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Time splitting error in DSMC schemes for the
inelastic Boltzmann equation

Sergej Rjasanow and Wolfgang Wagner

November 14, 2005

Abstract

The paper is concerned with the numerical treatment of the uni-
formly heated inelastic Boltzmann equation by the direct simulation
Monte Carlo (DSMC) method. This technique is presently the most
widely used numerical method in kinetic theory. We consider three
modifications of the DSMC method and study them with respect to
their efficiency and convergence properties. Convergence is investi-
gated both with respect to the number of particles and to the time
step. The main issue of interest is the time step discretization error due
to various splitting strategies. A scheme based on the Strang-splitting
strategy is shown to be of second order with respect to time step,
while there is only first order for the commonly used Euler-splitting
scheme. On the other hand, a no-splitting scheme based on appropri-
ate Markov jump processes does not produce any time step error. It
is established in numerical examples that the no-splitting scheme is
about two orders of magnitude more efficient than the Euler-splitting
scheme. The Strang-splitting scheme reaches almost the same level of
efficiency compared to the no-splitting scheme, since the deterministic
time step error vanishes sufficiently fast.

AMS Subject Classification: 82C40, 82C80, 65R20
Keywords: Granular matter, Boltzmann equation, Stochastic numerics
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1 Introduction

A basic tool for modelling low density flows of granular materials is the
inelastic Boltzmann equation. We refer to the conference proceedings [PL01],
[PB03] and to the monograph [BP04] for details concerning applications and
an appropriate physical justification. In this paper we consider the spatially
homogeneous uniformly heated inelastic Boltzmann equation

∂tf − β∆v f = Qα(f, f) (1)

with initial condition

f(0, v) = f0(v) . (2)

Equation (1) describes the time evolution of a function f(t, v) representing
the average number of particles at time t having a velocity close to v . The
symbol ∆ denotes the Laplace operator and the parameter β > 0 determines
the strength of the random forcing. The collision integral is most conveniently
written in the weak form
∫

R3

Qα(f, f)(v)ϕ(v) dv = (3)

1

2

∫

R3

∫

R3

∫

S2

B(v, w, e) [ϕ(v′α) + ϕ(w′α)− ϕ(v)− ϕ(w)] f(v) f(w) de dwdv ,

where ϕ is a test function and S2 denotes the unit sphere in the Euclidean
space R3 . The function B is called collision kernel. The post-collisional
velocities are defined by

v′α = v′α(v, w, e) =
1

2
(v + w) +

1− α
4

(v − w) +
1 + α

4
|v − w| e ,

(4)

w′α = w′α(v, w, e) =
1

2
(v + w)− 1− α

4
(v − w)− 1 + α

4
|v − w| e .

The parameter 0 < α ≤ 1 is called restitution coefficient. For α = 1 the
collisions are elastic and Q1(f, f) coincides with the classical Boltzmann col-
lision operator. A discussion of the relevance of equation (1), as well as more
references, can be found in [GPV04].

In this paper we address the issue of the numerical treatment of equation
(1) by the direct simulation Monte Carlo (DSMC) method. This technique
is presently the most widely used numerical method in kinetic theory (cf.
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[Bir94], [RGD05]). It is based on a system of particles performing a random
evolution that imitates the behaviour of the underlying physical model. As to
inelastic collisions, the homogeneous cooling state of a low-density granular
flow was studied by DSMC in [BRMC96]. A DSMC method for uniformly
heated granular fluids, described by equation (1), was introduced in [MS00].
Related studies were performed in [BBR+02], [vZM04]. We refer to [FR04]
for an account of deterministic numerical methods for the elastic Boltzmann
equation and to [FPT05] concerning a deterministic numerical approach to
equation (1).

The purpose of this paper is to study three modifications of the DSMC
method for the uniformly heated inelastic Boltzmann equation with respect
to their efficiency and convergence properties. The main issue of interest
is the time step discretization error due to various splitting strategies. The
first method from [MS00] implements a straightforward Euler type splitting
in analogy with the classical Bird scheme for the spatially inhomogeneous
elastic Boltzmann equation. The second method follows the Strang splitting
strategy (cf. [Str68]). The third method, introduced in [GRW05], avoids
any time step discretization error, since no splitting is used. Convergence is
studied both with respect to the number of particles and to the time step.
All methods are of first order with respect to the inverse number of par-
ticles. The Strang-splitting scheme is of second order with respect to the
time step, while the Euler-splitting scheme is of first order. In the numerical
examples, the no-splitting scheme is about two orders of magnitude more
efficient than the Euler-splitting scheme. It is observed that the Strang-
splitting scheme reaches almost the same level of efficiency compared to the
no-splitting scheme, since the deterministic time step error vanishes suffi-
ciently fast.

