Please use this identifier to cite or link to this item: doi:10.22028/D291-25998
Title: Modelling human pose and shape based on a database of human 3D scans
Author(s): Hasler, Nils
Language: English
Year of Publication: 2010
SWD key words: Dreidimensionale Computergraphik
Dreidimensionales Modell
Personendarstellung
Scanning
Pose
Körper
Free key words: Menschenmodell
Körperform
3D computer graphics
3D scanning
3D model
human pose
shape
DDC notations: 004 Computer science, internet
Publikation type: Doctoral Thesis
Abstract: Generating realistic human shapes and motion is an important task both in the motion picture industry and in computer games. In feature films, high quality and believability are the most important characteristics. Additionally, when creating virtual doubles the generated charactes have to match as closely as possible to given real persons. In contrast, in computer games the level of realism does not need to be as high but real-time performance is essential. It is desirable to meet all these requirements with a general model of human pose and shape. In addition, many markerless human tracking methods applied, e.g., in biomedicine or sports science can benefit greatly from the availability of such a model because most methods require a 3D model of the tracked subject as input, which can be generated on-the-fly given a suitable shape and pose model. In this thesis, a comprehensive procedure is presented to generate different general models of human pose. A database of 3D scans spanning the space of human pose and shape variations is introduced. Then, four different approaches for transforming the database into a general model of human pose and shape are presented, which improve the current state of the art. Experiments are performed to evaluate and compare the proposed models on real-world problems, i.e., characters are generated given semantic constraints and the underlying shape and pose of humans given 3D scans, multi-view video, or uncalibrated monocular images is estimated.
Die Erzeugung realistischer Menschenmodelle ist eine wichtige Anwendung in der Filmindustrie und bei Computerspielen. In Spielen ist Echtzeitsynthese unabdingbar aber der Detailgrad muß nicht so hoch sein wie in Filmen. Für virtuelle Doubles, wie sie z.B. in Filmen eingesetzt werden, muss der generierte Charakter dem gegebenen realen Menschen möglichst ähnlich sein. Mit einem generellen Modell für menschliche Pose und Körperform ist es möglich alle diese Anforderungen zu erfüllen. Zusätzlich können viele Verfahren zur markerlosen Bewegungserfassung, wie sie z.B. in der Biomedizin oder in den Sportwissenschaften eingesetzt werden, von einem generellen Modell für Pose und Körperform profitieren. Da diese ein 3D Modell der erfassten Person benötigen, das jetzt zur Laufzeit generiert werden kann. In dieser Doktorarbeit wird ein umfassender Ansatz vorgestellt, um verschiedene Modelle für Pose und Körperform zu berechnen. Zunächst wird eine Datenbank von 3D Scans aufgebaut, die Pose- und Körperformvariationen von Menschen umfasst. Dann werden vier verschiedene Verfahren eingeführt, die daraus generelle Modelle für Pose und Körperform berechnen und Probleme beim Stand der Technik beheben. Die vorgestellten Modelle werden auf realistischen Problemstellungen getestet. So werden Menschenmodelle aus einigen wenigen Randbedingungen erzeugt und Pose und Körperform von Probanden wird aus 3D Scans, Multi-Kamera Videodaten und Einzelbildern der bekleideten Personen geschätzt.
Link to this record: urn:nbn:de:bsz:291-scidok-32795
hdl:20.500.11880/26054
http://dx.doi.org/10.22028/D291-25998
Advisor: Seidel, Hans-Peter
Date of oral examination: 1-Feb-2010
Date of registration: 2-Sep-2010
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Informatik
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
Dissertation_4998_Hasl_Nils_2010.pdf24,74 MBAdobe PDFView/Open


Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.