Please use this identifier to cite or link to this item:
doi:10.22028/D291-26368 | Title: | Interior gradient bounds for local minimizers of variational integrals under nonstandard growth conditions |
| Author(s): | Apushkinskaya, Darya Bildhauer, Michael Fuchs, Martin |
| Language: | English |
| Year of Publication: | 2008 |
| DDC notations: | 510 Mathematics |
| Publikation type: | Other |
| Abstract: | Inspired by the work of Marcellini and Papi [MP] we consider local minima u:\mathbb{R}^{n}\supset\Omega\rightarrow\mathbb{R}^{M} of variational integrals of the form \int_{\Omega}h(\left|\nabla u\right|)dx and prove interior gradient bounds under rather general assumptions on h working with the additional hypothesis that u is locally bounded. Our requirements imposed on the density h do not involve the dimension n. |
| Link to this record: | urn:nbn:de:bsz:291-scidok-47363 hdl:20.500.11880/26424 http://dx.doi.org/10.22028/D291-26368 |
| Series name: | Preprint / Fachrichtung Mathematik, Universität des Saarlandes |
| Series volume: | 206 |
| Date of registration: | 23-Mar-2012 |
| Faculty: | MI - Fakultät für Mathematik und Informatik |
| Department: | MI - Mathematik |
| Collections: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Files for this record:
| File | Description | Size | Format | |
|---|---|---|---|---|
| preprint_206_08.pdf | 195,3 kB | Adobe PDF | View/Open |
Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.

