Please use this identifier to cite or link to this item: doi:10.22028/D291-26216
Title: The three-way decomposition
Author(s): Ibraghimov, Ilghiz
Language: English
Year of Publication: 2002
DDC notations: 510 Mathematics
Publikation type: Other
Abstract: In this article we discuss the decomposition of A_{k}\in\mathbb{R}^{n_{1}\times n_{2}},k=1,...,n_{3} as A_{k}\simeq BE\hat{D}_{k}C^{*} in the Frobenius norm, where B\in\mathbb{R}^{n_{1}\times r} and C\in\mathbb{R}^{n_{2}\times r} have normalized columns, E and \hat{D}_{k}\in\mathbb{R}^{r\times r} are diagonal and \overset{n_{3}}{\sum}\hat{D}_{k}^{2} is the identity matrix. This decomposition is widely used in the data processing and is the generalization of the singular value decomposition for the 3 dimensional case. We propose a new algorithm for finding B, C, \hat{D}_{k} and E if A_{k} and r are given and B, C have full column rank. If A_{k} have exact decomposition then this algorithm has a linear convergence. An implementation of the numerical algorithm was developed, several examples were tested and good results obtained.
Link to this record: urn:nbn:de:bsz:291-scidok-43919
Series name: Preprint / Fachrichtung Mathematik, Universität des Saarlandes
Series volume: 66
Date of registration: 2-Dec-2011
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Mathematik
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
preprint_66_02.pdf171,53 kBAdobe PDFView/Open

Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.