Please use this identifier to cite or link to this item:
doi:10.22028/D291-26190 | Title: | Relaxation of convex variational problems with linear growth defined on classes of vector-valued functions |
| Author(s): | Bildhauer, Michael Fuchs, Martin |
| Language: | English |
| Year of Publication: | 2001 |
| Free key words: | generalized minimizers functions of bounded variation |
| DDC notations: | 510 Mathematics |
| Publikation type: | Other |
| Abstract: | For a bounded Lipschitz domain \Omega\subset\mathbb{R}^{n} and a function u_{0}\in W_{1}^{1}(\Omega;\mathbb{R}^{N}) we consider the minimization problem (\mathcal{P}) \int_{\Omega}f(\nabla u)dx\rightarrow\mbox{min in}\: u_{0}+\overset{\text{\textdegree}}{W_{1}^{1}}(\Omega;\mathbb{R}^{N}) where f:\mathbb{R}^{nN}\rightarrow[0,\infty) is a strictly convex integrand. Let \mathcal{M} denote the set of all L^{1}-cluster points of minimizing sequences of problem (\mathcal{P}) coincides with the relaxation based on the notation of the extended Lagrangian, moreover, we prove that the elements u of \mathcal{M}are in one-to-one correspondence with the solutions of the relaxed problems. |
| Link to this record: | urn:nbn:de:bsz:291-scidok-43514 hdl:20.500.11880/26246 http://dx.doi.org/10.22028/D291-26190 |
| Series name: | Preprint / Fachrichtung Mathematik, Universität des Saarlandes |
| Series volume: | 33 |
| Date of registration: | 22-Nov-2011 |
| Faculty: | MI - Fakultät für Mathematik und Informatik |
| Department: | MI - Mathematik |
| Collections: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Files for this record:
| File | Description | Size | Format | |
|---|---|---|---|---|
| preprint_33_01.pdf | 255,63 kB | Adobe PDF | View/Open |
Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.

