Please use this identifier to cite or link to this item:
doi:10.22028/D291-26453 | Title: | Maintaining the minimal distance of a point set in polylogarithmic time |
| Author(s): | Smid, Michiel |
| Language: | English |
| Year of Publication: | 1990 |
| DDC notations: | 004 Computer science, internet |
| Publikation type: | Report |
| Abstract: | A dynamic data structure is given that maintains the minimal distance of a set of n points in k-dimensional space in O((log n)^{k+2}) amortized time per update. The size of data structure is bounded by O(n(log n)^{k}). Distances are measured in an arbitrary Minkowski L_{t}-metric, where 1\leq t\leq\infty. This is the first dynamic data structure that maintains the minimal distance in polylogarithmic time, when arbitrary updates are performed. |
| Link to this record: | urn:nbn:de:bsz:291-scidok-51453 hdl:20.500.11880/26509 http://dx.doi.org/10.22028/D291-26453 |
| Series name: | Technischer Bericht / A / Fachbereich Informatik, Universität des Saarlandes |
| Series volume: | 1990/13 |
| Date of registration: | 3-Apr-2013 |
| Faculty: | MI - Fakultät für Mathematik und Informatik |
| Department: | MI - Informatik |
| Collections: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Files for this record:
| File | Description | Size | Format | |
|---|---|---|---|---|
| fb14_1990_13.pdf | 21,97 MB | Adobe PDF | View/Open |
Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.