The paper is organized as follows. In Section 2 we describe a Markovian
particle system approximating equation (1). In Section 3 we define the three
DSMC algorithms mentioned above. In Section 4 we introduce a test example
and present the results of numerical experiments. Here we study efficiency
and convergence properties of the algorithms both in the transient and in
the steady state cases. Section 5 contains some concluding remarks.

2 The direct simulation process

Here we describe the time evolution of a Markovian particle system

(
v1(t), . . . , vn(t)

)
, t ≥ 0 , (5)
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where each particle is characterized by its velocity. The process (5) corre-
sponds to equation (1) in the sense that the family of empirical measures

ν(n)(t, dv) =
1

n

n∑

j=1

δvj(t)(dv) (6)

converges (as n→∞) to the measures f(t, v) dv . We refer to [NT89], [GM97]
concerning rigorous convergence results (see also [RW05, Section 2.3.3]).

Roughly speaking, the system interacts through binary inelastic collisions.
In addition, the particles continuously gain kinetic energy due to Gaussian
white noise forcing. More precisely, we assume

∫

S2

B(v, w, e) de ≤ Bmax , ∀ v, w ∈ R3 . (7)

Then the evolution of the system (5) is determined via the following steps.

Initial measure

The system (5) at t = 0 is chosen in such a way that the empirical measure
ν(n)(0, dv) (cf. (6)) approximates the initial measure f0(v) dv (cf. (2)).

Time counter

Given the system (5) at time t , the next interaction (collision) takes place
at a random time t+ τ , where

Prob {τ ≥ s} = exp

(
−n− 1

2
Bmax s

)
, s ≥ 0. (8)

Brownian motion

The particle velocities perform individual Brownian motions between the
collisions. After some time τ without collisions, the particle velocities are
given by

vj(t+ τ) = vj(t) +
√

2 β τ ξj , j = 1, . . . , n , (9)

where ξj ∈ R3 are independent standard Gaussian random variables.

Collision partners

The indices i and j of the collision partners are chosen uniformly on the set
{1 ≤ i 6= j ≤ n} .
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Fictitious collision

Given i and j , the collision is fictitious (the system does not change) with
probability

1−
∫
S2 B(vi, vj, e) de

Bmax
. (10)

Collision

With the remaining probability, a direction vector e is generated according
to the density

B(vi, vj, e)∫
S2 B(vi, vj, e) de

, e ∈ S2 , (11)

and the post-collisional velocities

v′α(vi, vj, e) , w′α(vi, vj, e) (12)

are computed according to the collision transformation (4).

3 DSMC algorithms

Here we describe three algorithms based on the Markov process introduced
in the previous section. They differ in the way how time splitting is carried
out.

The algorithms perform the time evolution of a particle system (v1, . . . , vn) .
At some observation points

sm , m = 0, 1 . . . ,M , (13)

functionals of the system

ξ(n) =
1

n

n∑

j=1

ϕ(vj) (14)

are computed, where ϕ is an appropriate test function. The random variable
(14) approximates the functional

∫

R3

ϕ(v) f(sm, v) dv (15)
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of the solution of equation (1).

In order to reduce the random fluctuations of the estimator (14), a number
N of independent ensembles of particles is generated. The corresponding
values of the random variable are denoted by ξ

(n)
1 , . . . , ξ

(n)
N . The empirical

mean value of the random variable (14)

η(n,N) =
1

N

N∑

j=1

ξ
(n)
j (16)

is used as an approximation to the functional (15). The independent ensem-
bles of particles are also used to estimate the random fluctuations by means
of confidence intervals. For details we refer, e.g., to [RW05, Section 3.1.4].

3.1 Euler-splitting scheme

First we describe the DSMC method introduced in [MS00]. It implements the
idea of standard (elastic) DSMC, where the free flow and collision simulation
are separated (cf. [Bir94]). The simulation of random “kicking” and collisions
is splitted over a time step ∆t . The state of the particle system is calculated
at the discrete time points

tk = k∆t , k = 0, 1, . . . , (17)

until all observation points (13) (assumed to be multiples of the time step)
are reached.

