Please use this identifier to cite or link to this item:
doi:10.22028/D291-26192 | Title: | Examples of microstructures related to the theory of martensitic phase transformations |
| Author(s): | Fuchs, Martin Elfanni, Abdellah |
| Language: | English |
| Year of Publication: | 2001 |
| DDC notations: | 510 Mathematics |
| Publikation type: | Other |
| Abstract: | We consider the problem I^{\infty}=\underset{u\in\mathcal{W}}{inf}\underset{\Omega}{\int}\varphi(\nabla u(x,y))dxdy in the class \mathcal{W}=\{u\in W^{1,\infty}(\Omega):u/\Gamma_{0}=0,\left|u_{y}\right|=1\, a.e.\}, where \Omega is either the rectangle (0,1)^{2} or the parallelogram \{(x,y)\in\mathbb{R}^{2}:0<y<1,y<x<y+1\} and \Gamma_{0} denotes the boundary part {0}x[0,1] in the first case, for the parallelogram we let \Gamma_{0}=\{(x,x):0\leq x\leq1\}. The function \varphi:\mathbb{R}^{2}\rightarrow[0,\infty) is an elastic potential with wells in (0,\pm1). We prove that I^{\infty}=0 by considering minimizing sequences which differ substantially for both cases. |
| Link to this record: | urn:nbn:de:bsz:291-scidok-43546 hdl:20.500.11880/26248 http://dx.doi.org/10.22028/D291-26192 |
| Series name: | Preprint / Fachrichtung Mathematik, Universität des Saarlandes |
| Series volume: | 35 |
| Date of registration: | 22-Nov-2011 |
| Faculty: | MI - Fakultät für Mathematik und Informatik |
| Department: | MI - Mathematik |
| Collections: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Files for this record:
| File | Description | Size | Format | |
|---|---|---|---|---|
| preprint_35_01.pdf | 184,23 kB | Adobe PDF | View/Open |
Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.

