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Abstract

Generating realistic human shapes and motion is an important task both in the motion
picture industry and in computer games. In feature films, high quality and believability
are the most important characteristics. Additionally, when creating virtual doubles
the generated charactes have to match as closely as possible to given real persons. In
contrast, in computer games the level of realism does not need to be as high but real-time
performance is essential. It is desirable to meet all these requirements with a general

model of human pose and shape.

In addition, many markerless human tracking methods applied, e.g., in biomedicine or
sports science can benefit greatly from the availability of such a model because most
methods require a 3D model of the tracked subject as input, which can be generated

on-the-fly given a suitable shape and pose model.

In this thesis, a comprehensive procedure is presented to generate different general mod-
els of human pose. A database of 3D scans spanning the space of human pose and
shape variations is introduced. Then, four different approaches for transforming the
database into a general model of human pose and shape are presented, which improve
the current state of the art. Experiments are performed to evaluate and compare the
proposed models on real-world problems, i.e., characters are generated given semantic
constraints and the underlying shape and pose of humans given 3D scans, multi-view

video, or uncalibrated monocular images is estimated.



Kurzfassung

Die Erzeugung realistischer Menschenmodelle ist eine wichtige Anwendung in der Fil-
mindustrie und bei Computerspielen. In Spielen ist Echtzeitsynthese unabdingbar aber
der Detailgrad mufl nicht so hoch sein wie in Filmen. Fiir virtuelle Doubles, wie sie
z.B. in Filmen eingesetzt werden, muss der generierte Charakter dem gegebenen realen
Menschen moglichst dhnlich sein. Mit einem generellen Modell fiir menschliche Pose und

Korperform ist es moglich alle diese Anforderungen zu erfiillen.

Zusatzlich kénnen viele Verfahren zur markerlosen Bewegungserfassung, wie sie z.B. in
der Biomedizin oder in den Sportwissenschaften eingesetzt werden, von einem generellen
Modell fiir Pose und Koérperform profitieren. Da diese ein 3D Modell der erfassten Person

bendétigen, das jetzt zur Laufzeit generiert werden kann.

In dieser Doktorarbeit wird ein umfassender Ansatz vorgestellt, um verschiedene Mod-
elle fiir Pose und Korperform zu berechnen. Zunéchst wird eine Datenbank von 3D Scans
aufgebaut, die Pose- und Korperformvariationen von Menschen umfasst. Dann wer-
den vier verschiedene Verfahren eingefiihrt, die daraus generelle Modelle fiir Pose und
Korperform berechnen und Probleme beim Stand der Technik beheben. Die vorgestell-
ten Modelle werden auf realistischen Problemstellungen getestet. So werden Menschen-
modelle aus einigen wenigen Randbedingungen erzeugt und Pose und Koérperform von
Probanden wird aus 3D Scans, Multi-Kamera Videodaten und Einzelbildern der beklei-

deten Personen geschatzt.
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Desine-moi un mouton!

Le Petit Prince

Chapter 1 ANTOINE DE SAINT-EXUPERY
Introduction

Creating models of humans is an important task in many fields related to computer
graphics. Most notably, in video games and modern movie productions a large number

of synthetic characters are employed.

The requirements for these models are diverse. For virtual doubles, as used, e.g., in
action oriented movie productions, the created model should closely resemble existing
persons. Additionally, high quality requirements are very common in motion picture
productions. On the other hand, real-time performance is not necessary, since special

effects for motion pictures are rendered offline on large server farms.

In other applications in the movie or game industry it may be necessary to generate
and animate dozens to thousands of human characters, for example when simulating a
crowded street or a virtual battle field. Here, the quality requirements are less stringent,
since a large number of characters are displayed and the individual character is featured
less prominently. Instead, high performance is required, as many characters need to be

animated and displayed simultaneously.

Computer games have strict real-time requirements but the visual quality does not need
to be as high. Additionally, as a result of the frequently restricted scenarios games are
commonly set in, approaches for generating humans can often be tailored to the specific

application.

In contrast, vision applications sometimes have lower quality requirements in terms of
fine details of the mesh surface. Yet, it is important that the analysis-by-synthesis
optimisation algorithms employed to estimate shape and pose are able to explore the

solution space freely but are still constrained to realistic solutions.