Algorithm 1

1. Initialisation

1.1 set system time t = t0

1.2 generate vj , j = 1, . . . , n , according to f0(v)

2. Simulation (for k = 1, 2, . . .)

2.1 Collision step of length ∆t

2.1.1 compute τ according to (8)

2.1.2 update the system time t := t+ τ

2.1.3 if t ≥ tk then go to Step 2.2

2.1.4 generate the indices i 6= j
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2.1.5 go to Step 2.1.1 with probability (10)

2.1.6 generate e according to (11)

2.1.7 replace vi and vj according to (12)

2.2 Kicking step of length ∆t

2.2.1 update all velocities (cf. (9))

vi := vi +
√

2β∆t ξi , i = 1, . . . , n

2.2.2 set system time t = tk

3. Compute functional (14) at all sm

3.2 Strang-splitting scheme

Next we describe a modification of the algorithm from the previous section.
We apply the idea of the Strang splitting. This has been introduced in the
context of the elastic Boltzmann equation in [Ohw98]. Its application to
equations with rather general operators was studied in [BO99].

Algorithm 2

1. Initialisation

2. Simulation (for k = 1, 2, . . .)

2.1 Collision step of length ∆t/2

2.2 Kicking step of length ∆t

2.3 Collision step of length ∆t/2

3. Computation of functionals

3.3 No-splitting scheme

Finally we recall a DSMC algorithm that was introduced in [GRW05]. The
symbols σj denote the last time, at which the particle j was kicked.

Algorithm 3

1. Initialisation

1.1 set system time t = 0
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1.2 generate vj , j = 1, . . . , n , according to f0(v)

1.3 set σj = 0 , j = 1, . . . , n

2. Simulation (for m = 0, 1, . . . ,M)

2.1 compute τ according to (8)

2.2 update the system time t := t+ τ

2.3 if t ≥ sm then go to Step 3

2.4 generate the indices i 6= j

2.5 update the velocities vi and vj (cf. (9))

vi := vi +
√

2β (t− σi) ξi , vj := vj +
√

2β (t− σj) ξj

2.6 update the times of last kicking σi = σj := t

2.7 go to Step 2.1 with probability (10)

2.8 generate e according to (11)

2.9 replace vi and vj according to (12) and go to Step 2.1

3. Calculation of functionals

3.1 update the velocities of all particles (cf. (9))

vi := vi +
√

2β (sm − σi) ξi , i = 1, . . . , n

3.2 compute (14)

3.3 set system time t = sm and go to Step 2.1

3.4 Comments

Unbounded collision kernels

The variable hard sphere model

B(v, w, e) = Cλ |v − w|λ , 0 ≤ λ ≤ 1 , (18)

is widely used in applications (cf. [Bir94, Chapter 2]). Particular cases are
the models of hard spheres (λ = 1) and of pseudo-Maxwell molecules (λ = 0).
The kernel (18) does not satisfy condition (7), unless λ = 0 . In order to fit
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into the framework of Section 2, one has to truncate the kernel using some
maximal relative velocity Umax . The truncated kernel

B̂(v, w, e) =

{
B(v, w, e) , if |v − w| ≤ Umax ,
Cλ U

λ
max , otherwise ,

(19)

satisfies (7) with Bmax = 4π Cλ U
λ
max . Correspondingly, the parameter of the

waiting time distribution (8) takes the form

2π (n− 1)Cλ U
λ
max . (20)

The probability of a fictitious collision (10) is

1−
( |vi − vj|

Umax

)λ
.

The density (11) is constant so that the vector e is distributed uniformly on
the unit sphere.

Adapting majorants

There are two aspects related to the choice of the truncation parameter
Umax . If it is small, then the solution of equation (1) for the kernel (19) will
significantly differ from the solution for the original kernel B . If, on the other
hand, the parameter Umax is big, then the time steps between collisions are
small (inverse of parameter (20)) and the algorithms are time-consuming.
Therefore, the parameter Umax is usually derived from the particle system
used in the simulation.

In the classical (elastic) DSMC algorithm (cf. [Bir94]) the starting value
of Umax is based on the temperature of the initial particle system. Then this
value is adapted during the process of calculation each time, when the relative
velocity of a pair of particles exceeds the stored quantity. This procedure
works well in steady state calculations. The error related to this procedure
in transient calculations was studied in [RW98].

