Please use this identifier to cite or link to this item:
doi:10.22028/D291-26323 | Title: | Partial regularity for higher order variational problems under anisotropic growth conditions |
| Author(s): | Apushkinskaya, Darya Fuchs, Martin |
| Language: | English |
| Year of Publication: | 2005 |
| Free key words: | variational problems of higher order nonstandard growth regularity of minimizers |
| DDC notations: | 510 Mathematics |
| Publikation type: | Other |
| Abstract: | We prove a partial regularity result for local minimizers u : \mathbb{R}^{n}\supset\Omega\rightarrow\mathbb{R}^{M} of the variational integral J(u,\Omega)=\int_{\Omega}f(\nabla^{k}u)dx, where k is any integer and f is a strictly convex integrand of anisotropic (p,q)-growth with exponents satisfying the condition q < p(1 + 2/n). This is some extension of the regularity theorem obtained in [BF2] for the case n = 2. |
| Link to this record: | urn:nbn:de:bsz:291-scidok-46278 hdl:20.500.11880/26379 http://dx.doi.org/10.22028/D291-26323 |
| Series name: | Preprint / Fachrichtung Mathematik, Universität des Saarlandes |
| Series volume: | 159 |
| Date of registration: | 5-Mar-2012 |
| Faculty: | MI - Fakultät für Mathematik und Informatik |
| Department: | MI - Mathematik |
| Collections: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Files for this record:
| File | Description | Size | Format | |
|---|---|---|---|---|
| preprint_159_05.pdf | 217,66 kB | Adobe PDF | View/Open |
Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.

