Please use this identifier to cite or link to this item: doi:10.22028/D291-26368
Title: Interior gradient bounds for local minimizers of variational integrals under nonstandard growth conditions
Author(s): Apushkinskaya, Darya
Bildhauer, Michael
Fuchs, Martin
Language: English
Year of Publication: 2008
DDC notations: 510 Mathematics
Publikation type: Other
Abstract: Inspired by the work of Marcellini and Papi [MP] we consider local minima u:\mathbb{R}^{n}\supset\Omega\rightarrow\mathbb{R}^{M} of variational integrals of the form \int_{\Omega}h(\left|\nabla u\right|)dx and prove interior gradient bounds under rather general assumptions on h working with the additional hypothesis that u is locally bounded. Our requirements imposed on the density h do not involve the dimension n.
Link to this record: urn:nbn:de:bsz:291-scidok-47363
Series name: Preprint / Fachrichtung Mathematik, Universität des Saarlandes
Series volume: 206
Date of registration: 23-Mar-2012
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Mathematik
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
preprint_206_08.pdf195,3 kBAdobe PDFView/Open

Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.