Please use this identifier to cite or link to this item: doi:10.22028/D291-26334
Title: Samuel multiplicity for several commuting operators
Author(s): Eschmeier, Jörg
Language: English
Year of Publication: 2006
DDC notations: 510 Mathematics
Publikation type: Other
Abstract: It is shown that the Samuel multiplicity of a lower semi-Fredholm tuple T\in L(X)^{n} of commuting bounded operators on a complex Banach space X coincides with the generic dimension of the last cohomolgoy groups H^{n}(z-T,X) of its Koszul complex near z=0. As applications we show that the algebraic and analytic Samuel multiplicities of T coincide and that the Samuel multiplicity is additive for closed invariant subspaces of the symmetric Fock space.
Link to this record: urn:nbn:de:bsz:291-scidok-46387
Series name: Preprint / Fachrichtung Mathematik, Universität des Saarlandes
Series volume: 171
Date of registration: 9-Mar-2012
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Mathematik
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
preprint_171_06.pdf179,09 kBAdobe PDFView/Open

Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.