for a song is calculated

as the average of all the positions in the recommendation lists, where the

positions are given as the song rank. A small value of the score means that

the song is high in rankings of recommendation lists, in average, making

a good fit for query images. Songs with large score are ranked lower in

the final ranking as they are in low rank positions in the initial recom-

mendation lists, in average. A ranking based on the average position can

sometimes be misleading for a group recommendation—some group mem-

bers can be highly disappointed by the recommendation but the average

satisfaction is still high because of the high satisfaction of the other group

members.

- The least misery strategy is used in group recommendation with the

intention to circumvent this problem. The basic idea behind the least

misery strategy is that recommendation should minimize the misery of any

of the group participants. With this strategy, the group recommendation

is valued by the group member who likes the recommendation the least.



52 4. Picasso–A Soundtrack Recommendation Framework

For our case, that means that we need to find the maximum position

(lowest rank) for each of the songs found in the previous step and use

this position as a score for recommendation. Like for the average ranking

approach, songs are reordered on their new score in increasing order, and

the song with the smallest score are recommended first.

4.3 Feasibility Study

In the course of developing Picasso we conducted a feasibility study to see the

potential of the approach. In the following, we describe the study setup and the

results. The detailed evaluation of the system’s effectiveness is done through the

benchmark we have designed, cf., Chapter 5, while the efficiency issues addressed

in Chapters 6 and 7, contain the evaluation of the these efficiency aspects.

To perform the feasibility study, we extracted the training dataset out of 28

movies of different genres through the procedure described in Section 4.1.

We use 275 songs as potential soundtrack recommendations. We obtained

this dataset by downloading songs from the music2ten site [MUS], a site which

contains only music given away by its creators for free use, as stated on the

site: “All the music selections at music2ten.com are MP3s that are given away

free with the artists’ blessings.”. This songs dataset contains fairly unknown

material, i.e., artists are not promoted by the big labels.

4.3.1 Study Setup

We conducted a user study for both cases of recommendation, the single image

recommendation and the recommendation for the case of multiple images. We

have asked users from our university environment to grade the suitability (aka.,

relevance, appropriateness) of a suggested soundtrack w.r.t. a given image or

a given slide show, in case of multiple images. Users were provided with the

following options: “fits very good”, “fits good”, “fits ok”, “does not fit” and “total

miss”. We assign grades from 5 to 1 for each of the option for the further

numerical analysis of the results. Grade 5 is assigned to “fits very good”, 4 to

“fits good”, and so on, having grade 1 for “total miss”.

We include a random recommendation to the user study to help us inter-

preting the results. Additionally, to be able to see how much the ranking of the

recommended soundtracks make sense, we include also the recommended sound-

track at rank 10 in the evaluation of the single-image case. That means, during

the evaluation, users were asked to grade the first ranked, the tenth ranked, and

a randomly recommended soundtrack for each query image. To get consistent

results for the random recommendation, a song was randomly chosen for every

query image and then used consistently throughout the whole study (i.e., for all

users).

The study is performed using a tool, which we have developed, shown in

Figure 4.6. This tool enables users to play three recommended songs for each
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Figure 4.6: Screenshot of our evaluation tool

query image, and to choose how well each song fits to the query. To avoid the

ordering bias, the evaluation tool places the songs on the page in random order

for a specific session.

The study for the single image recommendation is done using 12 pictures,

shown in Appendix A.3. These pictures were selected to be very different in

content, as we want to evaluate how well the recommendation performs in the

general case, rather than in one or a few specific cases. We had to limit the

number of query images to 12, as each user was asked to assess the suitability of

3 recommended soundtracks, for each of the query images, resulting in a tedious

and time consuming task of listening to 36 different songs.

For the case of multiple images, we also add a random recommendation to

the evaluation, together with the evaluation of the average position and the least

misery approaches. We use 36 images taken indoors and outdoors, on various

locations all around the world, for the slide show creation. The grouping of the

images is done using hierarchical clustering, as described in Section 4.2.1. Three

slide show videos are made with the recommended soundtracks: by average

position approach, by least misery approach, and by the random selection of the

songs as a soundtrack. The slide show videos are made with a light “dissolve”

transitions between the images, inside the groups, and with the heavier “page

fold” transition between the images from different groups. Each image is shown

for five seconds, resulting in the total length of three minutes for each of the

slide shows. The transition between the songs is done with the fade out effect

on the end of each song and with the fade in effect on the beginning of each of
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the songs. The users are asked to rate how well the soundtrack fits to the slide

show, for each of the three cases. This evaluation is also done with our online

tool, where the slide shows were played and graded by the users.

4.3.2 Study Results

A total of 13 users participated in the evaluation of the generated slide shows,

i.e., the multiple images case. The aggregated results of the evaluation are

shown in Table 4.1 where each option for the soundtrack’s suitability was as-

signed a grade, as already explained in the previous section. As we can see, the

average grade for the average position approach is a lot higher than the random

soundtrack recommendation. The least misery approach has an average grade a

lot higher than random, but slightly lower than the average position approach.

Avg. position Least misery Random

Avg. grade 3.69 3.31 2.38

Std. dev. 0.95 0.95 1.26

Table 4.1: Multiple images grades

Besides having just a good average grade for the recommendation, it is also

very important that users actually agree on how well the soundtrack fits to the

image (or the set of images). The agreement between users is very important as

high average grades could still have users with high disappointment, what we

want to avoid. The agreement on the suitability of the recommended soundtrack

is represented in Table 4.1 by the standard deviation of the results. The lower the

standard deviation the larger the level of agreement between users. We see from

the standard deviation that users agree more for the soundtracks recommended

by our two approaches compared to the random recommendation, as expected.

First rec. Tenth rec. Random

Avg. grade 3.21 3.08 2.97

Std. dev. 1.21 1.20 1.32

Table 4.2: Single image grades

Table 4.2 summarizes the results of the single image evaluation. Again, 13

users participated in the evaluation, but not all of them have evaluated the

soundtracks for all of the 12 images. Each image is evaluated 10.83 times in

average. We can see that the average grade for the first recommended song is

higher than the random recommended song and that the tenth recommended

is graded in between the first recommended and the random, showing that our

ranking is indeed in line with the users’ perceived ranking. As we can also

observe, the difference in average score between the first recommended and

the random one is a lot smaller than the difference between the average position

approach and the random one in case of multiple images evaluation. This kind of
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result is well expected as the slide show contains multiple images, accumulating

the users perceived soundtrack relevance over all of the images.

For the case of single images the average agreement over all 12 tests, in

terms of standard deviation, is better for the first recommended and tenth rec-

ommended song than for the random one. This shows that not only the first

ranked and ten ranked recommended soundtrack have higher score but that users

also agree more on these scores compared to randomly recommended song.

Runtime & Scalability

We measured a query processing time with this setup of Picasso. The average

runtime for the 12 single image queries and the training dataset extracted from

28 movies is 0.629 seconds per query image, with a standard deviation of 0.728.

Due to the small training dataset, most of the running time was spent on ex-

tracting the image features for the query images, as these were not precomputed.

The recommendation for the multiple image case was done in 14.933 seconds

for our case of 36 input images. Here, again, most of the runtime was spent on

the features extraction of each of the 36 images. The efficiency aspects of the

approach, once the training dataset and the song collection become large, are

addressed in details in Chapters 6 and 7.

Thread(s) 4 3 2 1

Runtime (sec.) 86.13 99.19 132.09 213.84

Queries/sec. 9.75 8.46 6.35 3.92

Table 4.3: Scalability measurements

At query time the training dataset is read-only, creating even on a single

machine with multiple cores no conflicts between memory accesses, rendering

the approach “embarrassingly scalable”, a common term for these kinds of par-

allelization. To show the scalability of the approach on a single machine, we

measure the running times and the throughput (i.e., images per second), varying

the number of threads used, for 840 query images, shown in Table 4.3. The mea-

surements were done on the single machine with single four core processor. We

did not measure the case of parallelizing the tasks on several separate machine,

as the scale-up in throughput is obvious.

Once the memory consumption hits the limit of available memory, we can

partition the training dataset on a per-movie basis. Then, for each machine,

we obtain recommendations based only on a subset of all movies. These “local”

results can get, however, easily merged by their similarity score in a final aggre-

gation step (i.e., a very simple list merging task). We did not investigate this

further. In a real world deployment one would install the approach directly in

the cloud to benefit from the provided elasticity in terms of required computing

power.
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4.3.3 Lessons Learned

The lessons learned from the study presented above can be put in the following

statements. Naturally, in most cases these are not hard facts being universally

true, rather reflecting the first insights obtained throughout the study.

- Publicly available movies contain expert knowledge on matching the

soundtrack to the given images

- It is possible to extract that knowledge and use it for soundtrack recom-

mendation

- Fairly simple methods for recommendation, in conjunction with the ex-

tracted training dataset, work quit well

- Users find the recommendation of the soundtracks, for single image or set

of images, satisfactory

- Users agree on the ranking of the recommended soundtracks

- The approach can be applied in user-centric responsive environments with

easy scaling in cases of high throughput need



Chapter 5

Effectiveness Benchmark

Evaluating the quality of multimedia IR systems introduces various challenges as

interpreting abstract associations—such as similarity between images—is com-

plex and can be done in numerous ways. Due to this complexity a multitude

of evaluation campaigns have been established in the field of multimedia IR.

Similar to the text retrieval evaluations considered in TREC [Voo07, TRE], the

MIREX [MIR] evaluation campaign addresses the assessment of music informa-

tion retrieval systems, while the evaluation of image and video retrieval systems

is considered in venues such as TRECVID [TVI] and ImageCLEF [ICL] .

One of the largest contributions made by these venues is the standardiza-

tion of the retrieval corpus, i.e., a document collection and a set of queries. In

addition to this, the defined benchmarks contain human-created relevance judg-

ments that assess the quality of results with respect to the information need

specified in the query. In order to estimate standard retrieval measures such

as precision and recall, it is essential for these assessments to be complete and

reusable. If constructed properly, they enable a fair and unbiased comparison

among systems—which increases the competition and the pace of the improve-

ments in the field.

In this chapter we describe the process of creating a benchmark dataset

that can be used to assess the quality of soundtrack recommendation systems

for images. To address this problem we have defined a set of queries, i.e.,

image sets, a set of songs for music collection, and collected judgments on the

fitness between the songs and the images. This chapterdescribes the created

benchmark, the process of collecting user assessments, and benchmark statistics.

In addition, the results of Picasso and an emotion-based baseline approach, over

the proposed benchmark are given and discussed. The content of this chapter

is largely based on our publication in [SM13].

Problem formulation: create a benchmark to evaluate the retrieval perfor-

mance of soundtrack recommendation systems. The proposed benchmark B =

(Q,S,R) contains a set of queries Q = {q1, q2, ...}, a set of songs S = {s1, s2, ...},
and a set of human relevance judgments R = {r1, r2, ...}, with each query qi de-

fined as a set of images qi = {img1, img2, ...}. The proposed benchmark fulfills

57
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the following important requirements:

• it enables an unbiased comparison between different recommendation sys-

tems

• it is reusable, that is, once created it can be used to evaluate systems with

no additional human intervention

• it provides high coverage in terms of “document” collection (songs) and

evaluated queries (images)

• it contains judgments with high agreement between assessors

• it is publicly available: https://sites.google.com/site/srbench/

Intuitively, the task of soundtrack recommendation appears to be highly

subjective as the taste in music largely varies. However, as we will see, the

agreement level between the assessors is quite high, indicating that it makes

sense to address the problem for the general case, i.e., to recommend soundtracks

for the “average” user. It is important to note that the proposed benchmark

can also be used to evaluate personalized recommendation systems where the

evaluation is performed with respect to assessments of the individual assessors.

The rest of the chapter is organized as follows: Section 5.1 describes the

used document collection and the queries. Section 5.2 shows how relevance

assessments are used to measure retrieval effectiveness. Section 5.3 explains the

process of collecting relevance assessments and elaborates on various statistics

of the collected assessments. Section 5.4 gives the results of the Picasso and the

emotion-based baseline evaluation using the benchmark.

5.1 Evaluation Dataset

A suitable evaluation dataset has to provide a wide coverage of both documents

and queries. A common approach in traditional text retrieval is to use a large

number of documents (e.g., obtained by crawling parts of the Web) and to

perform an initial filtering of documents based on existing approaches.

First, existing approaches are used independently to retrieve the top ranked

documents and then these documents are combined (merged) to create, a so

called, “pool” of documents. Relevance assessments are then collected only for

the documents in the pool in order to minimize the effort of the human judges.

This technique is commonly referred to as pooling. Due to the small number

of existing soundtrack recommendation approaches, pooling would result in a

highly biased dataset. Hence, we have to assemble the set of queries (images)

and documents (songs) independently from existing approaches in a way that

ensures wide coverage while keeping the collection size tractable.

As defined above, an evaluation benchmark B = (Q,S,R) consists of a set

of queries Q, a set of documents S (that are songs in our case), and a set of

human relevance judgments R. The first step in creating the dataset is to select

songs as documents and image groups as queries.

https://sites.google.com/site/srbench/
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5.1.1 Song Collection

While building the song collection, we focus on popular music and try to achieve

high coverage through understanding common music aspects. There are two ma-

jor aspects that people refer to when talking about music: the feelings induced

by the music and the genre it belongs to. We use Wikipedia1 to obtain a hier-

archy of modern popular music genres and focus on the genres that appear in

the top level of the hierarchy. According to the creators of this Wikipedia page,

music styles that are not commercially marketed in substantial numbers are not

included the list. Additionally, in order to avoid the complexity of working with

a large number of nation-specific music styles, we eliminate genres specific to the

origin of music, such as “Brasilian music” and “Caribbean music”. The resulting

genres, shown in Table 5.1, ranges from Country and Blues, over Metal to Hip

Hop and Rap.

Music Genres

Blues Classical Country Easy listening

Electronic Hip Hop and Rap Jazz Metal

Folk Pop Rock Ska

Table 5.1: List of music genres

Next, we collect a set of feelings and organize them in two high-level groups:

positive and negative feelings. We obtained an exhaustive list of fine-grained

feelings from Psychpage2.As the obtained list contains generic feelings, some

are rarely conveyed by music, such as admiration or satisfaction. To identify

feelings expressed through music we used the data from the last.fm [LST] music

portal. For each general feeling, we check how frequently an artist or a song is

annotated with the tag (term) that describes a feeling, for instance, “Sad”. This

“wisdom of crowds” is gathered using Last.fm’s search capabilities that retrieves

all artists and songs annotated with a specific tag. While building the list, we

employ a policy that a given feeling is not related to music if there are less than

500 users who used this feeling as a tag. As the result, we get 7 positive and

7 negative feelings conveyed by music, shown in Table 5.2. We see that not

only apparent feelings such “Happy” and “Sad” are there, but also less frequent

ones are contained, such as “Tragic” and “Optimistic”. This way the number of

feelings is limited while still supporting high coverage.

