Please use this identifier to cite or link to this item:
doi:10.22028/D291-26109
Title: | Space sweep solves intersection of two convex polyhedra elegantly |
Author(s): | Hertel, Stefan Mehlhorn, Kurt Mäntylä, Martti Nievergelt, Jurg |
Language: | English |
Year of Publication: | 1984 |
OPUS Source: | Saarbrücken, 1984 |
Free key words: | computational geometry sweep algorithms |
DDC notations: | 004 Computer science, internet |
Publikation type: | Report |
Abstract: | Plane-sweep algorithms form a fairly general approach to two-dimensional problems of computational geometry. No corresponding three-dimensional space-sweep algorithms for geometric problems in 3-space are known, however. We derive concepts for such space-sweep algorithms that yield an elegant solution to the problem of solving any set operation (union, intersection, ...) of two convex polyhedra. Moreover, our solution matches the best known time bound of O(n log n) where n is the combined number of corners of the two polyhedra. |
Link to this record: | urn:nbn:de:bsz:291-scidok-41454 hdl:20.500.11880/26165 http://dx.doi.org/10.22028/D291-26109 |
Series name: | Bericht / A / Fachbereich Angewandte Mathematik und Informatik, Universität des Saarlandes |
Series volume: | 1984/02 |
Date of registration: | 2-Sep-2011 |
Faculty: | MI - Fakultät für Mathematik und Informatik |
Department: | MI - Informatik |
Collections: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Files for this record:
File | Description | Size | Format | |
---|---|---|---|---|
fb14_1984_02.pdf | 9,03 MB | Adobe PDF | View/Open |
Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.