Two approaches for creating required human 3D models are traditionally available. Mod-

els can either be created by hand or by using 3D acquisition systems. Modelling by hand
1
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involves significant amounts of manual labour. Despite this drawback, it is the stan-
dard approach used today, both in high-quality productions, e.g., for motion pictures,
as well as for comparably low quality applications in games. The main advantage of the
manual approach is, that it allows for full artistic control of the result. Unrealistic body

proportions can be modelled just as easily as realistic humans.

When a 3D scanner or similar device is used, only models of real, existing humans can
be created. The main advantage is that the acquisition procedure is very fast and the
attainable level of detail is high. It is still necessary to perform some post-processing, in
order to create an animatable model. For example, a skeleton has to be fitted into the
mesh and skinning weights must be assigned to the surface vertices. This can either be

done manually, by a rigging artist, or an automatic approach, such as [8], can be used.

For some problems neither approach is practical. When creating a virtual crowd with
thousands of characters, where each individual person is required to look different, it
is impossible to manually model or scan such a large number of humans. One solution
to this problem is to create a parametric model describing admissible shape variations.
Several procedures for creating such a model exist. It can be created by manually
modelling a number of humans and deformation fields for morphing a base character.
This path is, for example, taken by the MakeHuman project [63]. Similar approaches
are also used to allow the player of a video game to customise his/her avatar. However,
just like the manual modelling of individual characters, the invested amount of work is

significant.

Another approach is to learn the model from a database of 3D scans. Achieving a high
expressiveness is only possible if a very diverse database is available. An advantage of
the method is that a strong prior towards realistic human shapes is available, since the

model is based on real data.

A small number of works have been published that use this approach. Most prominently,
Blanz and Vetter [10] create a shape model of faces. Allen et al. [3] and Seo and
Magnenat-Thalmann [93] train a shape model given a set of 3D scans of humans captured
in an upright standing pose. Animation of the pose is performed by embedding a skeleton
into the mesh. These approaches cannot be applied directly to pose modelling because
the strong articulation of humans introduces non-linearities that cannot be represented
easily. Anguelov et al. [6] propose to also learn the pose deformation from a set of 3D
scans of one subject in different poses. They are able to model muscle bulging but since
only one subject is captured in more than one pose, no general correlations between

pose and shape can be learned.
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Point clouds
Laser Scanning —_ > Registration
3D-meshes
Encoding ——> Statistical Analysis — Decoding

FicUure 1.1: This figure shows the general pipeline used in this thesis to create the

human shape models. Laser scanning transforms real humans into 3D point clouds.

Registration achieves two objectives. Semantic correspondences between the different

scans are established and the point clouds are transformed into watertight triangle

meshes with identical connectivity. Encoding and decoding are inverse, non-linear

transformations projecting the meshes into a space that simplifies statistical analysis
and back.

In this thesis, different methods for computing shape models based on a large database
of 3D scans including many subjects each scanned in a number of different poses are
introduced, evaluated, and compared. Additionally, several vision applications based on

the suggested methods are introduced.

1.1 Overview

Starting from a database of 3D scans, the aim of this thesis is to create a statistical model
of human pose and body shape. The overall approach is summarised in Figure 1.1. First,
38D scanning and non-rigid registration are performed to acquire a database of 3D meshes
that are in semantic correspondence. Then, before performing statistical analysis, the
meshes are encoded non-linearly. This is necessary, because the deformation that highly
articulated models such as humans undergo during pose conformation is extremely non-
linear when observed in 3D space. Four different encodings are introduced that reversibly
encode the 3D meshes such that the most common pose and shape variations can be
approximated linearly. Linear principal component analysis can then be used to extract

the main modes of variation present in the database.

Details about the database of 3D scans of human subjects are presented in Section 3.1.
The design goal of the database is to span the joined space of human shapes and poses.
Covering the space of shapes is achieved by scanning a large number of different human
subjects. Each subject is captured in a random subset of a set of poses, which has been
designed specifically to sample the space human articulation spans. This procedure
ensures that the human articulation space is covered sufficiently densely to allow the

trained models to generalise well.



4 1.1. Overview

As a preprocessing step, it is necessary to establish correspondences between the 3D scans.
Without establishing semantic correspondences between the input meshes, no meaning-
ful statistical analysis can be performed. Non-rigid registration is performed to instan-
tiate semantic correspondences, i.e., an ICP based non-rigid registration procedure is

used to fit a manually designed template 3D mesh to every scan (c¢f. Section 3.2).

