Please use this identifier to cite or link to this item:
doi:10.22028/D291-26204 | Title: | A series of new congruences for Bernoulli numbers and Eisenstein series |
| Author(s): | Gekeler, Ernst-Ulrich |
| Language: | English |
| Year of Publication: | 2002 |
| DDC notations: | 510 Mathematics |
| Publikation type: | Other |
| Abstract: | We prove congruences of shape E_{k+h}\equiv E_{k}\cdot E_{h}(mod N) modulo powers N of small prime numbers p, thereby refining the well-known Kummer-type congruences modulo these p of the normalized Eisenstein series E_{k}. The method uses Serres theory of Iwasawa functions and p-adic Eisenstein series; it presents a rather general procedure to find and verify such congruences with a modest amount of numerical calculation. |
| Link to this record: | urn:nbn:de:bsz:291-scidok-43798 hdl:20.500.11880/26260 http://dx.doi.org/10.22028/D291-26204 |
| Series name: | Preprint / Fachrichtung Mathematik, Universität des Saarlandes |
| Series volume: | 53 |
| Date of registration: | 1-Dec-2011 |
| Faculty: | MI - Fakultät für Mathematik und Informatik |
| Department: | MI - Mathematik |
| Collections: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Files for this record:
| File | Description | Size | Format | |
|---|---|---|---|---|
| preprint_53_02.pdf | 202,65 kB | Adobe PDF | View/Open |
Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.