For each of the genres and feelings in the lists, we retrieve the top-10 played

(listened to) artists. Again the last.fm portal is used for this task, as it contains

the number of times an artist is listened to and enables the search for the top-K

artists for a given query tag. For each artist, we acquire two representative

songs, and automatically cut them to 30 seconds length—from minute 1:00 to

1:30. As some artists appear in multiple groups, (e.g., in the “easy listening”

genre and in optimistic feeling), the document collection consists in total of 470

1http://en.wikipedia.org/wiki/List_of_popular_music_genres
2http://www.psychpage.com/learning/library/assess/feelings.html

http://en.wikipedia.org/wiki/List_of_popular_music_genres
http://www.psychpage.com/learning/library/assess/feelings.html
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Positive Feelings

Happy Love Calm Peaceful

Energetic Positive Optimistic

Negative Feelings

Sad Hate Aggressive Angry

Depressing Pathetic Tragic

Table 5.2: Feelings induced by music

Image Themes

Architecture Aviation Cloudscape Conservation

Cosplay Digiscoping Fashion Fine art

Fire Food Glamour Landscape

Miksang Nature Old-time Panorama

Portrait Sports Still-life Street

Underwater Vernacular War Wedding

Wildlife

Table 5.3: List of query image themes

songs. Having a total of 470 songs make a moderate collection size, while all

major music genres and feelings are covered. A sample of the song collection is

listed in Appendix A.1.

5.1.2 Query Collection

In the addressed soundtrack recommendation scenario, a query is represented

by a set of images. We create a list of 25 queries, each containing 5 images,

such that all images of a query follow a specific image theme. The initial list

of image themes is retrieved from a list of photography forms, specified on

Wikipedia3.For each of these themes, we retrieve images that are annotated

with the theme, using the search functionality of Google’s Picasa [PIC] photo

sharing portal. We manually inspect the returned results and use only themes

that provided at least 5 coherent and meaningful images. This filtering step

results in the final list of 25 image themes shown in Table 5.3. As we can see,

image themes vary from photos take underwater, over photos of people playing

sports, to photos of special cloud forms. For each theme, a query is formed

by manually selecting 5 publicly available images from Picasa, again keeping in

mind the coherence and the meaningfulness of the image theme. Appendix A.2

displays all images from the query collection.

3http://en.wikipedia.org/wiki/Photography

http://en.wikipedia.org/wiki/Photography
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5.2 Relevance Measure

Estimating the effectiveness of a retrieval engine is based on measuring the

relevance of the returned results with respect to the given query. In traditional

text retrieval, relevance is represented by absolute judgments that usually make

use of a binary variable indicating that a document is either relevant or not

relevant to a given query. Järvelin and Kekäläinen [JK00] proposed a larger

grading scale that allows for a finer separation of relevant documents. We adopt

such a fine-grained grading scale to assess the suitability of songs for series of

images, extending it to the extreme such that for each document (song) there is

one level of relevance. Note that such fine-grained scales emphasize the point of

possible disagreement between human assessors, when determining how relevant

a document is [Voo98].

In the task of soundtrack recommendation, there is no such a notion of

fulfilling a particular information need expressed by the query. This renders

the assessment less strict in the sense that in general all songs can be used as

background music. That is, we do not explicitly have the notion of a document

(song) being not relevant. Further, user perceived relevance of a song with

respect to images highly depends on knowledge of other available songs—it is

a very relative assessment task: we can not simply present users small subsets

of songs and let them perform the assessment. A consistent full ranking of

all available songs, for each query, is required. Thus, we define the relevance

R(s|S, q) of the song s, given a song collection S, and a query q ∈ Q, as the rank

of that document in the perfect ranking. With a “perfect ranking” we denote

the full ranking that would be created by the “expert” users. For a result list

computed by a specific system for a given query, we can easily aggregate the

relevance scores of the individual documents to obtain a final (non-zero) score.

A similar measurement is proposed for the task of similarity search in sheet

music [TdHdN+05], with expert users providing a full ranking of the documents.

In contrast to our setup, there, it can indeed be decided if two music sheets are

completely not related (relevant to each other), which enables the use of pooling

to obtain a filtered and shorter, list of documents for which the full ranking is

done.

5.2.1 Pairwise Preference Judgments

What remains is the problem of obtaining the full relevance ranking, for each

benchmark query. Doing this in an exhaustive way is prohibitively expensive,

though. Instead, the idea is to let users evaluate a large number of song pairs

for relevance, for each benchmark query.

We ask human judges to evaluate a large number of song pairs, answer-

ing which one of the two presented songs fits better for a given query. This

method of assessing is known as preference judgments. It is a convenient way to

obtain relevance assessments, compared to obtaining absolute relevance judg-

ments [CBCD08]. Ideally, the number of pairs judged for one query is large

enough to reconstruct the whole ranking—which is in practice not achievable.
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Thus, we collect judgments for only a subset of song pairs.

In addition to selecting the best out of two proposed songs, each judge is

asked to assess how much better the selected song fits to the query compared to

the other song, on the scale from 1 to 5. A rating of 1 means “almost the same”

while 5 means “large difference”. The result of one human assessment is given

in the following form r = (q, s1, s2, p, d), where q is the image theme query, s1
and s2 are songs, p is the preferred song and d is the difference between the

songs. Optionally, assessors can provide a textual description (justification) of

their decision.

The task at hand is, however, often influenced by the individual taste of the

human judges—for some queries more than for others. To capture this factor,

we ask multiple assessors to judge the same song pair and use only the ones that

show a high level of agreement. This way, the benchmark can serve to evaluate

generic soundtrack recommendation approaches.

To isolate the subjectivity of an individual assessor, based on the agreement

level, we can check if the selection performed by the judges is statistically signifi-

cant. In case the performed selection is statistically significant we know that the

agreement level between judges is high. In case selection is not statistically sig-

nificant but there is still one song selected more than the other, we can take this

pair into consideration, keeping in mind that this was not an easy task—even

for human judges.

To check the statistical significance of the agreement between the judges, we

formulate the following null and alternative hypotheses:

H0: assessors are selecting songs randomly, i.e., do not consider

the given query images

H1: assessors are selecting songs based on the given query images

If the null hypothesis is true, each song (of a song pair) is independently

selected with probability p = 0.5. In that case, the songs are selected indepen-

dently from the given query and due to the independent trials we can calculate

the probability of the final outcome using a binomial distribution. Applying a

binomial test [How09] gives us the probability of the outcome, given that the null

hypothesis is true. In case the probability of the assessment outcome is smaller

than the required significance level (α = 0.05) we reject the null hypothesis and

say that the agreement level for this question is statistically significant.

We create song pairs for human assessment by first creating song pairs in

four different categories: genre, positive, negative, and positive-negative. The

pairs in the genre category are all song pairs of the songs gathered based on the

genre information. Similarly, the positive category contains all song pairs that

have a positive feeling and negative category contains all song pairs with songs

having a negative feeling. The positive-negative category consists of song pairs

where one song is selected from the positive-feeling group and the second song

is selected from the negative-feeling group. The first and the second song are

shuffled before presenting them to the user to avoid an ordering bias.
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Creating questions posed to human assessor is done by creating all possible

triples where one element is an image-theme query and the other two are songs

coming from song pairs of one of the four categories created in the previous step.

All question triples are stored and the next question to be assessed by judges is

selected randomly among all non-assessed questions.

5.2.2 System Effectiveness Measures

As each question, i.e., song pair for a certain query, is answered by 6 assessors,

as explained in Section 5.3, we need to reconcile preference judgments made by

different assessors. To achieve this, we compute the majority vote for each of

the different agreement levels (four out of six (4/6), 5/6, and 6/6). Note that for

the agreement level 3/6 there is no majority vote, so we leave this level out. For

a certain agreement level, we then obtain a set of relevance judgments R with

each r ∈ R of the form r = (q, s1, s2, p, d), where q is an image query, s1 and

s2 are songs, p is the indication of the song preferred by the majority of users,

and d is the difference between songs averaged over multiple users assessing the

same pair.

Then, the quality (goodness) G of a ranking can be computed using prefer-

ence precision [CB08] defined as:

G =
# correctly ordered pairs

# evaluated pairs
(5.1)

where the pair of songs is correctly ordered if the song preferred by the most

assessors is located higher in the ranking compared to the other song, and

the evaluated pairs are all song pairs that are assessed by the judges and are

contained in the top-K ranking. A pair of songs is contained in the final top-K

ranking if at least one of the songs appear in the top-K results. If only one

songs is in the top-K results the rank of the second song is considered to be

K + 1. Intuitively, this measure rewards a system if its ranking agrees with a

user’s perceived preference, resulting in a higher value with a higher agreement

between the two.

Although G is normalized to the [0, 1] interval, due to possible inconsistencies

in the transitivity caused by pairwise comparisons, this interval might shrink.

An example of the inconsistency can be seen in three pairwise comparisons

between three elements, {a, b, c}, where a is preferred to b, b preferred to c, but

c is preferred to a. We see that it is impossible to create a ranking satisfying all

comparisons so the upper bound is lower than 1, and the lower bound is higher

than 0. Of course, this kind of situations arise because pairwise comparisons are

created independently from each other and potentially by other assessors. Still,

the actual lower and upper bound can easily be computed once all preference

judgments are collected.

Weighted Effectiveness Measure

The specified difference between the songs, denoted as d, can be considered as

the strength of preference and, hence, can be taken into account when assessing



64 5. Effectiveness Benchmark

the quality of the system. As multiple judges are evaluating the same pair of

songs for a given query, the final value of the difference between songs is taken

as the average of the single evaluations.

The obvious way to extend the preference precision measure using the pref-

erence strength is as follows:

Gw =

∑
correctly ordered pairs ps∑

evaluated pairs ps
(5.2)

where ps is the preference strength, having higher value if the preference is

stronger. For instance, the preference is strong toward one song if the difference

between the two songs is large. Thus, we can use this difference between songs

directly as preference strength. Clearly, this measure gives more weight to the

preference judgments which were obvious for humans, and dampens the effect

of judgments for which even the assessors were not sure about their preference.

5.3 The Benchmark

Processing large amounts of human-involved tasks can be achieved using Ama-

zon’s Mechanical Turk [MTU]. This service represents a mediator between the

requester—a person or organization posting tasks to be done—and a number of

workers—people willing to perform these tasks, while getting paid for it.

There are studies [ABY11, AST10, SPCK10] concerning the usage of the

Mechanical Turk service to collect relevance assessments. All of these studies

face the same problem: determining whether the worker really prefers a selected

document (song), or if the selection is done randomly to simply gain money,

without spending sufficient effort on the given assessment task.

To remove assessments of such “cheaters”, a certain set of question with

known answers is inserted in the evaluation task. These questions are referred

to as “trap questions”, “honey pots” or “gold standard” questions. Creating trap

questions for text retrieval, in case of preference judgments, is an easy task: a

pair of one relevant and one obviously irrelevant document are presented to the

evaluator. Cheating evaluator are then identified by the percentage of times the

obviously irrelevant document is selected as the preferred answer.

As our task is more prone to subjectivity, we collect judgments in two phases.

In the first phase, we build a set of “gold standard” questions by collecting judg-

ments from students on our campus, in the controlled environment of our offices.

These gold standard questions are used as trap questions for the second phase

of acquiring assessments, using Mechanical Turk workers. The main hypothesis

behind this approach is that evaluators (workers) employed in our offices would

have less incentives to cheat as they are payed by hour and not by number of

performed assessments.

Each question (song pair and query image theme) is answered by six asses-

sors. We chose six assessors, as the significance level of α = 0.05 is achieved in

case of all six assessors agree on the preferred song. Only the questions with an

agreement level of “six out of six” are used to create trap questions for the next
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phase—considering only the preferred song, not the level of difference d. The

probability of achieving this level of agreement randomly is quite low, with a

p-value of 0.03125, which makes it safe to use these questions as trap questions.

Note that we can chose to preform the quality assessment using only the

second phase assessments obtained from Mechanical Turk to indisputably avoid

potential student population bias.

Collecting through Mechanical Turk

Collecting a larger amount of assessments is achieved in the second phase with

assessments being made by Mechanical Turk workers. To obtain a robust bench-

mark, again, each question is answered by six workers. This enables an evalua-

tion based on different agreement levels.

Cheating workers are identified as the ones that have performed a large num-

ber of questions—expecting high money reward—while choosing answers at ran-

dom. Due to the binary nature of the questions, cheaters answer approximately

50% of all trap questions correctly. We used a threshold of at least 100 answered

questions and less than 65% correct trap questions to reject a work of a cheating

worker. We used one trap question per five regular questions.

Because workers prefer small tasks [ABY11], we created for each question one

HIT (Human Intelligent Task). We set the reward to $0.02 for each performed

task, as the reward per task has only a small impact on the quality but rather

influences a quantity of the performed tasks [MW09].

5.3.1 Benchmark Statistics

To obtain trap questions for the Mechanical Turk workers, we collected assess-

ments from 30 students. Students were able to choose whether they want to

participate in the study for one hour or two hours, while being payed on an

hourly basis. 29 out of 30 students participated in the study for two hours,

resulting in the total of 665 questions, each question assessed by 6 students.
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Figure 5.1: Distribution of assessments per student

Figure 5.1 shows the number of assessments per student, sorted in descending

order. We observe a high variance in assessment performance, even if we exclude

the student that assessed songs for only one hour. Using Pearson’s correlation
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coefficient, we investigate if this variance comes from the open ended question,

used to elaborate their decision. Pearson’s correlation coefficient between total

text length (word count) and a number of assessments is only −0.0875, indi-

cating that typing the explanation answer is not the reason for the variance in

individual assessment performance. If we characterize the agreement with other

assessors as a quality estimate of the assessor, we can also check if assessors that

produced a large number of assessments have a drop in quality, i.e., have low

agreement with others. Pearson’s correlation coefficient between assessments

made and agreement with other assessors is only 0.04141 indicating that the

quality of the work is also independent of the assessors performance.

Agreement level

3/6 4/6 5/6 6/6

percentage 12.33 32.18 26.17 29.32

average difference 2.75 2.90 3.11 3.65

Table 5.4: Agreement levels for student assessors

Table 5.4 shows the percentages of questions with different agreement levels

for student evaluations. Agreement level “x/y” means that x out of y assessors

agreed on one song. The observed values in Table 5.4 suggest that we can reject

the null hypothesis that student answers were done by randomly choosing songs,

supported by the Chi-square test χ2 = 1586.86, df = 3, p < 0.0001. This level of

significance shows that such a high level of agreement between assessors is almost

impossible to achieve by pure chance, but that the task at hand is reasonable and

meaningful for the assessors. As we can see, 29.32% (i.e., 195) of all questions

have agreement level of 6/6, making them applicable as trap questions for the

second phase. The global agreement statistics shows that student assessors agree

with each other in 66.94% of all cases. This is lower than the agreement level

for the traditional text retrieval task (75.85%) [CBCD08], which also shows that

the task of soundtrack recommendation is more subjective.