Four different representations targeted at different application fields are introduced in
Chapter 4. The model representations are ordered by quality of the synthesised 3D mod-

els and, at the same time, inversely in speed of synthesis.

The highest quality representation is based on the observation that an efficient encoding
for a model of human pose and shape can be found if rigid and non-rigid deformations are
identified individually. The extracted rotations of triangles are stored relative to their
neighbours’ rotations. This extension of differential coordinates to rotations allows the
efficient joint encoding of pose and shape changes. In this representation, e.g., bending
the elbow results in changes of the encoding only in the elbow region, although position
and rotation of forearm and hand change significantly. An additional advantage of the
approach is that correlations between shape and pose are captured automatically. The

method is described in detail in Section 4.1 [51].

One disadvantage of the encoding is that it does not allow independent control of pose
and shape parameters. Yet, in some applications, e.g., markerless motion capture, this
is an important requirement. It allows integrating the natural constraint that the shape
of a tracked subject has to remain constant and only pose is allowed to change. Two
approaches for separating pose and shape contributions are introduced here. The first
one is based directly on the differential rotation encoding. Only, it is assumed that an
encoded 3D model can be represented as a sum of two such encodings, one pertaining
only to pose changes and one describing shape variations. An approach for deriving such

a split is introduced in Section 4.2.

The method presented in Section 4.3 is based on factorisation. Every triangle of a
3D model is represented as the transformation of a predetermined template model.
Assuming a bilinear model of pose and shape, this transformation can be split into two
consecutively applied transformations. The first one modifies shape and the second pose.

Similar to the previous approach, controlling shape and pose separately is possible [48].

The focus of the fourth model (Section 4.4) is on designing a procedure for learning
the parameters of a limited linear blend skinning representation to best reproduce the
training data — the database of 3D scans. The current industry standard, linear blend

skinning, is used because this representation is compatible with most game engines and
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modelling packages used today. The resulting 3D models can consequently be used

readily by a wide audience for real-time synthesis of humans [52].

Chapters 5 and 6 explore possible applications of the model. Chapter 5 focuses on gener-
ative methods, i.e., how to generate meshes given semantically meaningful constraints.
Specifically, three methods are explored. Semantic functions are computed that allow
morphing a person or generating meshes given one or more of these constraints. Then,
an approach for morphing meshes using 3D marker positions as constraints is introduced
in Section 5.4. Finally, the skeleton-based model, introduced in Section 4.4 can be used

for real-time morphing of both shape and pose [51, 52].

In addition to animation and morphing based on semantically meaningful constraints,
the most obvious applications of a pose and shape model, can be found in computer vi-
sion. Some vision tasks, explored in Chapter 6, can benefit greatly from the availability of
such a model. In particular, estimating shape and pose from 3D scans (Section 6.1), cal-
ibrated multi-view images and videos (Sec. 6.3 and 6.4), and monocular images (Sec. 6.5

and 6.6) are presented [48].

1.2 Contributions

A database of 3D scans designed to span the space of human pose and shape is presented
and published to the scientific public [47]. Four representations of human shape and pose,

each targeted at a different field of application, are introduced:

1. A high quality model jointly describing human pose and body shape is described.
The elegant encoding is automatically able to represent correlations between pose

and shape but is comparably slow [51].

2. A modified version of the encoding is proposed that allows independent control
of shape and pose parameters. This gain in controlability is traded for loss of

correlations between shape and pose, which cannot be represented any longer.

3. A factorisation based method is proposed that is unable to capture correlations

between pose and shape but is faster and more suitable for vision tasks [48].

4. A procedure for real-time synthesis of shapes and poses that is solely based on
linear blend skinning skeletons is presented [52]. Unlike the other approaches,
the main contribution is the procedure for generating the model rather than the

representation itself.
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The models are applied to variations of the human shape and pose estimation problem
in computer vision. Estimation is performed, given different types of input data. Ex-
periments are also performed with dressed subjects, introducing additional ambiguities.
Three data sources are experimented with: 3D scans, calibrated multi-view video and

images, and monocular images.

