Please use this identifier to cite or link to this item:
doi:10.22028/D291-26349 | Title: | Higher integrability of the gradient for vectorial minimizers of decomposable variational integrals |
| Author(s): | Bildhauer, Michael Fuchs, Martin |
| Language: | English |
| Year of Publication: | 2006 |
| DDC notations: | 510 Mathematics |
| Publikation type: | Other |
| Abstract: | We consider local minimizers u:\mathbb{R}^{n}\supset\Omega\rightarrow\mathbb{R}^{N} of variational integrals I[u]:=\int_{\Omega}F(\nabla u)dx, where F is of anisotropic (p,q)-growth with exponents 1<p\leq q<\infty. If F is in a certain sense decomposable, we show that the dimensionless restriction q\leq2p+2 together with the local boundedness of u implies local integrability of \nabla u for all exponents t\leq p+2. More precisely, the initial exponents for the integrability of the partial derivatives can be increased by two, at least locally. If n = 2, then we use these facts to prove C^{1,\alpha}-regularity of u for any exponents 2\leq p\leq q. |
| Link to this record: | urn:nbn:de:bsz:291-scidok-46739 hdl:20.500.11880/26405 http://dx.doi.org/10.22028/D291-26349 |
| Series name: | Preprint / Fachrichtung Mathematik, Universität des Saarlandes |
| Series volume: | 186 |
| Date of registration: | 13-Mar-2012 |
| Faculty: | MI - Fakultät für Mathematik und Informatik |
| Department: | MI - Mathematik |
| Collections: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Files for this record:
| File | Description | Size | Format | |
|---|---|---|---|---|
| preprint_186_06.pdf | 215,25 kB | Adobe PDF | View/Open |
Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.