The averaged difference between songs is also reported for student evalua-

tions in Table 5.4. We see that the average difference is smallest, 2.75, for the

questions with low agreement level and gradually increases to 3.65 for the ques-

tions with the six out of six agreement level. Pearson’s correlation coefficient

between agreement level and the average difference between songs is 0.3556,

with a randomization test (100.000 permutations) showing that this result is

not achievable randomly, p < 0.0001.

While assessing the songs, assessors were able to provide textual description

of their decision. We analyzed the collected descriptions to see which concepts

assessors use for music and images when they are being matched together. We

manually extracted all concepts from the descriptions collected from students,

shown in Figure 5.2 where the size of a word represent its frequency in the text.

In the second phase we used Amazon’s Mechanical Turk to collect a larger
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Figure 5.2: Concepts used to describe matching between images and music

number of assessments. Our aim was to collect enough assessments such that

each song for each image query had a chance of being judged once. This required

us to have more than 5875 questions evaluated, each question assessed by six

assessors. In the end, we collected assessments evaluating 5990 questions in

total.

Overall, we had 269 assessors participating in the study. On average, each

of them performed 138.69 assessments. As there was no time limit for each

assessor, the skew in the number of performed assessments much larger then for

the students in phase one, ranging from one evaluation up to 3845 evaluations

per assessor. Gold standard questions enabled us to detect 15 cheating workers

and to reject their work, being replaced by other workers’ assessments.

Agreement level

3/6 4/6 5/6 6/6

percentage 17.15 33.89 28.60 20.37

avgerage difference 3.09 3.17 3.37 3.68

Table 5.5: Agreement levels for Mechanical Turk workers

The percentage of questions with respect to agreement levels for Mechanical

Turk workers is shown in Table 5.5. As we can see, the percentages of questions

with high agreement levels are lower than for student assessments. Still, we can

safely reject the hypothesis of randomly provided answers, with χ2 = 6605.18,

df = 3, p < 0.0001. The reduction in the agreement level might also be an effect

of the more diverse population of the workers compared to the population of

the students.

We see that the percentage of questions with agreement level of “5/6” and

“6/6” is close to 50%, which renders almost half of the evaluated questions usable

with high confidence. Overall, the agreement between Mechanical Turk workers

was achieved in 62.10% of all cases, slightly less than the overall agreement

of students, which corresponds to the drop in the number of high-agreement
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questions.

Again we see that there is a correlation between average difference between

the songs and the agreement level. Pearson’s correlation coefficient in this case

is 0.2928, with randomization test (100.000 permutations) showing again that

the probability of randomly achieving this value is p < 0.0001.

Query Type Statistics

After merging evaluations performed by students and by the Mechanical Turk

workers we calculate the percentage of questions at different levels of of agree-

ment for each of the question types, shown in Table 5.6. The average difference

between songs is also reported for each agreement level and each question type.

As we can see, the largest percentage of high agreement questions is achieved

for questions where both songs have a negative feeling. Inspecting the assess-

ments for these questions revealed that melancholic songs with slow rhythm

were usually preferred to fast, loud, and aggressive songs. It is interesting to

see that questions formed from different music genres had the least amount of

high agreement. This might indicate that songs from different genres might not

always be largely different, or that assessments were biased towards preferred

music genre, which could be a cause of disagreements.

Agreement level

3/6 4/6 5/6 6/6

Genres
percentage 18.24 37.51 28.30 15.95

avg. difference 3.16 3.23 3.37 3.65

Positive
percentage 17.28 35.57 29.27 17.88

avg. difference 2.98 3.06 3.24 3.56

Negative
percentage 13.89 30.01 28.84 27.26

avg. difference 3.00 3.10 3.37 3.67

Pos.-Neg.
percentage 17.35 31.85 26.95 23.85

avg. difference 3.10 3.17 3.43 3.79

Table 5.6: Statistics by question type

The percentage of questions with five out of six and six out of six agreement

levels together with the average difference between songs is shown for each image

theme in Table 5.7: The average difference between songs does not change a lot

over different image themes, varying from 3.19 for architecture up to 3.41 for

fashion and wedding themes. On the other hand, the number of high-agreement

questions varies substantially, ranging from 35.7% for the war theme to 60.9%

for the fine art theme. As expected, emotionally intense themes such as the war,

fire, and aviation themes have a substantially lower level of agreement than the

“calm” themes such as fine art, portrait, and nature.
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Theme Agr. Diff.

architecture 41.2 3.19

aviation 41.4 3.26

cloudscape 49.8 3.23

conservation 44.9 3.28

cosplay 42.1 3.26

digiscoping 55.5 3.34

fashion 45.0 3.41

fineart 60.9 3.29

Theme Agr. Diff.

fire 38.1 3.30

food 53.9 3.33

glamour 47.4 3.27

landscape 51.7 3.24

miksang 51.8 3.32

nature 58.8 3.34

old-time 54.1 3.27

panoram 51.6 3.23

portrait 60.1 3.40

Theme Agr. Diff.

sports 42.1 3.29

still life 48.2 3.26

street 40.0 3.29

underwater 58.8 3.39

vernacular 52.1 3.26

war 35.7 3.36

wedding 58.6 3.41

wildlife 53.6 3.30

Table 5.7: Statistics by image theme

5.4 Approaches Evaluation

Using the collected assessments we evaluate our approach Picasso (cf., Chap-

ter 4) with the emotion-based approach in [LS07] (cf., Section 3.1.1) used as a

baseline. We execute both systems for each of the 25 queries from the benchmark

requesting the top-20 songs as a recommendation result. Preference precision

and weighted preference precision (cf., Section 5.2.2) are calculated and reported

for both systems.

We extend the Picasso index from the feasibility study (cf., Section 4.3)

by extracting information from additional 23 movies. This results in the final

index extracted from the total of 50 publicly available movies. All the movies

originate from Hollywood production but cover a wide variety in genres and

styles. In total, the final index contains 10, 454 snapshots and the same number

of corresponding soundtrack parts.

For the emotion-based approach to operate we need two training datasets,

that is, a set of images and a set of songs with labeled emotions. As part of the

songs in the benchmark were acquired based on their emotion labels, we already

have a training dataset for the songs.

As a training dataset for images we use the International Affective Pic-

ture System [LBC08] dataset. It contains 1196 images, each placed on the

three dimensional space of emotions it evokes. The three dimensional space

consists of two primary dimensions, namely valence—ranging from pleasant to

unpleasant—and arousal—ranging from calm to excited. The third, less strongly

related dimension, represents a dominance expressed in the image.

To create a match between music and images, we need a unified representa-

tion of emotions. This is achieved by mapping emotions, used as music labels,

into the three dimensional space of emotions, used as image labels. Each image

is labeled by one emotion, where the emotion label corresponds to the area of

the space indicated by the two primary dimensions valence and arousal. The

used mapping is shown in Figure 5.3.
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Figure 5.3: Mapping emotion labels to two dimensional emotion space

5.4.1 Results

The preference precision results for both systems are shown in Table 5.8. The

first column contains the preference precision measures when the systems are

evaluated using only the questions with six out of six level of agreement. Further,

adding questions with five out of six agreement level to the evaluation results in

precision is shown in the second column, and finally, the evaluation with four

out of six agreement level question added is shown in the third column.

Fisher’s exact test is used to examine the probability of achieving these dif-

ferences in precisions in case the results come from the same system (hypotheti-

cally). The contingency tables for the Fisher’s exact test are created by counting

the number of correctly and incorrectly ordered pairs for both approaches.

Agreement levels

System 6/6 +5/6 +4/6

Picasso 0.782 0.690 0.614

Emotion-based 0.658 0.595 0.559

Fisher’s exact test (two-tailed) 0.0530 0.0249 0.0938

Table 5.8: Preference precision results

We see that both systems perform best when the questions used for evalua-

tion are the ones for which assessors agreed on the answers. The performance of

both systems drops when questions, for which uses did not easily agree on the

answers, are added to the evaluation. The achieved precision numbers indicate

that Picasso performs better with regard to questions at all levels of agreement.

Fisher’s exact tests shows that it is not likely that this difference in precision is
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achieved by chance. Although the systems achieve precision up to 0.782 (Picasso

for six out of six agreement level) there is still a large space for improvements

in both systems.

We calculate also the weighted preference precision that takes into account

the difference between songs specified by the assessors. As the difference between

songs is larger when one song fits a lot better to the query more emphasis

on these song pairs is put, rewarding/penalizing a system for correct/incorrect

ordering of these pairs.

Agreement levels

System 6/6 +5/6 +4/6

Picasso 0.818 0.728 0.645

Emotion-based 0.667 0.607 0.570

Student’s t-test (two-tailed) 0.0148 0.0042 0.0197

Table 5.9: Weighted preference precision results

The weighted preference precision of both systems is shown in Table 5.9. As

we can see, the weighted precision for both systems is higher than the preference

precision. This shows that incorrectly ordered song pairs were the ones with

small difference between the songs. Again, the best precision is achieved for

high agreeing questions as the number of correctly ordered song pairs is higher.

We also see that Picasso performs better than the emotion-based approach. By

calculating Student’s t-test, also shown in Table 5.9, with positive differences for

correctly ordered pairs and negative for incorrectly ordered ones, we can reject

the hypothesis that the means for the two systems are the same.

Picasso Robustness

We investigate the robustness of the proposed Picasso approach with respect to

the size of the training dataset. To achieve this, we take the training dataset

extracted from 50 movies and remove a random sample of n movies to form

a new, reduced, dataset. The recommendation is then performed using the

reduced dataset and the preference precision is calculated. This procedure is

repeated 50 times and the average value of the preference precision is taken. We

do this repeatedly for n ∈ {10, 20, 30, 40}, resulting in dataset sizes of 10, 20,

30, and 40 movies processed.

The resulting average preference precision for each dataset size is shown

in Figure 5.4. The preference precision is again calculated depending on the

agreement levels of the evaluated song pairs. As before, the precision in all

cases is the highest when the evaluation is done with high agreeing questions

and the lowest when all the questions are included in the evaluation.

A very important observation we can make from Figure 5.4 is that the sys-

tem performs better with the growth of the dataset, i.e., the number of movies

indexed. Moreover, this correlation between the number of movies indexed and
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Figure 5.4: Picasso preference precision for different dataset sizes

the system’s performance happens for evaluations at all levels of agreement.

When evaluated with six out of six agreement level, the preference precision

goes from 0.69 for ten indexed movies up to 0.73 for forty indexed movies.

This indicates, as expected, that further adding of movies into the collection

would produce even better soundtrack recommendation results. Of course, this

growth in the system’s performance by pure increase in the dataset size would

saturate at a certain level, requiring further research in the direction of movie

selection/filtering to create an appropriate dataset for the soundtrack recom-

mendation task.



Chapter 6

Processing Top-K Queries

with Set-Defined Selections

So far we have been mainly concerned with the quality of soundtrack recom-

mendation task. In this and the following chapter we address efficiency issues

that arise while solving the soundtrack recommendation task. More concretely,

in this chapter we look at top-K queries with set-defined selections, created

when the top-K songs are selected such that they are contained in a given music

collection. The content of this chapter is based on our previous publication

in [SM12a]. Although the addressed efficiency issues arise from the soundtrack

recommendation task the core problems are generic and our solutions apply to

a multitude of settings.

As we saw in Chapter 4, the recommendation process in Picasso requires

the selection of the top-K songs ranked by their similarity to a specific movie

soundtrack. Rankings are essential in many applications. Not only do they

provide an ordered view on the data, according to some criteria, but they also

allows users to focus on a few important results instead of inspecting hundreds or

thousands of result items. Research on top-K query processing investigates how

only the top portion of a hypothetically full ranking can be computed without

full execution of the query—accessing only data items that are elementary for

the final result (cf., [IBS08] for an overview).

We consider set-defined selections, where the items of interest are—by what-

ever means—identified upfront and represented in the query as a set of item ids.

In addition, the query specifies the ranking attribute of interest and the result

set size referred to as parameter K. Figure 6.1 gives an example: Attr4 is the

attribute used to rank; the set {2, 4} restricts the result to id=2 or id=4. In

case of a top-1 query with descending ordering, the result would be the tuple

with id=2, which has a score of 21.6.

This problem setup is very generic and occurs in many different scenarios:

Set defined selections occur frequently between independent Web services that

offer different views on the same data items—like in case of Linked Open Data

73
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(LOD) portals, where different datasets capture different aspects of (the same)

entities. For instance, US-born computer scientists are identified based on a

knowledge base [ABK+07] and subsequently ranked based on the number of

publications obtained from DBLP [DBL].

Id Attr1 Attr2 Attr3 Attr4 Attr5 Attr6

1 34.1 15.2 13.7 34.1 7.2 23.1

2 38.1 32.8 22.6 21.6 15.2 4.5

3 11.5 11.8 27.0 39.1 24.0 3.5

4 8.5 24.0 5.2 18.2 14.3 24.1

5 21.3 3.4 9.6 22.4 10.2 11.5

Figure 6.1: Top-K query with set-defined selection.

In our setting, a large index contains information about one million songs,

where each song is described by a numeric attribute of how good it fits to a

specific soundtrack part, i.e., to a specific snapshot taken from the movie. In

this case each taken snapshot corresponds to one attribute in Figure 6.1. A

query consists of a query image—identifying the attribute—and the selection

set—selecting a subset of songs, which in this case is simply a list of songs on a

user’s smartphone. Queries are uploaded to the system through an app installed

on the user’s smartphone, like the one described in Chapter 8. The index is

120GB big and contains information for 50 sampled movies and one million

known songs—to provide enough diversity in both audio and visual dimensions.

At query time, though, only the songs the user possesses are relevant for the

top-K results.

The size of the selection set drastically influences the design of an ideal

index: When the selection set contains a small number of ids, the query is

efficiently answered using an index on the id attribute. In case the selection set

contains most of the ids, the best performance is reached by reading the ids from

score-sorted lists. To be able to choose the appropriate index at query time, we

develop cost models for both data organizations. Still, as we will see, the latency

around the break even point (the point of same performance for both indices) is

the main cause of a sub-optimal performance. We show how this latency can

be decreased by partitioning the data based on query logs.

Formal Problem Definition

Given a relation R over the attributes {id, A1, ..., AN}, in which id is the unique

identifier of an item (e.g., real world entity, document, video, image). The

attributes Ai describe properties of an item and are numeric (integer or floating

point numbers).

