Please use this identifier to cite or link to this item: doi:10.22028/D291-26344
Title: Fredholm spectrum and growth of cohomology groups
Author(s): Eschmeier, Jörg
Language: English
Year of Publication: 2006
DDC notations: 510 Mathematics
Publikation type: Other
Abstract: Let T\in L(E)^{n} be a commuting tuple of bounded linear operators on a complex Banach space E and let \sigma_{F}(T)=\sigma(T)\setminus\sigma_{e}(T) be the non-essential spectrum of T. We show that, for each connected component M of the manifold \mbox{Reg}(\sigma_{F}(T)) of all smooth points of \sigma_{F}(T), there is a number p\in\{0,...,n\} such that, for each point z\in M, the dimensions of the cohomology groups H{}^{p}((z-T)^{k},E) grow at least like the sequence (k^{d})_{k\geq1} with d = dimM.
Link to this record: urn:nbn:de:bsz:291-scidok-46685
Series name: Preprint / Fachrichtung Mathematik, Universität des Saarlandes
Series volume: 181
Date of registration: 13-Mar-2012
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Mathematik
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
preprint_181_06.pdf165,78 kBAdobe PDFView/Open

Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.