1.3 List of Publications

e HASLER, N., ROSENHAHN, B., AND SEIDEL, H.-P. Reverse engineering garments.
In Mirage (Rocquencourt, France, Mar. 2007), A. Gagalowicz and W. Philips,
Eds., Springer-Verlag, pp. 200-211.

e HASLER, N., StoLL, C., SUNKEL, M., ROSENHAHN, B., AND SEIDEL, H.-P.
A statistical model of human pose and body shape. In Furographics (Munich,
Germany, Mar. 2009), P. Dutré and M. Stamminger, Eds., no. 28.

e HASLER, N., THORMAHLEN, T., ROSENHAHN, B., AND SEIDEL, H.-P. Learning
skeletons for shape and pose. In ACM SIGGRAPH Symposium on Interactive 8D
Graphics and Games (13D 2010) (Washington DC, USA, Feb. 2010).

e HASLER, N., ACKERMANN, H., ROSENHAHN, B., THORMAHLEN, T., AND SEI-
DEL, H.-P. Multilinear pose and body shape estimation of dressed subjects from
image sets. In IFEE Conference on Computer Vision and Pattern Recognition
(2010).

1.4 Additional Publications

e HASLER, N., AsBacH, M., ROSENHAHN, B., Oum, J.-R., AND SEIDEL, H.-P.
Physically based tracking of cloth. In Proceedings of the International Workshop
on Vision, Modeling and Visualization 2006 (Aachen, Germany, Nov. 2006).

e HASLER, N., ROSENHAHN, B., AsBacH, M., OHwMm, J.-R., AND SEIDEL, H.-P.
An analysis-by-synthesis approach to tracking of textiles. In Proceedings of the

International Workshop on Motion and Video Computing (Austin, Texas, USA,
Feb. 2007).

e HASLER, N., ROSENHAHN, B., AND SEIDEL, H.-P. Reverse engineering garments.
In Mirage (Rocquencourt, France, Mar. 2007), A. Gagalowicz and W. Philips,
Eds., Springer-Verlag, pp. 200-211.
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e HASLER, N., AND HASLER, K.-P. Short-term tide prediction. In Pattern Recog-
nition, Proceedings of the 28th DAGM Symposium (Heidelberg, Germany, Sept.
2007), F. A. Hamprecht, C. Schnérr, and B. Jédhne, Eds., Springer-Verlag, pp. 375—
384.

e HASLER, N., ROSENHAHN, B., THORMAHLEN, T., WAND, M., GALL, J., AND
SEIDEL, H.-P. Markerless motion capture with unsynchronized moving cameras.
In IEEE Conference on Computer Vision and Pattern Recognition (Miami, USA,
June 2009), pp. 224-231.






Any sufficiently advanced technology
is indistinguishable from magic.
ARTHUR C. CLARKE

Chapter 2

Related Work

The work that is presented in this thesis is related primarily to three fields. The surface
encoding we propose draws heavily on shape editing techniques. These foundations are
introduced in Section 2.3. Since the main focus of this work is on modelling human
shape and pose a review of models of shape and pose is given in Section 2.4. Finally,
since one of the applications that can be realised is markerless motion capture a brief
introduction into the field is presented in Section 2.5. Yet, since the first step in the
global pipeline (¢f. Fig. 1.1) uses laser scanning to acquire the shape of the subjects, an

overview of 3D acquisition techniques is presented first.

2.1 3D Acquisition

Since estimating the 3D shape of objects is an important problem in many fields including
reverse engineering [110], medicine [74], surveying [89], and biology [85], many methods

for acquiring 3D geometry have been proposed.

2.1.1 Contact

Possibly the most intuitive method for digitising the 3D geometry of a real world object
is to measure every significant point of the object by touching it. The surface can then
be reconstructed by manual interaction. This approach is commonly used by artists [79].
The artist first creates a clay model of the 3D object and then uses a touch probe to
digitise the 3D coordinates of salient points on the surface. The measurement tip of the
probe is connected to a static ground plane via a chain of articulations. By measuring
the angles of the joints of the arm 3D coordinates can be extracted. The full object is

then modelled by hand using the acquired points to guide the process.
9
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Alternatively, fully automatic machines, so-called coordinate measuring machines, have
been introduced that sample a regular grid of points on the surface of the object [12].
These machines are available for very small volumes, e.g. for measuring cogwheels, but
also to measure the shape of a complete car body. Similar to the large scale coordinate
measuring machines, atomic force microscopy uses a measuring tip for sampling the

surface of the measured object [9].

All of these approaches have in common that the scanned object has to be available to
touch, it must not be too soft, otherwise the measuring tip may deform the object, and
hard enough that it does not get damaged by the tip. Many of these systems are also

not portable. So it is impossible to scan stationary objects.

