Please use this identifier to cite or link to this item:
doi:10.22028/D291-26206 | Title: | Twodimensional variational problems with linear growth |
| Author(s): | Bildhauer, Michael |
| Language: | English |
| Year of Publication: | 2002 |
| DDC notations: | 510 Mathematics |
| Publikation type: | Other |
| Abstract: | Suppose that f:\mathbb{R}^{nN}\rightarrow\mathbb{R} is a strictly convex energy density of linear growth, f(Z)=g(\left|Z\right|^{2}) if N>1. If f satisfies an ellipticity condition of the form D^{2}f(Z)(Y,Y)\geq c(1+\left|Z\right|^{2})^{-\frac{\mu}{2}}\left|Y\right|^{2},\;1<\mu\leq3, then, following [Bi3], there exists a unique (up to a constant) solution of the variational problem \int_{\Omega}f(\nabla w)dx+\int_{\partial\Omega}f_{\infty}((u_{0}-w)\otimes v)d\mathcal{H}^{n-1}\rightarrow\mbox{min in }W_{1}^{1}(\Omega;\mathbb{R}^{N}), provided that the given boundary data u_{0}\in W_{1}^{1}(\Omega;\mathbb{R}^{N}) are additionally assumed to be of class L^{\infty}(\Omega;\mathbb{R}^{N}).Moreover, if \mu<3, then the boundedness of u_{0} yields local C^{1,\alpha}-regularity (and uniqueness up to a constant) of generalized minimizers of the problem \int_{\Omega}f(\nabla w)dx\rightarrow\mbox{min in }u_{0}+W_{1}^{1}(\Omega;\mathbb{R}^{N}). In our paper we show that the restriction u_{0}\in L^{\infty}(\Omega;\mathbb{R}^{N}) is superfluous in the twodimensional case n=2, hence we may prescribe boundary values from the energy class W_{1}^{1}(\Omega;\mathbb{R}^{N}) and still obtain the above results. |
| Link to this record: | urn:nbn:de:bsz:291-scidok-43814 hdl:20.500.11880/26262 http://dx.doi.org/10.22028/D291-26206 |
| Series name: | Preprint / Fachrichtung Mathematik, Universität des Saarlandes |
| Series volume: | 56 |
| Date of registration: | 1-Dec-2011 |
| Faculty: | MI - Fakultät für Mathematik und Informatik |
| Department: | MI - Mathematik |
| Collections: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Files for this record:
| File | Description | Size | Format | |
|---|---|---|---|---|
| preprint_56_02.pdf | 257,62 kB | Adobe PDF | View/Open |
Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.