A problem with finding the maximum relative velocity in a particle system
is related to the fact that the effort is quadratic in the number of particles.
However, this can easily be reduced to a linear effort by using the estimate

max
i,j
|vi − vj| ≤ max

i,j

(
|vi − V |+ |V − vj|

)
= 2 max

i
|vi − V | ,

where V is any fixed vector. A particular choice is the numerical bulk velocity

V =
1

n

n∑

j=1

vj .
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Thus, one may start with Umax = 2 maxi |vi − V | and update the majorant
after each collision

Umax := max
{
Umax , |vi − V | , |vj − V |

}
. (21)

This procedure is used in Algorithms 1 and 2. The situation in Algorithm 3 is
slightly more difficult, since particle velocities change continuously as a result
of the kicking process. Here we implemented the above procedure of adapting
the majorant, but in addition the quantity Umax was updated according to
(21) after each Step 2.5. The error caused by this truncation does not seem
to be significant, as the very precise tail calculations in [GRW05] showed.

4 Numerical examples

Here we test the algorithms introduced in the previous section with respect
to their convergence properties and efficiency.

We consider the case of a constant collision kernel, namely (18) with

λ = 0 , C0 =
1

π
. (22)

Note that other values of the constant C0 can be handled by an appropriate
time scaling, since the function f(c t, v) solves equation (1) with diffusion
coefficient c β and collision kernel cB , where c > 0 is some constant. Fur-
thermore, we assume

∫

R3

f0(v) dv = 1 ,

∫

R3

v f0(v) dv = 0 .

Note the conservation properties

∫

R3

f(t, v) dv =

∫

R3

f0(v) dv ,

∫

R3

v f(t, v) dv =

∫

R3

v f0(v) dv ,

which can be derived easily from the weak form of the equation (cf. (3)).

In this case the relaxation of the temperature

T (t) =
1

3

∫

R3

|v|2f(t, v) dv (23)
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is known analytically. Assuming 0 < α < 1 , one obtains (cf. [GRW05])

T (t) = Tα,β(t) = T0 e
−(1− α2) t + Tα,β(∞)

(
1− e−(1− α2) t

)

= Tα,β(∞) + [T0 − Tα,β(∞)] e−(1− α2) t , (24)

where

T0 =
1

3

∫

R3

|v|2f0(v) dv

and

Tα,β(∞) =
2 β

1− α2
. (25)

Note that
lim
α→1

Tα,β(t) = T0 + 2β t .

According to (22), the collision kernel is bounded so that the only sources
of error are the number of particles n , the time step ∆t (in algorithms 1
and 2) and the number of independent sample N (cf. (16)). First order
of convergence with respect to n has been established under rather gen-
eral assumptions (cf. [NT89], [GM97] concerning the transient case and
[CPW98] concerning the steady state case). Convergence with respect to
∆t for Euler-splitting (first order) and Strang-splitting (second order) was
studied in [BO99] in the context of rather general operator equations. We
refer to [RW05, Section 3.5.5] for more details.

4.1 Approximation on a finite time interval (transient

case)

Here we use the Maxwell distribution

f0(v) =
1

(2 π)3/2
e−
|v|2
2 (26)

as the initial condition. For the parameters

α =
1

2
, β = 1 , (27)

one obtains from (24), (25)

T (t) = e−
3
4
t +

8

3

(
1− e−

3
4
t
)
. (28)
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Figure 1: No-splitting scheme for n = 64 (left) and n = 256 (right)
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Figure 2: No-splitting scheme for n = 4 096 (left) and n = 65 536 (right)

We approximate the evolution of the temperature (23) on the time interval
[0., 8.] , using (14) with ϕ(v) = 1

3
|v|2 (cf. (15)). The time step in the splitting

schemes (cf. (17)) is chosen in the form

∆t =
8

K
, K ≥ 4 .

Unless indicated otherwise, the results are averaged over N = 10 000 inde-
pendent ensembles (cf. (16)).