2.1.2 Non-Contact

Non-contact methods, on the other hand, do not need to touch the object. This allows
them to acquire the shape of objects that are inaccessible. All non-contact methods
are based on some type of camera to remotely measure distances to the object. We
can further categorise non-contact methods into active and passive approaches. Active
techniques use controlled illumination to simplify the acquisition task. Passive methods,

on the other hand ,rely on uncontrolled ambient lighting.

2.1.2.1 Passive

The basic idea of passive 3D acquisition systems is that, given the position of two or
more cameras in a common world coordinate system and the position of an object point
in the image planes of both cameras, it is possible to compute the 3D position of the
point in world coordinates. The effect that allows this computation is called motion
parallax. Consider, for example, the configuration in Figure 2.1.2.1. Two cameras with
focal points 01 and o2 observe a point p. The projections of p into the image planes are
denoted p1 and ps. If 01, 02, and p1 are known, then the epipolar line in the second im-
age describes the points po can assume. This means that for a calibrated camera setup,
efficient algorithms for 3D reconstruction, exploiting this constraint can be devised [46].
There are two main challenges when working with real images, however. When parts
of the scene are occluded in one of the images, no correspondences can be established
and the depth for those points cannot be determined directly. Similarly, for untextured
regions image correspondences cannot be determined unambiguously. Normally, either
interpolation is used or a global optimisation technique automatically establishes depth
values for these regions. Additional problems can arise if the baseline is too wide, i.e.

the origins of the cameras are too far apart because in this case the assumption that
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o1 AN 4 2

FIGURE 2.1: A point in world coordinates p is projected into the image plane of two

cameras. These projected points are denoted p; and ps. The focal points of the

cameras o1 and 09 are also projected into the image planes. They are called epipoles
e; and e3. The dashed lines symbolise the epipolar lines.

all surfaces are Lambertian is violated. An overview of dense 3D stereo reconstruction
algorithms is presented by Scharstein and Szeliski [87]. According to them, most al-
gorithms perform some or all of the following steps: matching cost computation, cost

aggregation, disparity computation/optimisation, and disparity refinement.

An obvious extension to stereo reconstruction is multi-view reconstruction. I.e. more
than two images are simultaneously taken into account. A naive approach would com-
pute disparities using pairwise images and merge the results. But of course taking all
images simultaneously into account leads to better results. An overview of multi-view

stereo reconstruction techniques has been presented by Seitz et al. [92].

A further complication of the problem arises if the camera positions are not known. In
this case image feature matches are used to establish both, camera parameters and sparse
3D coordinates of feature points. This is a non-linear optimisation problem frequently
referred to as Structure-from-Motion [46]. Originally, these methods were targeted at
video applications that involve tracking the camera position, e.g., to place virtual objects
in a real scene. Yet, recently a number of papers have been presented that attempt to
reconstruct the geometry of objects given an uncontrolled database of images taken at

different illumination conditions by different people [42, 98].

All of the passive methods have in common that they rely on significantly textured

objects to be able to establish correspondences between image features.
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2.1.2.2 Active

This problem can be alleviated by projecting known patterns into the scene that selec-
tively highlight a known ray or plane of the scene, which translates into a point or line
in the image plane of a camera. Then, by using a variation of the epipolar constraint,
depth can be computed. This approach is called triangulation. Alternatively, a pulse is

sent and its time-of-flight until it is reflected back to the camera is measured.

The most common approaches used to acquire the 3D shape of an object employ epipolar
constraints like the passive methods described above. They also use cameras but by
projecting specific light patterns into the scene stronger assumptions can be made and
more accurate results can be obtained. The two most common methods at the moment
either project a changing pattern of parallel lines into the scene [56] or a laser sheet is
swept through the scene [65]. The advantage of projecting several stripes or sinusoids
in intensity space at the same time is that smaller acquisition times can be achieved but
the projection necessitates the availability of a powerful high resolution and frequently
also high speed projector. In comparison laser diodes for projecting sheets of light are

cheap and widely available.

2.2 3D Object Representations

In order to be able to work efficiently with 3D models, it is essential that the data
representations are tailored for the specific applications. In addition to the encodings
introduced in this work in Chapter 4, we build on standard data representation schemes.
Since, this work is only concerned with surface representation and deformation, volume
representations such as voxel grids are glossed over. Here, primarily three representations
are build upon. Point clouds are a very simple data structure that does not store relations
between data points. The slightly more sophisticated mesh representation is able to
additionally represent planar surface patches and connectivity between points. A more
sophisticated representation are differential coordinates, i.e., the position of points are

represented relative to the position of neighbouring data points.

