Please use this identifier to cite or link to this item: doi:10.22028/D291-26323
Title: Partial regularity for higher order variational problems under anisotropic growth conditions
Author(s): Apushkinskaya, Darya
Fuchs, Martin
Language: English
Year of Publication: 2005
Free key words: variational problems of higher order
nonstandard growth
regularity of minimizers
DDC notations: 510 Mathematics
Publikation type: Other
Abstract: We prove a partial regularity result for local minimizers u : \mathbb{R}^{n}\supset\Omega\rightarrow\mathbb{R}^{M} of the variational integral J(u,\Omega)=\int_{\Omega}f(\nabla^{k}u)dx, where k is any integer and f is a strictly convex integrand of anisotropic (p,q)-growth with exponents satisfying the condition q < p(1 + 2/n). This is some extension of the regularity theorem obtained in [BF2] for the case n = 2.
Link to this record: urn:nbn:de:bsz:291-scidok-46278
Series name: Preprint / Fachrichtung Mathematik, Universität des Saarlandes
Series volume: 159
Date of registration: 5-Mar-2012
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Mathematik
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
preprint_159_05.pdf217,66 kBAdobe PDFView/Open

Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.