Definition A top-K selection query is defined by the triple (K,Ai, S), that is,

the size of the result ranking K, the attribute used for ranking Ai, and a set
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S ⊆ dom(id). The task is to efficiently compute those ids that have the K

largest values for attribute Ai among all ids that appear in R and the query

specific set S. The result is ordered by attribute Ai (without loss of generality

in descending order).

That means, a top-K query with set-defined selection can be expressed as

a traditional top-K query over the subset of relation R that is given by the

selection σid∈SR. A SQL-like notation for this kind of query would look like:

SELECT id, Ai FROM R

WHERE id IN S

ORDER BY Ai LIMIT K

where Ai is any of the numerical attributes of R. In this work, the case of a

query specifying exactly one numerical attribute is considered.

In the following, we investigate the trade-offs between id- and score-ordered

indices and present a cost model that allows to pick the right index at query time,

Section 6.1; In Section 6.2 we propose means to benefit from a partitioned score-

ordered index and show how to create such partitions using query logs. Where

approximate answers are acceptable, our algorithm can enjoy an even larger

gain in latency with provided estimates for the result quality, Section 6.3. We

report on the results of a performance evaluation using real-world and synthetic

data, Section 6.4.

6.1 Indices and Cost Model

Considering a relation R with attributes {id, A1, · · · , AN}, for each pair of at-

tributes (id, Ai) two basic indices can be created:

• an index on the id attribute (called id-ordered index)

• an index on the numerical attribute Ai (called score-ordered index)

The id attribute are assumed to be densely populated in sequential order,

such that the position of a score on the disk can be calculated directly from

the id value in id-ordered index. Hence, only scores need to be stored—not the

ids themselves. If the ids are not sequential, existing techniques based on B+

trees (cf., e.g., [GMUW08]) can be used for indexing. Because of the specific

nature of the queries, we adapt a column-store data layout where the relation R

is stored on disk in a per-attribute fashion (not row-by-row).

Both index organizations come with advantages and disadvantages: The id-

ordered index is ideal if the size of the query set is rather small, resulting in a

small number of index lookups. In contrast, the scored-ordered index is ideal

if the size of the query set is large, such that K items out of the query set are

found very early when scanning the sorted list on disk.
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Figure 6.2: Characteristic performances of id-ordered index, score-ordered in-

dex, and the ideal combined index.

To benefit from both sweet spots at the same time, a cost model is required

to decide at query time which index to use. We optimize for low query response

time, which is modeled as t = c1 + c2 · Db, where Db is the size of the data

read from disk and c1 and c2 are constants which minimize the squared error on

real-world measurements. The intuition is that c2 represents the data transfer

time, while c1 approximates the time needed for a random access to disk. The

read data size Db is represented in number of disk blocks, as the access to disk

is naturally done in a block-based manner.

To keep the analysis tractable, we ignore influences of distributions of ids

and scores, and, hence, treat the size of the selection set and the value of K

(specified in the query) as the main ingredients for the amount of data read

from disk.

For the id-ordered index, Equation 6.1 is used to estimate the number of

disk blocks read, Db. N represents the total number of tuples in the index, b

is the number of tuples stored in a single disk block, and Pb is the probability

that a single block is going to be read.

Db =
N

b
Pb; Pb = 1− Pb; Pb =

(
N−b
|q|
)(

N
|q|
)

⇒ Db =
N

b

(
1−

(
N−b
|q|
)(

N
|q|
) ) (6.1)

The probability Pb is the probability of reading one or more ids from a single

block and is inverse to the probability Pb that a block is not going to be read.

This probability is approximated by all possible combinations of ids from all

blocks without the ids from one block, N − b, falling into a query of size |q|,
divided by all possible combination of all ids, N , falling into query of size |q|.
This probability approximation assumes independence between ids when they

are chosen into a query. This, however, does not affect the precision of the

estimate as tuple ids (determining the disk position) are assigned independently

of their co-occurrences in the queries (no id reassignment).
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For the score-ordered index, Equation 6.2 is used to estimate the number

of disk blocks read (Db). Here, b is the number of tuples in one disk block, K is

the number of requested results, and P is the portion of the index to be read.

The probability that an id just read from disk is contained in the selection set is

estimated as |q|N , where |q| is the number of ids in the selection set and N is the

total number of ids in the index. The expectation of a geometric distribution

with this hit probability, i.e., N
|q| , gives us the portion of the index needed to be

read to find one id that is contained in the selection set. As K ids are needed

for the final result, the portion size for one id is then multiplied by K. The total

number of blocks is given as the ceiling of the ratio between the index portion

and the bock size.

Db =

⌈
1

b
× P ×K

⌉
; P =

N

|q|
; ⇒ Db =

⌈
N

b× |q|
×K

⌉
(6.2)

Once the query is submitted to the system, the execution-time estimates are

calculated and the index with the smaller execution time is used to answer the

query. This procedure is totally hidden from the application layer: it appears as

one index that combines the best of two index organizations. We call this index

combined index. With an ideal cost model at hand, the combined index has

a performance as illustrated in Figure 6.2.

6.2 Partitioned Index Organization

The above model provides a solid mechanism to identify the best index to use.

In fact, experiments show that it is (almost) perfect. On the other hand, the

characteristics of the underlying indices lead to a degenerated performance of

the combined index around the break-even point (cf., Figure 6.2).

The above cost model reveals a way to improve runtime beyond the point

of simply choosing the right index: The index size in terms of number of tu-

ples stored, has a strong influence on the query response time, while the query

features themselves can not be influenced.

Thus, the main idea of a partitioned index is to organize the original index

into multiple chunks, such that a large fraction of queries is answered by reading

only from one of them. This has a high potential: partitioning the score-ordered

index into m parts lowers the query answering time by a factor of m (the number

of blocks read from the disk would be m times smaller).

The large score-ordered index is chopped up in a set of non-overlapping

partitions. Each partition is organized as a score-ordered index. The decision

which tuples to put together in a partition is done using a graph-based clustering

approach.

To fully harness such a partitioning, we check at query time whether the

selection set is

i) entirely contained in one partition,
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ii) mostly contained in one partition,

iii) distributed between many partitions.

Answering a query in the first case is done using only the selected partition,

while the second case requires a lookup of missing tuples using the id-ordered

index. In the third case the query is answered using the combined index.

To determine if the partitioned index should be used for query answering,

we employ the cost models introduced in Section 6.1. If one partition captures

the entire selection set, only the model for the partitioned index is used, which

essentially is the model for a score-ordered index, where the index size is adjusted

accordingly.

In case not all of the ids from the selection set are found in one partition, the

intersection size is used to estimate the query response time of the partitioned

index. The number of the remaining ids (which are not covered by the partition)

is used to estimate the lookup cost of the scores in the id-ordered index. The

sum of the two estimates is used as a final response time estimate in case of this

mixed access to the partitioned and the id-ordered index.

6.2.1 The Partition Selection Phase

To determine the partition which contains the largest subset of the selection set,

data structures for computing set intersections are required. A bit-set structure

is created for each partition, where each id is represented by one bit. The bit

indicates whether or not the id is contained in the partition. This representation

is exact (no false positives, no false negatives).

First, we consider the case when these bit set structures are kept in main

memory, and then we focus on the case when they are stored on the disk with

compact sketches used to decide which partition to access on disk.

Bits Sets in Main Memory

Bit sets in main memory allow a fast calculation of the intersection between the

query selection set and each of the partitions in the index. Only the partition

with the largest intersection is used, in case the time estimate using this partition

is less than the time estimate for the combined index. Otherwise the query is

answered using the combined index. This cost assessment is easy to achieve as

the available bit sets give precise (exact) numbers of the contained and missing

ids in a partition.

Algorithm 6.1 shows query processing procedure when the bit sets are kept

in main memory. First, the approximate query answering time is calculated

for the id- and score-ordered indexes (cf., lines 1 and 2). The best matching

partition is the partition that has the largest intersection with a selection set

specified in the query (cf., line 3). The ids that are in query and are not found

in the best matching partition, named rest, are computed and later used to

retrieve their missing scores in the id-ordered index (cf., line 5). The size of

the intersection is used to calculate the approximate query answering time for
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Algorithm 6.1 Query processing with bit sets in main memory

1 idTime = models.calcId(selectionSet)

2 scoreTime = models.calcScore(selectionSet)

3 Partitiont p = partitions.getBestMatch(selectionSet)

4 BitSet intersection = p.getBitSet() ∩ selectionSet

5 BitSet rest = selectionSet - intersection

6 partTime = models.calcPart(intersection)+

7 models.calcId(rest)

8 if (idTime.isMin(scoreTime, partTime):

9 return idIndex.query(q)

10 if (scoreTime.isMin(idTime, partTime):

11 return scoreIndex.query(q)

12 if (partTime.isMin(idTime, scoreTime):

13 topK results = p.query(intersection)

14 results.merge(idIndex.read(rest))

15 return results;

the partition index, which is combined with an estimate of the time needed to

look up the scores not found in the partition (cf., lines 6 and 7). If one of the

estimated response times for the original id- or score-ordered indices is smaller

than the estimate for the partitioned index, the corresponding index is used for

query answering (cf., lines 8 to 11). In case the estimated response time for the

partitioned index is the most promising, the best matching partition is queried

to retrieve the top-K result (cf., line 13). The scores of the ids that were not

found in the best matching partition are retrieved from the id-ordered index

and merged with previously retrieved results (cf., line 14).

Bits Sets on Disk

If the bit sets do not fit in main memory, reading them from disk would in most

cases consume more time than answering a query using the combined index.

Our solution to this problem keeps only compact sketches [FM85, BCFM98,

BYJK+02] of partitions in main memory and the full sketch information on

disk in the header of the corresponding partition. At query time, these sketches

are used to determine the most promising partition to access by estimating the

intersection size between partitions and the query selection sets. The accuracy

of this estimation can be tuned using sketch specific parameters. In this work,

KMV sketches (k-Minimum Values) [BYJK+02] are used.

The structure for the partitioned index with sketches is shown in Figure 6.3:

The bit set structure for a given partition is located on the disk at the beginning

of the partition itself. This is done such that once the bit set is read—and it

tells that the partition is useful—the reading of the actual partition content can
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continue without an additional disk seek.

memory

disk

Partition 1: 0.4826

Partition 2: 0.4128 0.3259

set sketch

Partition 1:

. . . 01001 4 18752 1 10234 . . .

bit set begin

Partition 2:

. . . 10110 2 14456 3 13238 5 9584 . . .

bit set begin

Figure 6.3: Partitioned index structure with sketches

Having only rough sketches of the partition contents in main memory re-

quires changes to the querying algorithm. Exchanging lines 3 and 4 of Algo-

rithm 6.1 with the lines 3 to 8 of Algorithm 6.2 gives us the algorithm for query

answering with bit sets stored on disk. First, the most promising partition is

identified using sketches (cf., lines 3 and 4). As sketches deliver only approx-

imate results, there are no guarantees that the correct (best) partition will be

identified. In case of a high risk to pick a wrong partition, discussed in the

following paragraph, we fall back to the existing hybrid index organization (cf.,

lines 5 and 6). Otherwise, if the best matching partition is identified, we read

the bit set from the beginning of the partition (cf., line 7), and after calculating

the intersection with a selection set the steps from Algorithm 6.1 are executed.

Algorithm 6.2 Query processing with bit sets on disk

...

3 KMVSketch querySketch = selectionSet.sketch()

4 Partition match = partitions.findMatch(querySketch)

5 if (match == null):

6 return hybridIndex.query(q)

7 BitSet ids = partition.readBitSet()

8 BitSet intersection = ids ∩ selectionSet
...

It is important to avoid accessing a partition on disk that turns out to be of

little use once the bit set is inspected. To limit these wrong decisions, made by

the estimation inaccuracy of the sketches, a partition is identified as promising

only if we are highly confident that it will be useful for the query optimization

later on. The problem with sketches is that comparing a huge list of ids with a
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Q1= {2, 3, 5}
Q2= {1, 2, 4}
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Figure 6.4: Graph based data partitioning

relatively small selection set often results in an empty intersection. We identify

a partition to be useful, if and only if the intersection with the selection set is

estimated to be larger than zero and there is no other partition for which the

estimate is non zero.

In case partitioned indices are created for multiple attribute pairs of the same

relation (e.g., (id,A1), (id, A2),...), the content of the partitions will be the same

for all of them. Hence, bit sets describing the partitions are materialized only

once—they are shared to reduce the overhead.

6.2.2 Index Partitioning

The problem of data partitioning is formulated as follows: given selection sets

from a query log, create m disjoint data partitions such that the probability

of finding a randomly selected pair of ids from a randomly selected selection

set in a single partition is maximized. The partitions should further be ap-

proximately equal in size. Determining the optimal number of partitions is not

trivial: A large number of ideal partitions (i.e., each selection set is completely

found in one partition) would decrease the runtime. However, increasing the

number of partitions would increase the error introduced by the partitioning,

that means, less and less queries could be answered by a single partition. In

this work, we determine the optimal number of partitions experimentally (cf.,

Section 6.4).

For partitioning, we employ a technique used in recent work on data parti-

tioning in distributed database systems, by Curino et al. [CZJM10]. The basic

idea of their approach, coined Schism, is to create a graph based on a database

workload (query logs). The vertices of the graph are tuples with edges connect-

ing frequently co-occurring tuples in the transactions. The edge weight is given

by the number of transactions in which two connected tuples occur together.

Once the graph is constructed, the actual partitioning is done using constrained

k-way graph partitioning [KL70].

An example of the graph data partitioning, with a query log of four queries,

is shown in Figure 6.4. We see that the vertices 1 and 4 are connected with an

edge with weight 2 as they occur together in two queries (Q2 and Q3), while

the vertices 4 and 5 are connected with an edge of weight 1 as they have only
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one query in common (Q4). Using the constrained k-way graph partitioning,

we obtain the following two partitions: (1, 4) and (2, 3, 5).

This way, each query contributes (|q|−1)(|q|−2)
2 edges to the graph, where |q| is

the size of the query selection set. To avoid a quadratic explosion, in particular

for queries with larger selection sets, we introduced edge sampling. For each of

the ids in the given selection set, 10 randomly selected ids from the same set

are used to create edges between them, rather than using all of the other ids.

This way we get 10 · |q| edges for each query, while preserving the density in the

graph.

The basic assumption behind index partitioning is that selection sets are

clustered in a meaningful way. Although this might not hold in general, selection

sets are usually coherent in a semantic way (e.g., most people possess songs from

mainly one or two genres).

Constrained k-way graph partitioning is NP-complete, but there exist effi-

cient and accurate approximation techniques. In this work, we are using the

software package METIS [KK99, MET], a freely available software library that

offers approximate constrained k-way partitioning based on multilevel coarsen-

ing techniques.

