Please use this identifier to cite or link to this item:
doi:10.22028/D291-26512 | Title: | Partial regularity for minimizers of splitting-type variational integrals under general growth conditions. - Part 1 |
| Author(s): | Breit, Dominic |
| Language: | English |
| Year of Publication: | 2009 |
| DDC notations: | 510 Mathematics |
| Publikation type: | Other |
| Abstract: | We consider variational problems of splitting-type, i.e. the density F:\mathbb{R}^{n}\supset\Omega\rightarrow\mathbb{R}^{N} has an additive decomposition into two functions f and g. Assuming power growth conditions with exponents p and q for these functions, Bildhauer and Fuchs [BF2,3] show partial regularity in the general vector case and full regularity for n = 2 in the superquadratic situation. If the functions f and g depend on the modulus, i.e. f(·) = a(|·|) and g(·) = b(|·|), we generalize the statements for splitting-type variational integrals with power growth conditions to the case of N-functions a and b. |
| Link to this record: | urn:nbn:de:bsz:291-scidok-47763 hdl:20.500.11880/26568 http://dx.doi.org/10.22028/D291-26512 |
| Series name: | Preprint / Fachrichtung Mathematik, Universität des Saarlandes |
| Series volume: | 243 |
| Date of registration: | 6-Jun-2013 |
| Faculty: | MI - Fakultät für Mathematik und Informatik |
| Department: | MI - Mathematik |
| Collections: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Files for this record:
| File | Description | Size | Format | |
|---|---|---|---|---|
| preprint_243_09.pdf | 218,74 kB | Adobe PDF | View/Open |
Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.

