Please use this identifier to cite or link to this item: doi:10.22028/D291-26235
Title: Projective limits via inner premeasures and the true Wiener measure
Author(s): König, Heinz
Language: English
Year of Publication: 2003
Free key words: Prokhorov condition
transplantation theorems
DDC notations: 510 Mathematics
Publikation type: Other
Abstract: The paper continues the author's work in measure and integration, which is an attempt at unified systematization. It establishes projective limit theorems of the Prokhorov and Kolmogorov types in terms of inner premeasures. Then it specializes to obtain the (one-dimensional) Wiener measure on the space of real-valued functions on the positive halfline as a probability measure defined on an immense domain: In particular the subspace of continuous functions will be measurable of full measure - and not merely of full outer measure, as the usual projective limit theorems permit to conclude.
Link to this record: urn:nbn:de:bsz:291-scidok-44184
Series name: Preprint / Fachrichtung Mathematik, Universität des Saarlandes
Series volume: 83
Date of registration: 6-Dec-2011
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Mathematik
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
preprint_83_03.pdf562,96 kBAdobe PDFView/Open

Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.