Particle number convergence

Fig. 1 illustrates the approximation of the analytical solution (28) (dashed
line) by confidence bands (solid lines) computed using the no-splitting scheme
with two different values of n . A “zoom” on the time interval [5.0, 8.0] of the
no-splitting scheme for two higher values of n is shown in Fig. 2. The
analytical solution (28) is mostly covered by the confidence interval for n =
4 096 and completely covered for n = 65 536 . More detailed results are given
in Table 1. The errors are computed as

Eend =

∣∣∣∣
T (tK)− TK
T (tK)

∣∣∣∣ , Emax = max
0≤k≤K

∣∣∣∣
T (tk)− Tk
T (tk)

∣∣∣∣ ,
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n Eend CF Confend CF Emax CF

16 0.359 E-00 - 0.119 E-00 - 0.359 E-00 -
64 0.939 E-01 3.82 0.420 E-01 2.83 0.939 E-01 3.82

256 0.229 E-01 4.10 0.183 E-01 2.30 0.229 E-01 4.10
1 024 0.584 E-02 3.92 0.865 E-02 2.11 0.584 E-02 3.92
4 096 0.136 E-02 4.29 0.430 E-02 2.01 0.136 E-02 4.29

16 382 0.293 E-03 4.64 0.215 E-02 2.00 0.332 E-03 4.10
65 536 0.141 E-03 2.08 0.108 E-02 1.99 0.141 E-03 2.35

Table 1: No-splitting scheme for different n

K EEuler
max CF EStrang

max CF

4 0.931 E-00 - 0.863 E-01 -
8 0.421 E-00 2.21 0.195 E-01 4.42

16 0.200 E-00 2.11 0.501 E-02 3.89
32 0.977 E-01 2.05 0.997 E-03 5.03

Table 2: Euler- and Strang-splitting schemes for n = 4096

where T (tk) are the exact values (28) of the temperature at time point tk
and Tk is the computed temperature. The convergence factors (quotients
of subsequent values) are denoted by CF. The results in Table 1 clearly
indicate the expected convergence order O(n−1) of the error. Note that the
width Confend of the confidence interval at tK is proportional to 1√

nN
, since

the variance of the estimator (14) has the order 1
n
.

Time step convergence

Similar convergence behaviour with respect to the particle number is ob-
served for the Euler- and Strang-splitting schemes, except that the n-limits
contain an error depending on ∆t . The corresponding numerical results are
collected in Table 2. The linear convergence of the Euler-splitting scheme as
well as the quadratic convergence of the Strang-splitting scheme are clearly
indicated.

For n = 4096 and K = 32 the error of the Strang-splitting scheme is
comparable to that of the no-splitting scheme, while the error of the Euler-
splitting scheme is about 70 times larger. We note that for these parameters
the numerical work of all schemes is roughly the same. A more detailed study
of the efficiency will be made in Section 4.2.
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Figure 3: No-splitting scheme for n = 256 , 1024 and 4096 (from below)

Deviation from the Maxwellian state

An interesting feature of the inelastic Boltzmann equation (1) is a non-
Maxwellian steady state. A specific “criterion” for detecting deviations from
the Maxwellian state has the form (cf. [RW05, Section 1.8])

Crit(t) = (29)

1

T (t)

(
1

2
‖P (t)− p(t) I‖2

F +
2

5T (t)
‖q(t)‖2 +

1

120T (t)2
γ(t)2

)1/2

,

where P (t) is the pressure tensor, p(t) is the scalar pressure, q(t) is the heat
flux vector, I denotes the identity matrix, ‖A‖F denotes the Frobenius norm
of a matrix A and

γ(t) =

∫

R3

‖v‖4 f(t, v) dv − 15T (t)2

is a fourth moment of the distribution function.

In Fig. 3 we show the criterion (29) obtained by the no-splitting scheme
with different values of n . The curves were calculated using, respectively,
N = 65536 , 16192 and 4096 repetitions. The functional starts from zero,
according to (26), and tends to a strictly positive stationary value as t→∞ .
So it allows one to quantify the deviation from the Maxwellian state.

For comparison the corresponding curves for the splitting schemes with
K = 32 , n = 4096 and N = 4096 are provided in Fig. 4. Similar to what
was observed for the temperature, the Strang-splitting scheme gives basically
the same accuracy as the no-splitting scheme, while the error of the Euler-
splitting scheme is significantly larger.
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Figure 4: No-splitting scheme (thick line), Strang-splitting scheme (upper
thin line) and Euler-splitting scheme (lower thin line) for n = 4096

4.2 Approximation of the stationary value (steady state
case)

Here we consider the same example as in Section 4.1 (cf. (28)). Figs. 1, 2
show that the stationary value T (∞) ∼ 2.6667 has almost been reached. So
we start averaging at s0 = 8 (cf. (13)). The quantity of interest is measured
after each ∆tmax = 2 so that

sm = s0 +m∆tmax , m = 1, . . . ,M .

