Please use this identifier to cite or link to this item:
doi:10.22028/D291-26375 | Title: | A geometric maximum principle for variational problems in spaces of vector valued functions of bounded variation |
| Author(s): | Bildhauer, Michael Fuchs, Martin |
| Language: | English |
| Year of Publication: | 2008 |
| DDC notations: | 510 Mathematics |
| Publikation type: | Other |
| Abstract: | We discuss variational integrals with density having linear growth on spaces of vector valued BV -functions and prove \textrm{Im}(u)\subset K for minimizers u provided that the boundary data take their values in the closed convex set K assuming in addition that the integrand satisfies natural structure conditions. |
| Link to this record: | urn:nbn:de:bsz:291-scidok-47412 hdl:20.500.11880/26431 http://dx.doi.org/10.22028/D291-26375 |
| Series name: | Preprint / Fachrichtung Mathematik, Universität des Saarlandes |
| Series volume: | 211 |
| Date of registration: | 11-Apr-2012 |
| Faculty: | MI - Fakultät für Mathematik und Informatik |
| Department: | MI - Mathematik |
| Collections: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Files for this record:
| File | Description | Size | Format | |
|---|---|---|---|---|
| preprint_211_08.pdf | 136,09 kB | Adobe PDF | View/Open |
Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.