2.2.1 Point Clouds

As the name suggests, a point cloud P is a representation that stores a set (a cloud) of
n points p;
P=pi...Pn, Pi € R, (2.1)



2.2. 3D Object Representations 13

with k£ normally 3. The representation is unstructured, i.e., no information about con-
nectedness or proximity of the surface points is stored explicitly. It is easily possible to
store additional information, such as a normal, colour, material properties, etc. along
with the coordinates of the points. The main advantage of the representation is its
simplicity. It is also frequently the only type of information that can be gathered with
some surface acquisition systems such as laser scanners. The main disadvantage is pos-
sibly that the quality of a surface represented by a point cloud decreases rapidly with
its sparsity, i.e. a large number of points are necessary to represent a given object well.
This leads to high memory requirements and, for algorithms that scale superlinearly in
n infeasible complexity. It is, however, possible to convert a point cloud into a surface

mesh representation, e.g., using the classical marching cubes algorithm [62].

2.2.2 Meshes

A mesh consists, like a point cloud, of a set P of points or, in this case, also called
vertices. In addition to the vertices, however, a set F of m planar faces is stored. In our
case, only triangular faces are considered, although higher flexibility is available when

general polygons are considered.
F=f. .1, £e{P,P P} (2.2)

Yet, this decision not only simplifies the representation and eases local traversal of
the surface but also guarantees that all faces are planar. Mesh based representations
have the additional advantage that they are, especially at low resolutions, much more
easily recognisable by a human than point clouds. Even for low mesh resolutions it is
still possible to compute surface measures such as curvature. In contrast, point clouds
are limited in this respect. Here, surface properties can only be computed if a local
surface approximation is done [69]. If the surface is sampled very sparsely, large errors
will be introduced using this approach because neighbourhood information cannot be
estimated correctly any longer. Of course, as for point clouds, additional information
can be attached to the vertices (normals, texture coordinates, colour, etc.) as well as to

the faces.

2.2.3 Differential Coordinates

The direct benefit of switching to differential coordinates may not be as apparent as
the improvement from point clouds to meshes as the stored information is the same as
for meshes. However, the way it is stored, the encoding, allows some applications and

processing methods that would otherwise be hard or impossible to implement.
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The idea of differential coordinates is that the position of a vertex p; is stored relative

to the weighted sum of its one ring neighbours pg, i.e.,

pi =0+ Y wiPr, (2.3)
k

where &; is the differential position of p; and w;, weights the sum. Formally, this
representation is a discretisation of the continuous Laplace-Beltrami operator 8, as the
underlying mesh can be interpreted as a piecewise linear approximation of a continuous
surface [25]. In the limit case, the Laplace-Beltrami operator is the mean curvature
normal of the surface, i.e., the normal n times the mean curvature H. The same holds
for the discrete Laplacian operator. As the mesh resolution approaches infinity, the

discrete Laplacian approaches the mean curvature normal. In the limit 6; = H;n; holds
[107].

Of course, the choice of w;; determines how quickly §; approaches the mean curvature
normal with increased mesh resolution. Many approaches for choosing w;; have been
presented. Alexa [1], e.g., in his initial application (mesh morphing) suggested to use
uniform weighting, i.e., w;; = 1/b, where b is the number of neighbours of p;. One
major advantage of this representation is that it is independent of the mesh shape -
only its topology is taken into account. This approach is also called Graph Laplacian.
Better results can be achieved by taking angles of the surrounding triangles into account

because d; converges more quickly to H;n; [15]
1
wit, = 5 (cot gk + cot Gik ), (2.4)

where oy, and [§;; are the angles opposite to edge k. If the tessellation is non-uniform
small triangles are overemphasised. This can be compensated for by introducing a per-

vertex normalisation weight w; = % into Equation 2.3

0; = w; Zwik(pk - Pi). (2.5)
k

Here A; is the Voronoi area of vertex p; as proposed by Meyer et al. [68], using the
coordinates first introduced by Pinkall and Polthier [77]. The advantage of using cotan-
gent weights is that §; contains only the normal component of the one-ring of a vertex.
Otherwise, §; may also contain tangential components. The cotangent weights may be
negative and due to the behaviour of cot near 7w problematic for large angles. More

well-behaved non-negative weights are the so-called mean value coordinates [36]

wy — 20(Pin/2) + tan(0i/2)
' IPi — Pl

(2.6)
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However, the improvement in stability is only perceptible if one or more triangles are
almost degenerate. Since the initial tessellation of the meshes used in this work can be
controlled to be fair, no real advantage can be gained from using mean value coordinates.
Especially, since in the non-degenerate case cotangent weights converge more quickly to

the Laplace-Beltrami operator [15].