6.3 Approximate Query Answering

Given the partitioned index organization, even higher performance gains can

be achieved by returning approximate top-K results instead of the exact ones.

By approximate top-K results, we refer to the case when the selected partition

does not cover all of the ids from the selection set. The missing ones could be

retrieved based on the id-ordered index, but this is not done now. Hence, there

is a risk that some of the missing ids would contribute to the actual top-K result,

in which case the returned result is not exact. Although such approximations

bring performance gains, without a quantification of the expected error, such

approximate results are in most cases not acceptable, as the result quality can

arbitrarily vary.

6.3.1 Tunable Expected Precision

Approximate results are often very acceptable, but only up to a point where the

precision is still above a certain level, for instance, above 80%. With precision

we refer to the fraction of the returned top-K results which are also in the

hypothetically exact result.

In the following, we derive an estimate for the results quality provided by

the approximate query answering algorithm. Using this estimate at query time

enables us to fall back to the exact query answering mode, in case this expected

result quality is below the specified minimum threshold.

We describe the probability distribution of the precision as a binomial dis-

tribution with “success probability” ph. This ph is the probability that an id

is found in the partition, given that it is in the selection set and also a true
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top-K element. Note that, due to the nature of the partitions and the retrieval

algorithm, ph is the same as the probability that a retrieved top-K element is a

true top-K element.

The estimated precision is then given by the expectation of the binomial

distribution, divided by the size of the results,

P (X ≤ x) =

bxc∑
i=0

(
K

i

)
ph

i(1− ph)
K−i

prec =
E[X]

K
=
ph ×K
K

= ph

where K is the size of the results (K in top-K) and hit probability is ph.

The success (or hit) probabilty ph can be written as

ph = P (id ∈ F |id ∈ S, id ∈ topK)

with F representing the partition and S representing the selection set. Applying

Bayes’ theorem and assuming conditional independence between an id being

found in the top-K results and the id being found in partition, given that it is

in the selection set, we can derive

ph = P (id ∈ F |id ∈ S)

Applying the definition of conditional probability and using P (X,Y ) = P (X)P (Y )+

cov(X,Y ) for Bernoulli random variables, we obtain:

ph =
P (id ∈ F )P (id ∈ S) + cov(id ∈ F, id ∈ S)

P (id ∈ S)

Estimating that P (id ∈ F ) = |F |
N and that P (id ∈ S) = |S|

N (where N is the

total number of tuples), together with the covariance estimation cov(id ∈ F, id ∈
S) = |F∩S|

N − |F ||S|N2 , gives us:

ph =
|F |
N
|S|
N + |F∩S|

N − |F ||S|N2

|S|
N

=
|F ∩ S|
|S|

This shows that the precision is estimated as the size of intersection between

the selection set and partition, divided by the selection set size. For instance, if

there are 90% of the selection set contained in the queried partition, we estimate

the precision to be 90%.

To get an accurate precision estimate, we use the exact intersection size using

the partition bit sets that are read from the disk once the partition is selected

based on the sketches.

6.4 Experimental evaluation

We implemented the described indexing techniques and algorithms in Java 1.6

using direct access to the disk by a JNI (Java Native Interface) connection
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to routines written in C. The direct IO access uses the O_DIRECT flag in the

libraries provided by the operating system. One disk block is kept cached in

main memory while data is read from the disk. As a direct access to the disk is

used, the size and the speed of the main memory was of negligible influence to

our measurements.

All experiments are conducted on a Linux machine (Ubuntu 11.04 64bit with

kernel version 2.6.32-28) with a Intel Xeon W3530 CPU (2.8GHz, 8MB cache,

4 cores (8 threads)). The local disk used is a 3Gb/s Barracuda 7200.12 SATA

(7200 rpm, 32 MB cache, avg. latency 4.16 ms, random read seek time: 8.5

ms). The routines are executed using Java SE runtime version 1.6 64-bit, with

C routines compiled using gcc version 4.4.3.

Prerequisites: To estimate the query response time, the cost models (Sec-

tion 6.1) need to know the block size. This, however, depends on how much the

disk is actually reading ahead with each access to the physical disk. In our case,

we measured a size of 896 KB.

Real-world Dataset

For the real-world dataset we get back to the soundtrack recommendation prob-

lem that originally motivated addressing these efficiency issues. We analyzed the

Million Song Dataset [BMEWL11] which contains low-level feature descriptors

of one million songs. This way we need only the titles of a user’s mp3 collec-

tion and can recommend songs out of this set. A user provided set of songs is

interpreted as a selection set.

In addition, 50 movies are processed and analyzed resulting in approximately

10, 000 movie snapshots. Fitness information between each song and each movie

snapshot is calculate and stored. With 4 bytes for an id and 4 bytes for the

score encoding, the total size of the indexed information is around 120GB for

both id-ordered and score-ordered indices.

We extended the 1 million songs to 14 million songs to account for a more

realistic total count of songs in the world. This approximation is based on the

overlap between the user profiles (i.e., sets of songs in users’ collections) we

received and the list of songs in the freebase [FRE] database. The scores for

those artificially added songs are generated from the distribution of scores for

the songs in the million songs dataset.

For one index entry, the score in case of the id-ordered index and both the

score and id in case of the score-ordered index are stored—which sums up to 12

bytes in total. As one tuple needs one bit in the partition bit set, the size of the

bit set for one partition is 12 × 8 (= 96) smaller than the combined index size

of one column (e.g., movie snapshot). As bit sets are the same for all columns,

only one copy per partition is kept. In our case of 10, 000 columns, thus, the

required space for the bit set information of one partition is a factor of 960, 000

smaller than the whole combined index (relation). When the bit sets are stored

on disk, we used 28, 000 minimum values in the KVM-sketch (each value is of 4

bytes size) for each partition, rendering the signature for one partition 60, 000

times smaller than the combined index size of one column. As an illustration:
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with only 1 GB of main memory used and 10 partitions one can index 5.85 TB

of data on disk using sketches.

Queries: We use 150 user profiles, i.e., sets of songs, obtained through our

smartphone app PicasSound (cf., Chapter 8). Each of those profiles represents

one selection set that we use as the top-10 query in this study. We execute

each query ten times and the average runtime is reported for that query. Each

execution is accessing disk (no caching), which is a direct consequence of direct

IO usage. The distribution of the selection set sizes for the smartphone queries

is shown in Figure 6.5.
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Figure 6.5: Distribution of selection set sizes

Partitioning: as 150 queries obtained from smartphone users are not

enough for both testing and partitioning purposes and in particular to also

show that the partitioning can be done on different but semantically related

data, we use publicly available data [Cel10a] from last.fm [LST] for the parti-

tioning. This dataset contains the most-listened-to artists for 360, 000 last.fm

users. Although this dataset contains artists rather than individual songs, we

partition the artists and then assign songs to the partition which contains the

corresponding artist. The partitioning of the artists is done as described in

Section 6.2.2, where the top artists of one user are considered as a query used

in graph creation.

As the partitioning dataset and the query dataset have different sources, we

measured that around 82% of the artists present in the queries are also contained

in the partitioning dataset. We removed song ids from the queries’ selection sets

if they were not contained in the partitioning set.

Synthetic DataSet

For the synthetic dataset, we use the same song collection with the same scores

used in the real-world dataset, but create synthetic queries for execution and

queries used in the partitioning process. This allows varying the query clustering

density to study its effect on the performance of the partitioned index. To create

the artificial clustering, ids are randomly split into 10 groups (artificial clusters).

Then, we generate queries based on these groups.
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Figure 6.6: Score-ordered index runtime

We distinguish three types of queries: (i) all ids from the selection set are

found in one cluster (ii) ids are split between two clusters and (iii) ids are

uniformly spread between all clusters. Based on the ratio between these types

of queries, we create three query logs for partitioning and testing purposes. The

first query log, named “best” contains 80% of type (i) queries, 10% of type (ii)

queries, and 10% of type (iii) queries. The second query log, named “middle”,

contains 60% type (i), 20% type (ii), and 20% of type (iii) queries. Finally, the

third, named “worst” query log contains 40% type (i), 30% type (ii), and 30%

of type (iii) queries.

Queries: 200 queries for testing purposes were generated for each of the

query log types with selection size uniformly distributed between 10 and 1000.

Each query is generated by randomly selecting ids from one, two, or all artificial

clusters. For instance, the “best” query log has 80% queries for which ids are

selected from one randomly selected artificial cluster.

Partitioning: 20,000 queries for each of the query log types are generated,

with the selection size uniformly distributed between 10 and 500.

6.4.1 Model Verification

First, we experimentally evaluate the accuracy of the runtime estimates obtained

by the models proposed in Section 6.1. We use the songs dataset and create

top-20 queries with uniformly selected ids in the selection set.
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Figure 6.7: Id-ordered index runtime

First, we measure the effect of the table size (in terms of number of tuples) on

the runtime of the score-ordered index. The results are shown in Figure 6.6(a):

we distinguish three index sizes, 14 million tuples, 7 million tuples, and 3.5

million tuples. We can see that the runtime drops almost by a factor of two

when decreasing the index by a factor of two. This shows that the runtime

is proportional to the number of tuples stored in the index as proposed by the

model (cf., Equation 6.2). The effects of changing K in the top-K queries on the

runtime using the score-ordered index is shown in Figure 6.6(b). We observe

that a larger value of K increases the runtime proportionally, which is again

in accordance to the model. After fitting the c1 and c2 parameters, we see

that the estimated values are almost a perfect fit to the measured values, see

Figure 6.6(d).

The effects of the table size on the id-ordered index are shown in Fig-

ure 6.7(a), where we see that the runtime is proportional to the table size. This

plot also reveals small anomalies for small query sizes, in which case the 7 million

songs index is performing better than the 3.5 million songs index. This together

with the sudden decrease in runtime for 14 million songs at query size 200 is

most likely the effect of the disk’s adaptive read-ahead strategy. Figure 6.7(d)

shows that the values estimated the model are very close to the measured ones.

Figure 6.7(b) shows that the parameter K has no effect on the runtime for

id-ordered index. This is also in accordance to our model (cf., Equation 6.1).

The quartiles of multiple runtime measurements on the score-ordered index
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(Figure 6.6(c) and the id-ordered index (Figure 6.7(c)) are shown for 14 million

songs and K = 20. We see that the runtimes have low variance, which means

that time estimates are good in general, not only on average.

Overall, we see that the proposed models give a good estimate of the runtime

for both indices. It is important to note that they do not have to be perfect in

estimating the absolute runtimes, rather we need them to provide a reasonable

decision of which index is better suitable to answer a query. To get a better

understanding of this, we study the performance of the combined index which

highly depends on the runtime estimates. The results for the real-world dataset

are shown in Figure 6.8. We observe that the combined index performs almost

optimally, choosing the right index for almost all of the queries, with only a

couple of misses around the break-even point where the difference in runtime of

the id- and score-ordered indices is negligible.
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Figure 6.9: Partitioned index runtime
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6.4.2 Exact Top-K Retrieval

We report on the results for the partitioned index evaluation, when the index

is used to retrieve the exact top-K results. We measure the runtime of the

partitioned index on the real-world dataset with 10 partitions, when the bit sets

are in main memory (Figure 6.9(a)) and when they are on disk (Figure 6.9(b)).

The selection set size is shown on the x-axis, while the y-axis shows the runtime

in milliseconds. We summarize these results in Figure 6.10, where query sizes

are grouped into ranges of size 50. For a better readability, we do not use

histogram plots (with bars). As expected, when the selection set size is small,

the id-ordered index provides an efficient query answering. On the other hand,

if the selection set size is large, the query can be processed more efficiently

with the score-ordered index. Around the break-even point between these two

indices, the partitioned index can greatly improve performance, as shown in

Figure 6.10. We observe that the latency for queries of sizes between 50 and 100

drops down more than 140ms with bit sets in main memory and around 70ms

for queries of size between 100 and 150. When the bit sets are kept on disk,

the performance of the partitioned index is slightly worse than with bit sets in

main memory, which is expected as reading bit sets from disk causes additional

latency.
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Figure 6.10: Partitioned index runtime, ten partitions

To study the implications of using different numbers of partitions on the

performances of the partitioned index, we show results for 4, 6, 8, and 10 parti-

tions. The runtime improvements (difference between combined and partitioned

index) in terms of milliseconds for different numbers of partitions are shown in

Table 6.1 and Table 6.2. Table 6.1 reports on the runtime improvements when

the bit sets are kept in main memory, while Table 6.2 reports on the case when

the bit sets are stored on disk. As the improvements were measured for queries

with selection set size between 50 and 150, as seen in Figure 6.10, we report

only on these. As we can see from these tables, some numbers of partitions
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Number of partitions

Query size 4 part. 6 part. 8 part. 10 part.

0-50 0 0 0 0

50-100 112 130 145 142

100-150 82 97 59 75

>150 0 0 0 0

Table 6.1: Runtime improvment (ms), bit sets in memory

Number of partitions

Query size 4 part. 6 part. 8 part. 10 part.

0-50 0 0 0 0

50-100 50 87 119 109

100-150 40 47 47 60

>150 0 0 0 0

Table 6.2: Runtime improvment (ms), bitsets on disk

perform better than the others. We can also see that we have comparable im-

provements even if we are not using the optimal number of partitions, rendering

our approach robust to changes in the number of partitions used.
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Figure 6.11: Synthetic dataset runtime

Figure 6.11 shows runtime experiments for the partitioned index on the

synthetic dataset, when (a) bitsets are kept in main memory and (b) bitsets are

kept on disk. As expected, the runtimes are high for the worst synthetic dataset

and get smaller with the middle dataset and are smallest for the best synthetic

dataset. We can see that the gain for the worst dataset, when the bit sets are

kept on disk, is tiny, almost nonexistent. However, when the bit sets are kept

in main memory, there is a gain for even the worst setup. Comparison between

keeping bitsets in main memory and on disk is shown in Figure 6.12(a) for best

synthetic dataset and in Figure 6.12(b) for worst synthetic dataset.
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Figure 6.12: Partitioned index runtime

6.4.3 Approximate Top-K Retrieval

We have measured the runtime for the approximate querying, with and without

guarantees, using the real-world dataset, shown in Figure 6.13. We see that

the average runtime for the approximate querying without guarantees is much

lower than for the variant with guarantees, e.g., for query sizes between 100 and

150 average runtime without guarantees is 83 milliseconds while runtime with

guarantees is 140 milliseconds. This of course comes with the cost of decreased in

precision shown in the same Figure 6.13. We used a requested precision of 80%

for querying with guarantees in this case, which resulted in average precision

around 95%.

Varying the requested (minimum) precision from 60% to 90% for approxi-

mate querying with guarantees is shown in Figure 6.14. We see that the precision

drops down when the requested precision is lowered. Lowering the requested

precision results also in lower runtimes, as reported in Figure 6.14.