This time step (corresponding to K = 4 in the context of the previous sub-
section) is big enough to assure almost independent observations. Confidence
intervals are constructed over M = 64 observation points, so that sM = 136 .

Time step error

We choose n = 65 536 so that the particle number error is negligible. Results
for the different methods are given in Tables 3-5. As above, Conf denotes the
width of the confidence interval and CF are the convergence factors (quotients
of subsequent values). The CPU times for the splitting schemes are measured
relative to the CPU time for the no-splitting scheme.

First order of the time step error is observed for the Euler-splitting scheme,
while the Strang-splitting scheme provides second order. The no-splitting
scheme avoids any time step error. Note that 0.0267 would be a 1%-error.

Efficiency

The effort is roughly determined by the sum of the mean number of collisions
Ncoll and the mean number of kicks Nkick . These quantities can be predicted
rather accurately.
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K T∞ Error CF Conf CPU CF

32 2.9226 0.2559 - 0.0046 1.09 -
256 2.6975 0.0308 8.3 0.0041 6.57 6.03
512 2.6817 0.0150 2.1 0.0040 12.8 1.95

2048 2.6719 0.0052 2.9 0.0039 51.1 3.99
4094 2.6710 0.0043 1.2 0.0053 100.4 1.96

Table 3: Euler-splitting scheme for n = 65 536

K T∞ Error CF Conf CPU

8 2.6055 0.0612 - 0.0040 0.61
16 2.6520 0.0147 4.2 0.0047 0.86
32 2.6620 0.0047 3.1 0.0038 1.07
64 2.6655 0.0012 3.9 0.0045 1.87

Table 4: Strang-splitting scheme for n = 65 536

The mean number of collisions is (cf. (20), (22))

Ncoll(n) = 2 (n− 1) sM .

This quantity does not depend on the particular splitting procedure. The
number of kicks is easily calculated from the other parameters. In the no-
splitting scheme one obtains

Nnosplit
kick (n) = 2Ncoll(n) + nM , M =

sM − s0

∆tmax

,

since at each collision both partners are kicked and, in addition, all particles
are kicked before making a measurement. In the other methods one obtains

N split
kick (n) =

sM
∆t

n ,

independently of the particular way of splitting. Accordingly, the effort is
roughly the same for the splitting and no-splitting schemes, if

4 (n− 1) sM + n
sM − s0

∆tmax
∼ sM

∆t
n

T∞ Error Conf CPU

2.6684 0.0017 0.0040 1.0

Table 5: No-splitting scheme for n = 65 536
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Method T∞ Error Conf

Euler 109.596 9.596 0.1711
Strang 99.739 0.261 0.1425
no-split 99.981 0.019 0.1877

Table 6: Example (30) for n = 65536

or
1

∆t
∼ 4 +

1

∆tmax
.

Thus, all methods have a similar effort for ∆t ∼ 1
4
, i.e. K ∼ 32 . In general,

the effort for the splitting schemes increases inversely proportional to the time
step. Note that these predictions are confirmed by the CPU-measurements
in Tables 3-5.

In conclusion, the Euler-splitting scheme needs about 100 times longer than
the no-splitting scheme to cover the correct temperature by the confidence
interval. The Strang-splitting scheme needs only about two times longer.
Alternatively, with the same effort, the error for the Euler-splitting scheme
is 100 times bigger than for the no-splitting scheme, while the error for the
Strang-splitting scheme is two times bigger.

These conclusions are qualitatively confirmed by a rough test for another
parameter configuration, namely

α = 0.5 , β = 37.5 (30)

instead of (27). In this case the exact asymptotic value of the temperature
is T (∞) = 100 (cf. (25)). All other parameters are as above, in particular,
K = 32 so that all three methods have approximately the same effort. The
results are given in Table 6.

