Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-26322
Titel: Time splitting error in DSMC schemes for the inelastic Boltzmann equation
Verfasser: Rjasanow, Sergej
Wagner, Wolfgang
Sprache: Englisch
Erscheinungsjahr: 2005
Freie Schlagwörter: granular matter
Boltzmann equation
stochastic numerics
DDC-Sachgruppe: 510 Mathematik
Dokumentart : Preprint (Vorabdruck)
Kurzfassung: The paper is concerned with the numerical treatment of the uniformly heated inelastic Boltzmann equation by the direct simulation Monte Carlo (DSMC) method. This technique is presently the most widely used numerical method in kinetic theory. We consider three modifications of the DSMC method and study them with respect to their efficiency and convergence properties. Convergence is investigated both with respect to the number of particles and to the time step. The main issue of interest is the time step discretization error due to various splitting strategies. A scheme based on the Strang-splitting strategy is shown to be of second order with respect to time step, while there is only first order for the commonly used Euler-splitting scheme. On the other hand, a no-splitting scheme based on appropriate Markov jump processes does not produce any time step error. It is established in numerical examples that the no-splitting scheme is about two orders of magnitude more efficient than the Euler-splitting scheme. The Strang-splitting scheme reaches almost the same level of efficiency compared to the no-splitting scheme, since the deterministic time step error vanishes sufficiently fast.
Link zu diesem Datensatz: urn:nbn:de:bsz:291-scidok-46268
hdl:20.500.11880/26378
http://dx.doi.org/10.22028/D291-26322
Schriftenreihe: Preprint / Fachrichtung Mathematik, Universität des Saarlandes
Band: 158
SciDok-Publikation: 29-Feb-2012
Fakultät: Fakultät 6 - Naturwissenschaftlich-Technische Fakultät I
Fachrichtung: MI - Mathematik
Fakultät / Institution:MI - Fakultät für Mathematik und Informatik

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
preprint_158_05.pdf196,46 kBAdobe PDFÖffnen/Anzeigen


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.