Please use this identifier to cite or link to this item:
doi:10.22028/D291-26049
Title: | Gorenstein modules of finite length |
Author(s): | Kunte, Michael |
Language: | English |
Year of Publication: | 2008 |
SWD key words: | Gorenstein-Modul Matrix <Mathematik> |
DDC notations: | 510 Mathematics |
Publikation type: | Dissertation |
Abstract: | We study graded modules of finite length over the weighted polynomial ring R=k[x_{1},...,x_{n}], k any field, having a certain strongly selfdual resolution. We give a construction method of these Gorenstein modules via symmetric matrices in divided powers. Our main result is the following equivalence: Let n be an odd integer. A graded R-module of finite length has a selfdual minimal free resolution with a symmetric respectively skew symmetric middle matrix if and only if it can be defined by a symmetric respectively skew symmetric matrix in divided powers. The correspondence depends on the parity of (n-1)/2. We give applications, such as a proof of a conjecture of Eisenbud and Schreyer: Let R be trivially weighted. The monoid of Betti tables of free resolutions of graded Cohen-Macaulay modules over R depends on the characteristic of the base field k. Wir betrachten graduierte Moduln endlicher Länge über dem gewichteten Polynomring R=k[x_{1},...,x_{n}], k ein beliebiger Körper, die eine streng selbstduale Auflösung haben. Wir entwickeln eine Konstruktionsmethode für diese Gorenstein Moduln mit Hilfe symmetrischer Matrizen in dividierten Potenzen. Unser Hauptresultat ist die folgende Äquivalenz: Sei n eine ungerade natürliche Zahl. Ein graduierter R-Modul endlicher Länge besitzt eine selbstduale minimale freie Auflösung mit symmetrischer beziehungsweise schiefsymmetrischer mittlerer Matrix genau dann wenn er durch eine symmetrische beziehungsweise schiefsymmetrische Matrix in dividierten Potenzen definiert werden kann. Diese Korrespondenz hängt von der Parität von (n-1)/2 ab. Wir entwickeln eine Reihe von Anwendungen, zum Beispiel einen Beweis einer Vermutung von Eisenbud und Schreyer: Sei R nun der trivial gewichtete Polynomring. Der Monoid der Betti Diagramme von freien Auflösungen graduierter Cohen-Macaulay Moduln über R hängt von der Charakteristik des Grundkörpers k ab. |
Link to this record: | urn:nbn:de:bsz:291-scidok-37923 hdl:20.500.11880/26105 http://dx.doi.org/10.22028/D291-26049 |
Advisor: | Schreyer, Frank-Olaf |
Date of oral examination: | 27-Jun-2008 |
Date of registration: | 1-Jul-2011 |
Faculty: | MI - Fakultät für Mathematik und Informatik |
Department: | MI - Mathematik |
Collections: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Files for this record:
File | Description | Size | Format | |
---|---|---|---|---|
Kunte_Michael.pdf | 546,79 kB | Adobe PDF | View/Open |
Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.