The results of the approximate querying without guarantees over synthetic

data are shown in Figure 6.15(a). As expected, the runtime for best synthetic

dataset is lowest, the middle synthetic dataset has medium runtime, and the

worst setup incurs the highest runtime. We see that even for the worst synthetic

dataset, the improvement in runtime over the combined index is still high (up

to 105 ms). As the modeling in these three cases has little control over the

precision, it varies independently of the synthetic dataset use (Figure 6.15(a)).

Approximate querying with guarantees and a requested precision of 90% over

synthetic data results in an average precision close to 100%, independently of the

dataset used, cf., Figure 6.15(b). This emphasizes once more the influence of the

requested precision over the actually observed result precision. The measured

runtime is again as expected. It is lowest for the best synthetic dataset, highest

for the worst dataset, and medium for the middle one, cf., Figure 6.15(b).
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Figure 6.13: Approximate querying, real-world dataset
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Figure 6.14: Approximate querying, real-world dataset
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Figure 6.15: Approximate querying, synthetic dataset





Chapter 7

Enhancing and Distributing

Locality Sensitive Hashing

As we saw in Section 2.2, searching for the most similar images in the collec-

tion for a given query image translates to the k-Nearest Neighbor (KNN) prob-

lem [Sam06], where each image is represented as a point in a multidimensional

feature space. With increasing dimensionality this task becomes computation

intensive. To achieve a desirable efficiency, approximate methods are used to

solve the task: Locality Sensitive Hashing (LSH) [AI06, DIIM04, GIM99] allows

the trade off between the memory used for the index, accuracy of the results,

and the time needed to answer a query.

The proposed Picasso approach uses similarity search between images to

retrieve the most similar movie screenshot to a given query image. To increase

the quality of the soundtrack recommendations, a large number of movies is used

for the training dataset, resulting in a large collection of movie screenshots. This

motivated us to look at the efficiency aspects of LSH and its computation using

the MapReduce framework to achieve scalable, large-scale similarity search.

In this chapter, we describe two enhancements to the standard LSH methods

to accelerate the performance while keeping the answer accuracy at the same

level. The first enhancement of LSH is based on additionally introduced links for

each point in the feature space. These links refer to the exact nearest neighbor

and are calculated and stored in a preprocessing phase. The second approach

is coined Peek-Probing, where LSH buckets are only fully read if they indicate

a certain amount of useful information. A salient property of our proposed

techniques is their orthogonality, hence, they can be jointly applied, and their

independence on the underlying LSH method.

In addition to the two LSH enhancements, this chapter describes RankRe-

duce, an approach to distribute LSH techniques by implementing them on top

of the highly reliable and scalable MapReduce [DG04] infrastructure. This task

poses interesting challenges to the integration: most of the time, we face differ-

ent characteristics of MapReduce and LSH which need to be harnessed at the

same time to achieve both high accuracy and good performance.

95
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The description of the two enhancements to LSH is based on our publica-

tion in [SM12b], while the LSH distributed scheme description is based on the

publication in [SMS10].

The chapter is organized as follows. Section 7.1 presents the enhancement

based on the nearest neighbor links, coinded Linked-LSH approach. The Peek-

Probing approach is described in Section 7.2. The distribution of LSH using

MapReduce is described in Section 7.3. The description of the experimental

setup together with the reported results on baselines and proposed approaches

is contained in Section 7.4.

7.1 Linked-LSH

Locality Sensitive Hashing (LSH) is based on the principle of locality preserving

hash functions. These functions map points from a high-dimensional space to

hash values (i.e., hash buckets), such that close points have the same hash

value, with high probability. To increase locality, multiple hash tables are used,

each with its own hash function. For more details on the basics of LSH see

Section 2.2.1.

As we can see, LSH indexes data points by computing hash bucket labels (i.e.,

hash values) of each object independently of the other data points contained in

the same collection. The key idea behind Linked-LSH is to use additional infor-

mation about the dataset, obtained at indexing time, with the goal of obtaining

an improved query processing performance. More precisely, we use the (first)

nearest neighbor in the indexed collection for all the data points as a global

statistics descriptor of that collection.

The intuition behind using the exact first nearest neighbor as a descriptor is

given by the triangle inequality d(q, p2) ≤ d(q, p1)+d(p1, p2), where q represents

a query point, p1 is the point indicated by LSH and p2 is the point missed by

LSH and is the exact closest neighbor in the collection for the point p1. As

p2 is the exact closest neighbor for the p1, there is a high probability that the

distance between these two points d(p1, p2) is small. If we make sure that the

distance between the query point q and the point indicated by LSH p1 is small

enough, the triangle inequality tells us that distance between the query point q

and point p2 is also small and that there is high probability that the point p2 is

also in the exact top-K results for the given query.

Linked-LSH extends the LSH index by adding a pointer to each indexed

data point (feature vector), which points to the closest neighbor in the indexed

collection. Pointers for data points are precomputed in the indexing phase and

the exact closest neighbor is used, which is found through the full scan of all

data points. It is important to note that this extension of the index results in a

negligible increase in index size as each data point contains values for multiple

dimensions and only one pointer value in addition.

Figure 7.1 illustrates an LSH index with links introduced by Linked-LSH in

the two dimensional space. The (red) rectangular data point represents a query

point which after hashing to LSH index retrieves a first neighbor. The (green)



7.1 Linked-LSH 97

LSH

x

y

Figure 7.1: Linked-LSH index organization

circular point represents the second exact neighbor to the query point which is

missed by LSH due to its approximate nature. We see that following the link

from the first retrieved neighbor to its first neighbor results in retrieving the

second exact neighbor of the query point, which would be lost if only LSH was

used.

7.1.1 Query processing

Answering a query with Linked-LSH is done in two steps. In the first step the

query is answered using an existing LSH approach, such as [LJW+07]. The

obtained query results are then used in the second step, in which the links

between data points are used to retrieve and evaluate additional points.

As stated above, we need to assure that the distance d(q, p1) is small enough.

That is the reason why we use only the top-K̃ results from the first step as an

input to the second step, as it guarantees that we are using the points that have

the smallest distance to the query point out of the points indicated by LSH.

The parameter K̃ should depend on the original K as specified in the query and

can be experimentally tuned for the best performances. It is important to note,

that K̃ as well as the parameter n, introduced in the following paragraph, are

parameters that are set at runtime and hence can be adjusted without index

re-organization, which is usually needed for the parameters in the raw LSH

approaches.

The approximate top-K̃ results from the first step provide a starting point for

further retrieval using links in the collection. For each point in the top-K̃ points,

we recursively retrieve the closest neighbors up to the depth n by consecutively

following closest neighbor links. The depth n of the consecutive retrieval is again

a parameter of the approach. The distance to each additionally retrieved data

point is calculated, in case it was not already calculated in the previous step,

and used to evaluate if the data point is in the top-K result list. The pseudo

code of the query answering with Linked-LSH is shown in Algorithm 7.1.

By design, Linked-LSH can be applied to any of the existing LSH approaches
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Algorithm 7.1 Query processing with Linked-LSH

1 intermediate = LSH.eval(query, K̃)

2 knn.add(intermediate)

3 for (point in intermediate):

4 last = point

5 while (steps ≤ depth):

6 last = last.getNeighbor()

7 knn.eval(last)

8 return knn.results

[GIM99, LJW+07] by simply using them in the first step and following the links

based on their results in the second step.

7.2 Peek-Probing

The LSH index consists of multiple hash tables such that each of them contains

multiple buckets (cf., Section 2.2.1). Each bucket contains a subset of the data

points, assigned by a hash function. In the query answering phase, multiple

buckets are selected based on the hash value of the query or based on Multi-

Probe techniques [LJW+07]. Our Peek-Probing approach assumes that not all

of the selected buckets have the same importance to the query answering. We

try to determine that importance before evaluating all the data points from all

of the buckets.

The idea is to use existing LSH techniques to select buckets, and then to

peek into each of these buckets and to predict how important it is for answering

the given query. After the bucket importance values are approximated we use

only the data points from the most important buckets and discard the rest.

The key point here is that the importance of the bucket is determined for each

specific query.

To approximate the importance of a bucket for the given query, we peek

into all buckets indicated by LSH and perform a KNN evaluation over the seen

data points. Peeking into a bucket means retrieving the first p elements from a

bucket where p is proportional to the bucket size (number of data points in the

bucket) and is given by

p = 1 +

⌊
b

f

⌋
where b is the size of the bucket and f is the bucket fraction proportion (we

used the value of f = 8 in all of the experiments). During the evaluation of the

peeked data points, if the data point makes it in the peeked top-K results, we

remember the bucket that point came from. We show below how we re-organize

the bucket content to obtain a meaningful overview of the bucket content, as

otherwise the p first points would represent a random sample.

After all the peeked data points are evaluated, we call a bucket important if

there is at least a single data point in bucket that is also in the top-K peeked
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results. This approach works well in practice as K is usually a small number.

In case K is very large number we could instead judge the importance of the

bucket as a total number of data points in the peeked top-K results that come

from that bucket, rather then to just make a binary decision. In the following

steps only the data points from the important buckets are used for evaluation.

The querying algorithm is presented in Algorithm 7.2.

Algorithm 7.2 Query processing with Peek-Probing

1 buckets = LSH.probe(query)

2 for (bucket in buckets):

3 for (point in bucket.peek):

4 knn.eval(point, bucket)

5 important = knn.getBuckets()

6 for (bucket in important):

7 for (point in bucket.rest):

8 knn.eval(point)

9 return knn.results

It is important to note that as there are by design multiple hash tables in

LSH, data points can be contained in multiple buckets originating from different

hash tables. This means that we need to store multiple buckets for a data

point at runtime, while evaluating peeked points. We have experimented with

different number of buckets saved per data point and concluded that the best

performances are achieved when only one bucket (the first one encountered) is

saved for the data point. This small number is imposed by the large overhead

in bookkeeping all of the information when multiple buckets are saved per data

point.

7.2.1 Bucket Organization

Peeking into a bucket is performed to get an idea about the content of that

bucket, and as already mentioned is done on the first p data points of the

bucket. We can randomly select any p points of the bucket and place them in

the beginning of the bucket. However, by doing this we may end up with a bad

description of the content based only on the first p data points.

To avoid such situations we select first p points from the bucket by clustering

the bucket data in p clusters and then selecting the medoid of each cluster to

be put in the beginning of the bucket. We use the expectation-maximization

algorithm for k-means clustering [HKP06] to cluster the data contained in the

buckets. Figure 7.2 illustrates this process of data points selection and their

placement in the beginning of the bucket.

The motivation behind this idea is given by the k-means optimization cri-

terion arg minC

∑p
i=1

∑
xj∈Ci

‖xj − µi‖2, where Ci is a cluster with centroid µi

and xj are data points from that cluster. This optimization criterion tells us
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Figure 7.2: Peek-Probing bucket organization

that the distance between the centroid and the data point in that cluster is

minimized, i.e., if the centroid is in the top-K results among the other centroids

then there is a high probability that some other points from that cluster are also

in the final top-K results. We use medoids, the closest point from the cluster to

the centroid, instead of the centroids, as centroids are non existent data points

and would incur additional computation and storage cost.

As we mentioned earlier Linked-LSH and Peek-Probing can be applied to any

existing LSH approach. We coin the name combined approach for the approach

where the Linked-LSH is applied on top of the Peek-Probing approach, which

is again applied on top of the Multi-Probe approach from [LJW+07].

7.3 RankReduce Framework

We now investigate the problem of processing K-Nearest Neighbor queries

in large datasets by implementing a distributed LSH-based index within the

MapReduce Framework [DG04]. The framework is designed to be used for

large data processing in parallel. It is built on top of the Distributed File

System [GGL03], which enables distributing the data over the cluster machines

in a scalable and fault tolerant way. Our implementation uses the open source

software Hadoop [HAD], maintained by the Apache Foundation, which pro-

vides a Java based implementation of both the MapReduce framework and the

Distributed File System (coined HDFS for Hadoop Distributed File System).

MapReduce is a fairly simple programming model, based on two developer

supplied functions: Map and Reduce. Both functions are based on key-value

pairs. The Map function receives a key-value pair as input and emits multiple

(or none) key-value pairs as output. The output from all Map functions is

grouped by key, and for each such key, all values are fed to the Reduce function,

which then produces the final output from these values. For more details on

MapReduce framework and Hadoop implementation see Section 2.4.
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Figure 7.3: Mapping LSH buckets to HDFS

We distribute the LSH index by mapping each hash table from the index to

one folder in HDFS. For each bucket in such a hash table, a corresponding file

is created in this folder, where the file name is created by concatenating hash

values into a string, with reserved character as a separator, as illustrated in

Figure 7.3. This mapping of buckets to HDFS files enables fast lookup at query

time and ensures that only data that is to be probed is read from the HDFS.

Placing the bucket in one file also enables block based sequential access to all

vectors in one bucket, which is very important as the MapReduce framework

is optimized for such block based access rather than random access processing.

Each of the buckets stores the complete feature vectors of all objects gped to

this bucket in a binary encoding.

Indexing new feature vectors is easily done by appending them to the end

of the appropriate bucket file. This can also be done in parallel with query

processing as long as different buckets are affected; as HDFS does not include

a transaction mechanism, appending entries to buckets that are being queried

would be possible, but with unclear semantics for running queries. As HDFS

scales well with increasing cluster size, the resulting growth of the LSH index

can easily be supported by adding more machines to the cluster.

While an LSH index stored in-memory has no limitation on the number of

buckets, too many files in HDFS can downgrade its performance, especially if

these files are much smaller than the block size (which defaults to 64MB). The

number of buckets, and therefore the number of files in HDFS for the LSH index,

is highly dependent on the set up of LSH parameters.

Inspired by in-memory indexes, which can have references from buckets to

materialized feature vectors, we considered storing only feature vector ids in

the buckets instead of the actual feature vectors, and retrieving the full vectors

only on demand at query time. However, this approach would result in poor

performance due to many random accesses to the HDFS when retrieving the full

vectors, so we decided to store complete feature vectors. This fact also needs to

be addressed when setting up LSH parameters, while too many LSH hash tables

can dramatically increase index size, as each feature vector is materialized for

each hash table.
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7.3.1 Query Processing

We implemented KNN query processing as a MapReduce job. Before starting

this MapReduce job, the hash values for the query documents are calculated.

These values are then used for selecting the buckets from the LSH index, which

are to be probed. The selected buckets are provided as input to the query

processing MapReduce job, generating multiple input splits. The generated

input splits are read by a custom implementation of the InputFormat class,

which reads feature vectors stored in a binary format and provides them as the

key part of the Map function input. Queries are being distributed to mappers

either by putting them in the Distributed Cache or by putting them in HDFS

file with high number of replicas. They are read once by the InputFormat

implementation and reused as value part of the Map function input between the

function invocations.

