Please use this identifier to cite or link to this item:
doi:10.22028/D291-26184 | Title: | The effect of a penalty term involving higher order derivatives on the distribution of phases in an elastic medium with a two-well elastic potential |
| Author(s): | Bildhauer, Michael Fuchs, Martin Osmolovskii, Victor |
| Language: | English |
| Year of Publication: | 2000 |
| Free key words: | phase transition equilibrium states |
| DDC notations: | 510 Mathematics |
| Publikation type: | Other |
| Abstract: | We consider the problem of minimizing I\left[u,\chi,h,\sigma\right]=\int_{\Omega}(\chi f_{h}^{+}(\varepsilon(u))+(1-\chi)f^{-}(\varepsilon(u)))dx+\sigma(\int_{\Omega}\left|\bigtriangleup u\right|^{2}dx)^{p/2}, 0<p<1, h\in\mathbb{R}, \sigma>0, among functions u:\mathbb{R}^{d}\supset\Omega\rightarrow\mathbb{R}^{d}, u_{\mid\partial\Omega}=0, and measurable characteristic functions \chi:\Omega\rightarrow\mathbb{R}. Here f_{h}^{+}, f^{-} denote quadratic potentials defined on the space of all symmetric d x d matrices, h is the minimum energy of f_{h}^{+} and \varepsilon(u) denotes the symmetric gradient of the displacement field. An equilibrium state \hat{u}, \hat{\chi} of I[\cdot,\cdot,h,\sigma] is termed one-phase if \hat{\chi}\equiv0 or \hat{\chi}\equiv1, two-phase otherweise. We investigate in which way the distribution of phases is affected by the parameters h and \sigma. |
| Link to this record: | urn:nbn:de:bsz:291-scidok-43322 hdl:20.500.11880/26240 http://dx.doi.org/10.22028/D291-26184 |
| Series name: | Preprint / Fachrichtung Mathematik, Universität des Saarlandes |
| Series volume: | 24 |
| Date of registration: | 18-Nov-2011 |
| Faculty: | MI - Fakultät für Mathematik und Informatik |
| Department: | MI - Mathematik |
| Collections: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Files for this record:
| File | Description | Size | Format | |
|---|---|---|---|---|
| preprint_24_00.pdf | 292,54 kB | Adobe PDF | View/Open |
Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.

