Please use this identifier to cite or link to this item: doi:10.22028/D291-26284
Title: A global nonlinear evolution problem for generalized Newtonian fluids : local initial regularity of the strong solution
Author(s): Fuchs, Martin
Seregin, Gregory
Language: English
Year of Publication: 2005
Free key words: generalized Newtonian fluids
regularity theory
DDC notations: 510 Mathematics
Publikation type: Other
Abstract: We consider the strong solution of an initial boundary value problem for a system of evolution equations describing the flow of a generalized Newtonian fluid of power law type. For a rather large scale of growth rates we prove local initial regularity results such as higher integrability of the pressure function or the existence of the second spatial derivatives of the velocity field.
Link to this record: urn:nbn:de:bsz:291-scidok-45054
Series name: Preprint / Fachrichtung Mathematik, Universität des Saarlandes
Series volume: 138
Date of registration: 18-Jan-2012
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Mathematik
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
preprint_138_05.pdf203,89 kBAdobe PDFView/Open

Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.