Please use this identifier to cite or link to this item: doi:10.22028/D291-26206
Title: Twodimensional variational problems with linear growth
Author(s): Bildhauer, Michael
Language: English
Year of Publication: 2002
DDC notations: 510 Mathematics
Publikation type: Other
Abstract: Suppose that f:\mathbb{R}^{nN}\rightarrow\mathbb{R} is a strictly convex energy density of linear growth, f(Z)=g(\left|Z\right|^{2}) if N>1. If f satisfies an ellipticity condition of the form D^{2}f(Z)(Y,Y)\geq c(1+\left|Z\right|^{2})^{-\frac{\mu}{2}}\left|Y\right|^{2},\;1<\mu\leq3, then, following [Bi3], there exists a unique (up to a constant) solution of the variational problem \int_{\Omega}f(\nabla w)dx+\int_{\partial\Omega}f_{\infty}((u_{0}-w)\otimes v)d\mathcal{H}^{n-1}\rightarrow\mbox{min in }W_{1}^{1}(\Omega;\mathbb{R}^{N}), provided that the given boundary data u_{0}\in W_{1}^{1}(\Omega;\mathbb{R}^{N}) are additionally assumed to be of class L^{\infty}(\Omega;\mathbb{R}^{N}).Moreover, if \mu<3, then the boundedness of u_{0} yields local C^{1,\alpha}-regularity (and uniqueness up to a constant) of generalized minimizers of the problem \int_{\Omega}f(\nabla w)dx\rightarrow\mbox{min in }u_{0}+W_{1}^{1}(\Omega;\mathbb{R}^{N}). In our paper we show that the restriction u_{0}\in L^{\infty}(\Omega;\mathbb{R}^{N}) is superfluous in the twodimensional case n=2, hence we may prescribe boundary values from the energy class W_{1}^{1}(\Omega;\mathbb{R}^{N}) and still obtain the above results.
Link to this record: urn:nbn:de:bsz:291-scidok-43814
hdl:20.500.11880/26262
http://dx.doi.org/10.22028/D291-26206
Series name: Preprint / Fachrichtung Mathematik, Universität des Saarlandes
Series volume: 56
Date of registration: 1-Dec-2011
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Mathematik
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
preprint_56_02.pdf257,62 kBAdobe PDFView/Open


Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.