Please use this identifier to cite or link to this item: doi:10.22028/D291-26375
Title: A geometric maximum principle for variational problems in spaces of vector valued functions of bounded variation
Author(s): Bildhauer, Michael
Fuchs, Martin
Language: English
Year of Publication: 2008
DDC notations: 510 Mathematics
Publikation type: Other
Abstract: We discuss variational integrals with density having linear growth on spaces of vector valued BV -functions and prove \textrm{Im}(u)\subset K for minimizers u provided that the boundary data take their values in the closed convex set K assuming in addition that the integrand satisfies natural structure conditions.
Link to this record: urn:nbn:de:bsz:291-scidok-47412
Series name: Preprint / Fachrichtung Mathematik, Universität des Saarlandes
Series volume: 211
Date of registration: 11-Apr-2012
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Mathematik
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
preprint_211_08.pdf136,09 kBAdobe PDFView/Open

Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.