Please use this identifier to cite or link to this item: doi:10.22028/D291-26165
Title: Invariants of some algebraic curves related to Drinfeld modular curves
Author(s): Gekeler, Ernst-Ulrich
Language: English
Year of Publication: 2000
DDC notations: 510 Mathematics
Publikation type: Other
Abstract: We collect some facts abaut Drinfeld modular curves for a polynomial ring \mathbb{F}_{q}[T] over a finite field \mathbb{F}_{q}. These include formulas for the genera, the numbers of cusps and elliptic points, descriptions of the function fields and fields of definition, and other rationality properties. We then show that any series of Drinfeld modular curves of Hecke type X_{0}(N_{k}), where N_{k}\in\mathbb{F}_{q}[T] is coprime with T and \mbox{deg}(N_{k})\longrightarrow\infty, gives rise to an asymptotically optimal series of curves over \mathbb{F}_{q^{2}}.
Link to this record: urn:nbn:de:bsz:291-scidok-42964
hdl:20.500.11880/26221
http://dx.doi.org/10.22028/D291-26165
Series name: Preprint / Fachrichtung Mathematik, Universität des Saarlandes
Series volume: 14
Date of registration: 4-Nov-2011
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Mathematik
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
preprint_14_00.pdf256,29 kBAdobe PDFView/Open


Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.