The input to the Map function consists therefore of the feature vector to

be probed as the key and the list of queries as the value. The Map function

computes the similarity of the feature vector with all query vectors. While a

standard MapReduce implementation would now emit a result pair for each

combination of feature vector and query vector, we employ an optimization

that delays emitting results until all feature vectors in the input split have been

processed. We then eventually emit the final K-Nearest Neighbor for each query

vector from this input split in the form of key-value pairs. Here, the query is

the key and a nearest neighbor together with its distance to the query vector is

the value. To implement this delayed emitting, we store the currently best K-

Nearest Neighbor for each query in-memory, together with their distances from

the query points. The results are emitted at the end of processing the input split

in Hadoop’s cleanup method1. The Reduce method then reads, for each query,

the K-Nearest Neighbor from each mapper, sorts them by increasing distance,

and emits the best K of them as the final result for this query.

The final sort in the reducer can even be executed within Hadoop instead

of inside the Reduce method, as a subtask of sorting keys in the reducer. It is

possible to apply a so-called Secondary Sort that allows, in our application, to

sort not just the keys, but also the values for the same key. Technically, this is

implemented by replacing, for each (query, (neighbor, distance)) tuple that is

emitted by a mapper, the key by a combined key consisting of the query and

the distance. Keys are then sorted lexicographically first by query and then by

distance. For assigning tuples to a Reduce method, however, only the query

part of the key is taken into account. The reducer then only needs to read the

first K values for each key, which then correspond to the K-Nearest Neighbor

for that query.

It is worth mentioning that because one feature vector is placed in multiple

hash tables, the same vector can be evaluated twice for the same query during

processing. An alternative approach would be to have two MapReduce jobs for

1This feature was introduced in the most recent version 0.20; before, it was only possible

to emit directly from the Map function
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query processing instead of one, which would eliminate this kind of redundancy.

The first MapReduce job would create a union between buckets that need to

be probed, and the second job would use the union as an input to similarity

search. However, while this would possibly save redundant computations, it has

the major drawback that the results from the first job need to be written to

the HDFS before starting the second job. As initial experiments showed that

overhead from multiple evaluations of the same feature vector has not been too

large, we decided that it is better to probe slightly more data rather than to

pay the additional IO cost incurred by using two Map Reduce jobs.

The approach can handle multiple queries at the same time in one MapRe-

duce job. But it is not suitable for the cases when the number of queries be-

comes too large, as problem of KNN queries processing becomes the problem of

set similarity joins [VCL10].

7.4 Experimental Evaluation

We have implemented all of the presented approaches in Java 1.6 and use the

64-bit variant of the Java VM to execute the code. The implementation is single

threaded. The experiments are conducted on a dual CPU Intel Xeon E55302.4

GHz and 47.9 GB of main memory, running Microsoft Windows Server 2003

Enterprise x64 Edition (Service Pack 2).

Distributed setup: for distributed version of LSH we have used Hadoop

version 0.20.2 installed on three virtual machines with Debian GNU/Linux 5.0

(Kernel version: 2.6.30.10.1) as operating system. Each of the virtual machines

has been configured to have 200GB hard drive, 5 GB main memory and two

processors. VMware Server version 2.0.2 was used for virtualization of all ma-

chines. The virtual machines were run on a single machine with Intel Xeon

CPU E55302.4 GHz, 47.9 GB main memory, 4 TB of hard drive and Microsoft

Windows Server 2008 R2 x64 as operating system. We used a single machine

Hadoop installation on these virtual machines as described later on.

Image Dataset

To evaluate the above approaches on real-world data, we have obtained the

CoPhIR dataset [BEF+09]. It consists of MPEG7 feature descriptors ex-

tracted from a large collection of images obtained from Flickr [FLI] image shar-

ing portal. For each crawled image, the dataset contains MPEG7 feature vec-

tors that are given in an XML based format together with a URL of the source

photo. We have transformed the XML format in a convenient binary format

before starting the experiments.

We use the following subsets of MPEG7 feature descriptors in the evalua-

tion: color structure, scalable color, and edge histogram (cf., Section 2.1.1 for

more information about the features used). Scalable color and color structure

descriptors in CoPhIR are defined by 64 dimensional vectors, while an edge

histogram descriptor is a 80 dimensional vector. We use these three different
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feature representations for deeper insights on the performance of the algorithms

under comparison.

LSH Setup

Locality Sensitive Hashing enables tradeoff between memory usage (index size)

and the time needed to answer a query with a certain precision. Trading off

index size against runtime is achieved by changing the number of hash tables

used for indexing. The more hash tables are used, the less time is needed to

answer a query with the same precision.

LSH is a parametric method with a common practice of tuning the param-

eters for each individual dataset. Having multiple parameters, yielding multi

dimensional parameter space, usual practice is to fix all but one parameter and

to vary that parameter until the optimum is found. This procedure is repeated

until a global (or local) optimum approximation is found. To achieve the best

results, we have performed parameter tuning of each approach independently.

We start LSH tuning by fixing the number of hash tables and then tuning

the parameters to achieve required precision. Achieving a certain precision at

fixed number of hash tables depends on the number of data points found in one

LSH bucket. This number, in turn, depends on the number of hash functions

per hash table as well as on the parameter W of the each of the function (see

Equation 2.8). As W is a continuous variable it gives us more control over the

bucket size, so we fix the number of hash functions per table and vary W to

achieve a certain precision values.

Probing multiple buckets from the same hash table requires an additional

parameter that describes the number of additional probes. We have experi-

mented with different number of additional probes for each feature descriptor.

It turns out that for color structure and scalable color descriptors Multi-Probe

is not better than the original LSH and it achieves the best results with only

two additional probes per table. However, for edge histogram descriptor Multi-

Probe outperforms the original LSH, with the best performances at 30 addi-

tional probes per hash table. We have used the same number of probes also for

Linked-LSH, Peek-Probing, and the combined approach.

Linked-LSH also introduced depth parameter which defines the depth of the

recursive nearest neighbor traversal. Setting this parameter is easy as by intu-

ition it has to have a low value. By experimenting we found out that best results

are achieved when depth is two. For Linked-LSH we also need to determine the

value of K̃, we do that by K̃ = c ∗K, where c is determined experimentally for

the best performance. We used the value of c = 3 when Linked-LSH was tested

alone, and c = 1.1 when tested in the combined approach.

In the distributed setting each new hash table creates another copy of data

and we may have only limited storage available, we need to tradeoff storage cost

vs. execution time. Additionally, when only a fixed subset of the data should be

accessed, a larger number of hash tables results in a large number of small sized

buckets, which is not a good scenario for HDFS (it puts additional pressure on

Hadoop’s data node that manages all files). On one hand, we would like to
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increase the number of hash tables and to decrease the probed data subset. On

the other hand, we would like to use less storage space and a smaller number

of files for storage and probing. Thus, as a general rule for distributed setting

we suggest a smaller number of hash tables with larger bucket sizes, still set to

satisfy the precision threshold.

7.4.1 LSH Enhancements Evaluation

To evaluate the proposed LSH enhancements we compare the following five

approaches.

• LSH: This is the implementation of the original work on LSH presented

in [GIM99].

• Multi-Probe: We have implemented the Multi-Probe algorithm pre-

sented in[LJW+07] and use it as the underlying LSH method for our

approach. While this method outperforms LSH (in most cases), we still

include the original LSH method for completeness.

• Linked-LSH: Represents the implementation of the enhancement of the

LSH using the nearest neighbor links of the data points in the dataset,

together with the recursive link traversal, as described in the Section 7.1.

• Peek-Probing: Implementation of the Peek-Probing strategy from Sec-

tion 7.2, where LSH buckets are probed completely only if a certain amount

of usefulness is indicated.

• Combined: This is the implementation of the Peek-Probing together

with Linked-LSH, built on top of Multi-Probe LSH buckets selection.

Out of all available images in the dataset, we have randomly selected 100, 000

images to index. Additionally, 10, 000 images are randomly selected and used

as query images. As we are interested in relative improvements we use 32

hash tables for all described LSH approaches. Preliminary experiments have

shown that the best runtime, with 32 hash tables, is achieved when using 8

hash functions per table. Hence, in the following experiments, we use 8 hash

function per table. We keep all of the data structures in main memory for all of

the approaches in these experiments. As the non-deterministic nature of LSH

can result in slight deviations of measurements obtained by the same parameter

setup, we perform each experiment for each parameter setup 10 times and report

average results.

Measured Values

As all LSH based approaches are by design approximate methods, i.e., a re-

turned KNN result might or might not differ from the true K nearest neigh-

bors. Although we tune the precision towards required value, it might still vary

slightly. For this reason we measure the precision in addition to runtime and
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inspected data portion. The precision is measured as the percentage of the re-

turned approximate top-K results that are also found in the exactly computed

(using a naive full scan approach) top-K results. The runtime was measured as

the number of seconds (with millisecond resolution) needed to answer all of the

10, 000 queries. The measured inspected data portion represents the percentage

of the indexed 100, 000 feature vectors for which the distance to the query data

point was calculated while answering that query. Clearly, there is a correlation

between the inspected data portion and the total runtime, as more distance

calculations require more time. We report an average precision and average in-

spected data portion for 10, 000 queries, while the reported runtime is the total

time needed to answer all of 10000 queries.

Experimental Results

For each of the approaches we have performed measurements at three levels of

precision: at 80%, 90%, and 95%. As described, the parameter W in Equa-

tion 2.8 is used to tune each of the methods towards a certain precision. As we

are not able to strictly ensure the exact precision wanted, the precision is also

measured and reported.

approach prec. (%) time (s) insp. (%)

LSH

80.746 34.138 7.810

90.384 61.504 13.659

95.268 103.279 21.949

Multi-Probe

80.530 34.873 7.473

90.493 69.012 14.496

95.153 105.864 21.640

Linked-LSH

80.151 26.062 4.915

90.237 50.773 10.118

95.155 83.065 16.705

Peek-Probing

80.489 19.646 1.934

90.245 31.558 3.208

95.675 51.415 5.127

Combined

80.490 16.276 1.575

90.354 25.490 2.617

95.215 40.072 4.058

Table 7.1: Measurements for color structure descriptor

Table 7.1 contains the measurements for all approaches for color structure

descriptor. As we can see, using Multi-Probe in the case of color structure de-

scriptor does not result in an improvement over the original LSH. The runtime

and inspected data portion for Multi-Probe and original LSH are almost the

same, as we used small number (i.e., 2) of additional probes. Increasing the

number probes made the results only worse for Multi-Probe in this case. We

see that Linked-LSH provides a constant improvement in both runtime and in-

spected data portion over the baselines. The best improvement in runtime is
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achieved for the precision at 80%, reducing the runtime by 23.65%, while the

runtime improvements for 90% and 95% precision are 17.44% and 19.57% re-

spectively. Due to the relation between runtime and inspected data portion,

the improvements in the inspected portion are proportional to the runtime im-

provements. Even higher improvement in runtime and inspected data portion

is achieved using Peek-Probing, which reduces runtime by 50.21% at 95% pre-

cision. Improvements using Peek-Probe are seen over all measured precisions,

with runtime improvement of 42.45% at 80% precision and 48.68% at 90% preci-

sion. Combining Linked-LSH and Peek-Probe (i.e., Combined algorithm) yields

the best results, with more than a factor of 2 improvement in runtime and more

than a factor of 4 improvement in inspected data portion.

approach prec. (%) time (s) insp. (%)

LSH

80.617 116.042 23.020

90.287 183.178 35.243

95.327 272.212 48.001

Multi-Probe

80.364 125.184 20.996

90.046 174.275 29.282

95.200 222.560 36.597

Linked-LSH

80.578 106.495 16.348

90.135 160.724 25.703

95.519 223.370 34.787

Peek-Probing

80.468 58.399 6.088

90.180 70.624 7.760

95.136 82.843 9.325

Combined

80.796 58.109 5.765

90.301 70.695 7.459

95.044 83.379 8.901

Table 7.2: Measurements for edge histogram descriptor

Measurements for the edge histogram descriptor are shown in Table 7.2. We

see that Multi-Probe achieves a significant improvement in runtime over the

original LSH method, at 95% precision, but is slightly worse at 80% precision.

In the case of the edge histogram descriptor the benefit of using Linked-LSH is

quite small at 80% and 90% precision, with an improvement of 8.22% and 7.77%

respectively, and non-existent at 95% precision. However, using Peek-Probe

results in a significant improvement in runtime, with 62.77% improvement at

95% precision. Improvement for Peek-Probing at 90% precision is 59.47% and

at 80% precision is 49.67%. As there was no significant runtime improvement

in using Linked-LSH there is no improvement in using the combined approach

over only using Peek-Probing. The inspected data portion is still best for the

combined approach, but values are close the Peek-Probing approach, showing

once again that Linked-LSH has no impact for the edge histogram descriptor.

Table 7.3 shows measurements for the scalable color descriptor. We can see

that relative improvements for Linked-LSH, Peek-Probing, and the combined
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approach prec. (%) time (s) insp. (%)

LSH

80.647 13.563 2.993

90.563 25.562 5.741

95.596 41.651 9.278

Multi-Probe

80.180 15.726 2.978

90.318 27.254 5.631

95.032 43.226 9.041

Linked-LSH

80.805 13.620 2.078

90.849 22.418 4.063

95.132 34.406 6.685

Peek-Probing

80.283 10.032 0.725

90.977 14.948 1.264

95.215 20.107 1.850

Combined

80.294 8.975 0.622

90.650 12.451 1.029

95.107 16.809 1.477

Table 7.3: Measurements for scalable color descriptor

approach are similar to the improvements for color structure descriptor. This is

expected as both descriptors are based on the color distribution of the images.

We can see that the combined approach performs best, for both runtime and

inspected data portion. The best runtime improvement is achieved at 95%

precision, reducing runtime for 59.64%.

Runtime measurement for all aproaches and all descriptors at 95% precision

are shown in Figure 7.4(a). We can see that searching for most similar image

based on edge histogram descriptor takes a lot longer than based on the color

descriptors. Although the edge histogram descriptor uses higher dimensional

feature vectors (80 dimension) than for the color descriptors (64 dimensions), the

main runtime difference comes from the fact that more data points are used in

calculating the answer for edge histogram descriptor than for color descriptiors,

as shown in Figure 7.4(b), which shows inspected data portion for all approaches

and all descriptors at 95% precision.

7.4.2 RankReduce Evaluation

We evaluate the RankReduce framework comparing it to the linear scan over all

data, also implemented as a MapReduce job. As we did not have a real compute

cluster at hand for running the experiments, we simulate the execution in a large

cluster by running the mappers and reducers sequentially on our small machine.

