Please use this identifier to cite or link to this item: doi:10.22028/D291-26204
Title: A series of new congruences for Bernoulli numbers and Eisenstein series
Author(s): Gekeler, Ernst-Ulrich
Language: English
Year of Publication: 2002
DDC notations: 510 Mathematics
Publikation type: Other
Abstract: We prove congruences of shape E_{k+h}\equiv E_{k}\cdot E_{h}(mod N) modulo powers N of small prime numbers p, thereby refining the well-known Kummer-type congruences modulo these p of the normalized Eisenstein series E_{k}. The method uses Serres theory of Iwasawa functions and p-adic Eisenstein series; it presents a rather general procedure to find and verify such congruences with a modest amount of numerical calculation.
Link to this record: urn:nbn:de:bsz:291-scidok-43798
Series name: Preprint / Fachrichtung Mathematik, Universität des Saarlandes
Series volume: 53
Date of registration: 1-Dec-2011
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Mathematik
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
preprint_53_02.pdf202,65 kBAdobe PDFView/Open

Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.