Please use this identifier to cite or link to this item: doi:10.22028/D291-26501
Title: Local Lipschitz regularity of vector valued local minimizers of variational integrals with densities depending on the modulus of the gradient
Author(s): Fuchs, Martin
Language: English
Year of Publication: 2008
Free key words: vector valued problems
local minimizers
Lipschitz regularity
nonstandard growth
DDC notations: 510 Mathematics
Publikation type: Other
Abstract: If u:\mathbb{R}^{n}\supset\Omega\rightarrow\mathbb{R}^{M} locally minimizes the functional \int_{\Omega}h(\left|\nabla u\right|)dx with h such that \frac{h'(t)}{t}\leq h''(t)\leq c(t+t^{2})^{\omega}\frac{h'(t)}{t} for all t\geq0, then u is locally Lipschitz independent of the value of \omega\geq0.
Link to this record: urn:nbn:de:bsz:291-scidok-47489
Series name: Preprint / Fachrichtung Mathematik, Universität des Saarlandes
Series volume: 218
Date of registration: 5-Jun-2013
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Mathematik
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
preprint_218_08.pdf131,06 kBAdobe PDFView/Open

Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.