Please use this identifier to cite or link to this item: doi:10.22028/D291-26512
Title: Partial regularity for minimizers of splitting-type variational integrals under general growth conditions. - Part 1
Author(s): Breit, Dominic
Language: English
Year of Publication: 2009
DDC notations: 510 Mathematics
Publikation type: Other
Abstract: We consider variational problems of splitting-type, i.e. the density F:\mathbb{R}^{n}\supset\Omega\rightarrow\mathbb{R}^{N} has an additive decomposition into two functions f and g. Assuming power growth conditions with exponents p and q for these functions, Bildhauer and Fuchs [BF2,3] show partial regularity in the general vector case and full regularity for n = 2 in the superquadratic situation. If the functions f and g depend on the modulus, i.e. f(·) = a(|·|) and g(·) = b(|·|), we generalize the statements for splitting-type variational integrals with power growth conditions to the case of N-functions a and b.
Link to this record: urn:nbn:de:bsz:291-scidok-47763
Series name: Preprint / Fachrichtung Mathematik, Universität des Saarlandes
Series volume: 243
Date of registration: 6-Jun-2013
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Mathematik
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
preprint_243_09.pdf218,74 kBAdobe PDFView/Open

Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.