Please use this identifier to cite or link to this item:
doi:10.22028/D291-26344 | Title: | Fredholm spectrum and growth of cohomology groups |
| Author(s): | Eschmeier, Jörg |
| Language: | English |
| Year of Publication: | 2006 |
| DDC notations: | 510 Mathematics |
| Publikation type: | Other |
| Abstract: | Let T\in L(E)^{n} be a commuting tuple of bounded linear operators on a complex Banach space E and let \sigma_{F}(T)=\sigma(T)\setminus\sigma_{e}(T) be the non-essential spectrum of T. We show that, for each connected component M of the manifold \mbox{Reg}(\sigma_{F}(T)) of all smooth points of \sigma_{F}(T), there is a number p\in\{0,...,n\} such that, for each point z\in M, the dimensions of the cohomology groups H{}^{p}((z-T)^{k},E) grow at least like the sequence (k^{d})_{k\geq1} with d = dimM. |
| Link to this record: | urn:nbn:de:bsz:291-scidok-46685 hdl:20.500.11880/26400 http://dx.doi.org/10.22028/D291-26344 |
| Series name: | Preprint / Fachrichtung Mathematik, Universität des Saarlandes |
| Series volume: | 181 |
| Date of registration: | 13-Mar-2012 |
| Faculty: | MI - Fakultät für Mathematik und Informatik |
| Department: | MI - Mathematik |
| Collections: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Files for this record:
| File | Description | Size | Format | |
|---|---|---|---|---|
| preprint_181_06.pdf | 165,78 kB | Adobe PDF | View/Open |
Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.