5 Concluding remarks

The direct simulation Monte Carlo (DSMC) method is one of the basic tools
for the numerical treatment of nonlinear kinetic equations so that improve-
ments of its efficiency are of significant practical importance. In this paper
we considered a particular application, namely the uniformly heated inelastic
Boltzmann equation. We investigated the performance of two new DSMC al-
gorithms compared to a commonly used procedure. The order of convergence
with respect to the numerical parameters (number of particles, time step) as
well as the computational efficiency of the algorithms were studied both in the
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transient case (approximation of the solution on a finite time interval) and in
the steady state case (approximation of the stationary solution). One scheme
uses the Strang splitting strategy instead of Euler splitting. It provides sec-
ond order time step convergence instead of first order. The other scheme is
based on an appropriate Markov process avoiding any splitting procedure.
It can be considered as providing infinite order time step convergence. All
schemes are of first order with respect to the inverse particle number. In
our particular numerical test cases, both the Strang-splitting scheme and the
no-splitting scheme were up to two orders of magnitude more efficient than
the Euler-splitting scheme.

Here we comment on the relevance of the results for more general applica-
tions. The first direction of generalization concerns the type of the driving
force in equation (1). The adaptation of the schemes to other mechanisms
instead of Brownian motion, e.g., to deterministic force terms as in [MS00],
is rather obvious. We expect that the main messages of the paper concerning
“Strang versus Euler” and “no-splitting scheme” remain valid.

It should be emphasized that in the case of inelastic collisions the spa-
tially homogeneous situation is of independent interest, since there is some
“nontrivial” behaviour as, for example, a non-Maxwellian steady state. This
issue has been intensively studied in recent years. The no-splitting scheme
is very useful for investigating “fine” properties of the solution, as higher
moments or tails of the steady state distribution. It is remarkable that the
no-splitting scheme not only avoids the time step discretization error, but is
usually even more efficient than the other schemes. The quantitative value
of the efficiency gain depends on the concrete example, in particular, on the
level of “acceptable” time step error: if big time steps are sufficient, there is
less or no efficiency gain, if small time steps are required, the efficiency gain
may be rather significant.

Another interesting aspect of the present study is that it throws some
additional light on the controversial issue about the order of the time step
error in the elastic case (β = 0 , α = 1). Without going into details, we
refer to [RW05, Section 3.5.5] concerning a discussion of this matter for the
DSMC method in rarefied gas dynamics. Since temperature is not conserved,
it provides a simple nontrivial test example in the inelastic situation. This is
in contrast to the elastic case, where the time step issue can only be studied
in spatially inhomogeneous examples.

A second direction of further study concerns the spatially inhomogeneous
situation. In this case a term (v,∇x) is added to equation (1) and the solu-
tion f(t, x, v) depends on three more variables (position coordinates x). The
direct simulation process introduced in Section 2 can be adapted to this sit-
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uation. In addition to being accelerated by a random force, particles change
their positions between collisions. However, splitting cannot be avoided in a
numerically efficient procedure. It would be computationally too expensive
to take into account the relative positions for the whole system at all times.
The splitting should be performed by the Strang strategy, moreover, since the
Strang- and the Euler-schemes have basically the same effort per trajectory.
The no-splitting approach provides alternatives for the splitting procedure in
the spatially inhomogeneous situation. For example, the acceleration term
might be combined either with the motion term or with the collision term.
Additional time step error should be avoided, whenever this is possible, and
the no-splitting idea may help to do so.
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[GM97] C. Graham and S. Méléard. Stochastic particle approximations
for generalized Boltzmann models and convergence estimates.
Ann. Probab., 25(1):115–132, 1997.

[GPV04] I. M. Gamba, V. Panferov, and C. Villani. On the Boltzmann
equation for diffusively excited granular media. Comm. Math.
Phys., 246(3):503–541, 2004.

[GRW05] I. M. Gamba, S. Rjasanow, and W. Wagner. Direct simulation
of the uniformly heated granular Boltzmann equation. Math.
Comput. Modelling, 42(5/6):683–700, 2005.

21



[MS00] J. M. Montanero and A. Santos. Computer simulations of uni-
formly heated granular fluids. Granular Matter, 2:53–64, 2000.

[NT89] V. V. Nekrutkin and N. I. Tur. On the justification of a scheme
of direct modelling of flows of rarefied gases. Zh. Vychisl. Mat. i
Mat. Fiz., 29(9):1380–1392, 1989. In Russian.

[Ohw98] T. Ohwada. Higher order approximation methods for the Boltz-
mann equation. J. Comput. Phys., 139:1–14, 1998.
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