Please use this identifier to cite or link to this item: doi:10.22028/D291-26453
Title: Maintaining the minimal distance of a point set in polylogarithmic time
Author(s): Smid, Michiel
Language: English
Year of Publication: 1990
DDC notations: 004 Computer science, internet
Publikation type: Report
Abstract: A dynamic data structure is given that maintains the minimal distance of a set of n points in k-dimensional space in O((log n)^{k+2}) amortized time per update. The size of data structure is bounded by O(n(log n)^{k}). Distances are measured in an arbitrary Minkowski L_{t}-metric, where 1\leq t\leq\infty. This is the first dynamic data structure that maintains the minimal distance in polylogarithmic time, when arbitrary updates are performed.
Link to this record: urn:nbn:de:bsz:291-scidok-51453
Series name: Technischer Bericht / A / Fachbereich Informatik, Universität des Saarlandes
Series volume: 1990/13
Date of registration: 3-Apr-2013
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Informatik
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
fb14_1990_13.pdf21,97 MBAdobe PDFView/Open

Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.