We measure run times of their executions and the number of mappers started

for each query job. To avoid the possible bottleneck of a shared hard drive

between virtual machines [IJL+09], we run each experiment on a single machine

Hadoop installation with one map task allowed per task tracker. This results in

sequential execution of map tasks so there is no concurrent access to a shared

hard drive by multiple virtual machines.
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Figure 7.4: Measurements at 95% precision

Considering that the workload for the reducers is really small for both linear

scan and LSH, we only evaluate Map execution times and the number of mappers

run per query job. We measured the Map execution times for all jobs and found

that they are approximately constant, with average value per mapper being

3.256 seconds and standard deviation of 1.702 seconds. Taking into account that

each mapper has an approximately same data input size, defined by the HDFS’

block size, approximately constant mapper execution time is well expected.

We have evaluated performance of the approach using color structure fea-

ture vectors from the described CoPhIR dataset, and using synthetic dataset—

randomly generated feature vectors.

Synthetic Dataset: For the synthetic dataset we used 32-dimensional ran-

domly generated vectors. The synthetic dataset was built by first creating N

independently generated vector instances drawn from the normal distribution

N(0, 1) (independently for each dimension). Subsequently, we created m near

duplicates for each of the N vectors, leading to an overall dataset size of m ∗N
vectors. The rational behind using the near duplicates is that we make sure that

the KNN retrieval is meaninful at all. We set m to 10 in the experiments and

adapt N to the desired dataset size depending on the experiment. We generated

50 queries by using the same procedure as the original vectors were generated.

Experimental Results

Because the execution time of the mappers is almost constant, the load of a query

execution can be represented as a number of mappers per query. We measured

the number of mappers per query and precision for 50 KNN queries, with K=20,

for both datasets, with 2GB, 4GB, and 8GB of indexed data (∼4000, ∼8000,

and ∼16000 feature vectors for the real image dataset and ∼8000, ∼16000, and

∼32000 feature vectors for the synthetic dataset, respectively). The number of

mappers per query for image dataset is shown in Figure 7.5(a). And as we can

see the number of mappers is more than four times smaller for LSH than for

linear scan. The number of mappers per query for synthetic dataset is shown

in Figure 7.5(b). Again, we see the large benefit of using LSH over linear scan.
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Figure 7.5: Map tasks per query

The precision, shown in Figure 7.6, for synthetic dataset is over 70% for 2GB

and 4GB of indexed data, but drops down to 63.8% for 8GB. For real image

data, the precision is almost constant, varying slightly around 86%.
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Figure 7.6: LSH precision on generated and picture data.



Chapter 8

PicasSound

PicasSound is a smartphone application based on the Picasso approach to rec-

ommend music for images. It is primarily developed to demonstrate the features

of Picasso to a wider audience—anyone with a smartphone and a large enough

music collection. PicasSound runs on iOS1 and Android2 operating systems,

and hence, is available to a large portion of smartphone users. Having the appli-

cation running on a smartphone makes an ideal showcase for Picasso as images

and music are immediately available.

PicasSound enables users to upload images and receive the top ten songs as a

music recommendation. The recommended songs are a subset of the songs found

in the user’s phone. This way, the user is able to explore the recommendation

by playing the songs directly within the application.

8.1 Design Rationale

We started off with the following goals in mind:

• The application should be able to recommend songs for all images con-

tained in the phone.

• A user should be able to explore the recommendation by browsing the list

of recommended songs.

• The application should be interactive, i.e, have response times below 1-2

seconds.

Ideally, the application should enable recommendation for multiple images,

where images are displayed in a slide show manner after the recommendation

process. For simplicity reasons, we decided to relax this goal and enable recom-

mendation for one image at the time. This simplified the development while at

the same time kept the essence of the approach.

1http://www.apple.com/ios/
2http://www.android.com/
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Beside the functionality-oriented goals we had the general goal for the ap-

plication to be user friendly. This means that each operation is intuitively

triggered by the basic interaction with the phone, together with a meaningful

yet simple result representation. From the user friendliness perspective, the

application also needs to be interactive, which puts an upper bound on the time

needed to compute the recommendation.

Due to the limited available memory and the computing power of the phones,

we made the first design decision to organize the application into a client/server

architecture. With this, additional latency is introduced by the time needed to

upload the images and to receive the response from the server. However, this

also enables us to have high-end hardware at the server side, speeding up the

recommendation process substantially.

The goal of having songs recommended from the set of songs contained in

the phone introduced design challenges as the size of the songs and the limited

bandwidth discarded the option to upload the songs to the server for their pro-

cessing. Another option was to extract audio features, needed for the similarity

computation, on the phone and upload only them. This however, would require

a lot of processing on the users phone slowing down its performance and drain-

ing out the battery. Finally, we decided to use already extracted features from

the one million songs dataset [BMEWL11] on the server, and use the names of

the songs to find the match between the songs on the phone and the songs on

the server. This approach comes at the price that we are able to recommend

only songs out of the subset of songs contained on the phone, i.e., the songs

found in both the phone and in the one million song dataset.

8.1.1 Implementation Details

On the client side—the application running on the phone—two values are stored:

the signature of the music list and the application identifier. The initial values

are both set to null when the application is installed. While starting the appli-

cation the music list is read from the phone and the signature is calculated. If

the signature is different than the previous one, the user is asked to synchronize

the music list with the server.

The server exposes two functions to the clients using the HTTP protocol,

one for the music synchronization and one for the recommendation. The music

synchronization function is invoked with the list of songs contained on the phone

and the application id as parameters. If the application id is null, the server

recognizes this application installation as new, assigns a new id to it, and sends

it back to the client as a return parameter. Thereafter, the matching between

the songs on the server and the songs on the phone is made and the application

profile is stored on the server.

The music recommendation function is invoked with the binary represen-

tation of the query image together with the application id sent to the server.

Before issuing a request the image is scaled down to 640x480 pixels to decrease
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Figure 8.1: PicasSound interaction process

the time needed to send the request. The server retrieves the application profile

based on the application id and makes a recommendation, sending the top ten

songs as a response. The complete interaction process is illustrated in Figure 8.1.

8.2 Application Functionality

The basic functionality of the PicasSound application is organized in the follow-

ing four steps:

• Music synchronization: is performed to identify the intersection be-

tween the songs on the user’s phone and the songs contained in the in-

dex on the server. This way, only the songs from the user’s phone are

recommended in the following steps. The music synchronization step is

performed at the user’s request with the notification to the user that the

names of the songs contained in the phone will be sent to the server.

Once the step is completed, the user is notified about the intersection size

between the songs.

• Image selection: a user selects an image that is to be uploaded to the

server by either selecting the image from the existing image collection or

by capturing a new image by the phone’s camera. Selecting an image from

the existing image collection is triggered by tapping twice on the free space

of the application’s background, while one tap triggers the camera mode

used to capture a new image (cf., Figure 8.2(a)).
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• Soundtrack recommendation: creates a request for the soundtrack

recommendation on the server by uploading the selected/captured image.

Once the recommendation process is done, the list of the recommended

songs is received from the server and the application automatically changes

to the recommendation exploration mode.

• Recommendation exploration: a user explores a list of recommended

songs by playing them directly from the application. The application

shows a ranked list of songs with the ability to jump between the played

songs either incrementally or directly by scrolling to a specific song (cf.,

Figure 8.2(c)).

(a) Welcome screen (b) Image selected (c) Recommended music

Figure 8.2: PicasSound screenshots

Figure 8.2 shows the screenshots of the PicasSound application in three

different states. First screenshot (Figure 8.2(a)) shows the welcome screen,

that is the screen that is first seen when the application is started. When an

image is selected or captured it is displayed at the main screen as shown in the

second screenshot (Figure 8.2(b)). Exploring the recommended songs is done

by inspecting a ranked list of the recommendation and playing the songs from

the list, as shown in the third screenshot (Figure 8.2(c)).



Chapter 9

Conclusion and Outlook

In this thesis we considered the problem of soundtrack recommendation for a

given set of images to be presented in a slide show.

We proposed Picasso, an approach to solve the task of soundtrack recommen-

dation based on information extracted from publicly available, contemporary

movies. With Picasso we showed how similarity search in image and music do-

mains can be used to create a connection between these domains using movies as

a link. We created a reusable benchmark to evaluate the quality of soundtrack

recommendation systems. We reported on detailed statistics of the collected

relevance assessments giving a deeper insight into the problem. We evaluated

and reported on the performance of Picasso and a competing approach using

the proposed benchmark.

It is of importance that the produced recommendation are of high quality,

but it is also very important to have an efficient recommendation process. For

this reason, we have addressed two efficiency aspects that arise from the Picasso

approach, however, both addressed problems are general and appear in multi-

tude of situations: We have addressed the problem of processing top-K queries

with set-defined selections and proposed a partitioned index which leverages the

information from previous queries to organize the data in the index to minimize

query processing latency. For the aspect of similarity search, we proposed two

heuristic enhancements to the Locality Sensitive Hashing scheme. We further

looked at the efficient distribution of the similarity search using the MapReduce

framework.

So far, we addressed the problem of soundtrack recommendation for images

without any knowledge about the user for which the recommendation is done.

Including user preferences in the recommendation process appears to be promis-

ing to improve the quality of recommendations. This could be achieved directly

using music preferences of the user or indirectly using preferences towards movies

or movie genres. At its current state, Picasso uses all of the extracted informa-

tion from movies with the same importance when recommending a soundtrack.

It can be assumed that some movies contain more useful information than others
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concerning the soundtrack selection. It might be beneficial to try and determine

the quality of each movie concerning its soundtrack before including it in the

training dataset. Picasso could also potentially benefit from the higher level

features that could be extracted from images and music, such as face detec-

tion in images or tempo detection in music. Having a first benchmark in place,

we would further address the problem of selecting a pair of songs for which a

relevance assessment would bring the most benefit to the benchmark.

In the work on processing top-K queries with set-defined selections we only

looked at the problem when one attribute is used for ranking. Obviously, the

question arises what happens when multiple attributes are aggregated and the

final score is used for ranking. Concerning Locality Sensitive Hashing enhance-

ments, the major aspect remains unsolved whether we can mathematically show

under which assumptions the proposed enhancements incur benefit in query pro-

cessing times and in which cases it is better to use the basic LSH techniques.



Appendix A

Appendix

A.1 Benchmark Music Collection Sample

Classical

Andrea Bocelli Besame Mucho

Andrea Bocelli Con te Partiro

Frederic Chopin Military Polonaise

Frederic Chopin Revolutionary Etude

Johann Sebastian Bach Oboe Concerto in D minor

Johann Sebastian Bach Toccata in D minor

Ludovico Einaudi Nuvole Bianche

Ludovico Einaudi Oltremare

Wolfgang Amadeus Mozart symphony no. 40 1st

Wolfgang Amadeus Mozart eine kliene nacht music

... ...

Table A.1: Sample of benchmark songs from genres category (part I)
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Hip Hop and Rap

2Pac Changes

2Pac Keep Ya Head Up

Cypress Hill Insane In The Brain

Cypress Hill Superstar

Eminem Not Afraid

Eminem Without Me

Jay-Z Empire State of Mind

Jay-Z Young Forever

The Black Eyed Peas I Gotta Feeling

The Black Eyed Peas The Time Dirty Bit

... ...

Pop

ABBA Dancing Queen

ABBA Fernando

Lady Gaga Bad Romance

Lady Gaga Born This Way

Madonna Die Another Day

Madonna Like a prayer

Michael Jackson Beat It

Michael Jackson Billie Jean

Rihanna Man Down

Rihanna Only Girl

... ...

Rock

Bruce Springsteen Dancing In The Dark

Bruce Springsteen Fire

Foo Fighters Learn To Fly

Foo Fighters The Pretender

Queen Don’t Stop Me Now

Queen Innuendo

Red Hot Chili Peppers Otherside

Red Hot Chili Peppers Scar Tissue

The Rolling Stones Paint It Black

The Rolling Stones Sympathy For The Devil

... ...

Table A.2: Sample of benchmark songs from genres category (part II)
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Happy

Belle and Sebastian Funny Little Frog

Belle and Sebastian I Want The World To Stop

Jason Mraz Im Yours

Jason Mraz Lucky

Karen O Hello Tomorrow

Karen O Where the Wild Things Are

Never Shout Never Trouble

Never Shout Never What Is Love

Noah and the Whale 5 Years Time

Noah and the Whale Life goes on

... ...

Peaceful

Above and Beyond Alone Tonight

Above and Beyond Oceanic

Mirah Engine Heart

Mirah The Garden

Never Shout Never Trouble

Never Shout Never What Is Love

Ryan Farish Chasing The Sun

Ryan Farish Pacific Wind

Zen Garden Polymorfia

Zen Garden moments behind glass

... ...

Positive

Brett Dennen Ain’t no reason

Brett Dennen Comeback Kid

Chamillionaire Good Morning

Chamillionaire Ridin

Mando Diao Dance With Somebody

Mando Diao Gloria

Revolver Helplessly Hoping

Revolver This Boy

Train Get to Me

Train Hey, Soul Sister

... ...

Table A.3: Sample of benchmark songs from positive feelings category
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Aggressive

Agonoize Circle Of Death

Agonoize I against me

Kreator Enemy of God

Kreator Violent Revolution

Metallica Master Of Puppets

Metallica Of Wolf And Man

Nonpoint Alive and Kicking

Nonpoint Bullet With A Name

Rammstein Du Hast

Rammstein Tier

... ...

Hate

Dark Fortress Edge Of Night

Dark Fortress Ylem

GG Allin No Rules

GG Allin You Hate Me and I Hate You

Ingested Castigation and Rebirth

Ingested Cremated Existence

Massemord Obscura Symphonia

Massemord Skogen Kaller Og Vi Svarer

X-Fusion Dial D For Demons

X-Fusion My Inner Storm Blows

... ...

Tragic

Leather Strip Hate me

Leather Strip Strap me down

Psyclon Nine Parasitic

Psyclon Nine Under the Judas Tree

Rufus Wainwright Hallelujah

Rufus Wainwright What would I ever do with a Rose

Solitary Experiments Do you Feel

Solitary Experiments Immortal

W.A.S.P. Harder Faster

W.A.S.P. Wild Child

... ...

Table A.4: Sample of songs from negative feelings category
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A.2 Benchmark Queries

Architecture

Aviation

Cloudscape

Conservation

Cosplay

Table A.5: Benchmark queries (part I)
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Digiscoping

Fashion

Fine art

Fire

Food

Glamour

Landscape

Miksang

Table A.6: Benchmark queries (part II)
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Nature

Old-time

Panorama

Portrait

Sports

Still-life

Street

Underwater

Table A.7: Benchmark queries (part III)
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Vernacular

War

Wedding

Wildlife

Table A.8: Benchmark queries (part IV)
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A.3 Feasibility Study Query Images

1 2 3

4 5 6

7 8 9

10 11 12

Table A.9: Query images used in the feasibility study
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