Please use this identifier to cite or link to this item: doi:10.22028/D291-26183
Title: The effect of a surface energy term on the distribution of phases in an elastic medium with a two-well elastic potential
Author(s): Bildhauer, Michael
Fuchs, Martin
Osmolovskii, Victor
Language: English
Year of Publication: 2000
Free key words: phase transition
equilibrium states
DDC notations: 510 Mathematics
Publikation type: Other
Abstract: We consider the problem of minimizing J(u,E)=\int_{E}f_{h}^{+}(\cdot,\varepsilon(u))dx+\int_{\Omega-E}f^{-}(\cdot,\varepsilon(u))dx+\sigma\left|\partial E\cap\Omega\right| among functions u:\mathbb{R}^{d}\supset\Omega\rightarrow\mathbb{R}^{d}, u_{\mid\partial\Omega}=0, and measurable subsets E of \Omega. Here f_{h}^{+}, f^{-} denote quadratic potentials defined on \overline{\Omega}x{symmetric d x d matrices}, h is the minimum energy of f_{h}^{+} and \varepsilon(u) is the symmetric gradient of the displacement field u. An equilibrium state \hat{u}, \hat{E} of J(u,E) is called one-phase if E=\emptyset or E=\Omega, two-phase otherwise. For two-phase states \sigma\left|\partial E\cap\Omega\right| measures the effect of the separating surface, and we investigate in which way the distribution of phases is affected by the choice of the parameters h\in\mathbb{R}, \sigma > 0. Additional results concern the smoothness of two-phase equilibrium states and the behaviour of inf J(u,E) in the limit \sigma\downarrow0. Moreover, we discuss the case of additional volume force potentials, and extend the previous results to non-zero boundary values.
Link to this record: urn:nbn:de:bsz:291-scidok-43311
hdl:20.500.11880/26239
http://dx.doi.org/10.22028/D291-26183
Series name: Preprint / Fachrichtung Mathematik, Universität des Saarlandes
Series volume: 23
Date of registration: 18-Nov-2011
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Mathematik
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
preprint_23_00.pdf498,77 kBAdobe PDFView/Open


Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.