If a mesh is given in differential coordinates, it is possible to reconstruct the original
shape by solving a linear equation system, which is built by rearranging Equation 2.3.
All meshes used in this thesis are tessellated reasonably uniformly. So, Eq. (2.3) can be

written as
P1
L : =4 (2.7)

Pn

for the whole mesh, where L is a sparse symmetric matrix containing the edge weights
Wik -
— Y pwi fori=j
Lij = ¢ wj for j neighbour of i (2.8)

0 otherwise

Given L and 4 this representation uniquely describes a shape up to a global translation.
This is intuitively clear because every vertex is described relative to its neighbours.
Adding a global translation does not change the relative positions. Thus, the absolute
coordinates of the mesh can be reconstructed (up to a global translation) by solving
Equation 2.7 for p. Algebraically speaking rank(L) = n — k if L is an n X n matrix and

the encoded object consists of k connected components [100].

As the equation system is underdetermined, additional constraints have to be added to
get a unique solution. For constraining point p; to lie at o; set the ith column of L to x;
and the corresponding row of § to x;0;. Here, x; is a weighting factor that controls the
relative importance of this particular constraint. These constraint rows can be added in
two ways to the system. Either they are appended to the system, or rows are replaced.
In either case, the system is quickly overdetermined. Then, both the added constraints
and the shape of the object are reconstructed only approximately in the least-squares
sense. However, this behaviour can be exploited to manipulate the shape. If rows are
replaced these constraints are fullfiled perfectly. Added rows on the other hand are met
only approximately. Notwithstanding, by changing w;, the importance of satisfying a

constraint can be adjusted.
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2.3 Shape Editing

Several surveys by Sorkine [99], [100] and Botsch and Sorkine [15] have been published

in the last few years shedding light onto all aspects of variational surface deformation.

Shape editing is a field in computer graphics and geometry processing that aims to
develop intuitive methods for changing the shape of objects, normally meshes. The
obvious application of these procedure lies in modelling but some of the methods can also
be applied to shape reconstruction, tracking, and animation. In contrast to simulation,
it is not necessary to produce physically correct deformations although some approaches
have been derived from physically based methods [108] because behaviour that closely
resembles physical performance is perceived as more intuitive. So, emphasis is put on

creating intuitive and plausible deformations.

An early deformation paradigm imposes a 3D lattice onto the model that is to be de-
formed. The nodes of the lattice can then be moved by the user and the resulting
deformation field is transferred to the model, which is transformed accordingly. Early
works using this approach include [26] and [91] but even now grid based methods are

still under development [14], [115].

A more intuitive paradigm has been introduced by Kobbelt et al. [58]. Here, handles,
which can be manipulated directly by the user, and regions of influence can be defined
directly on the mesh. This pattern is more intuitive to use because the deformation
is performed directly on the surface, rather than indirectly, deforming a lattice, which
in turn defines the deformation applied to the mesh. Often, these methods optimise
energies similar to physically based deformation simulation. This approach results in a

behaviour of the deformation that a user is intuitively familiar with from the real world.

Generally, all shape editing methods suffer from the inherent non-linearity of the un-
derlying problem introduced by rotations. Consequently, many approaches have been
proposed to overcome this problem. Botsch et al. propose to approximate a thin-plate
spline energy function by embedding the mesh surface into a set of rigid prisms [13].
Non-linear optimisation leads to good deformations. Sumner et al. on the other hand
pose the problem as non-linear interpolation/extrapolation of transformations computed
for every triangle from a base pose to a set of example poses [104]. The robustness to
rotations is introduced by interpolating rotations and triangle deformation independent
of each other. This approach was later extended by Der et al. [31] who segment the
mesh into parts that move approximately rigidly. Deformations are synthesised for the
regions first and then extrapolated to the whole mesh. A similar idea is also used in [103].
Here, a coarse graph is overlaid on the mesh. Then, a non-linear optimisation procedure

is used to compute the transformations for the graph nodes given manual constraints.



2.3. Shape Editing 17

n\

FI1GURE 2.2: A point p is constrained to lie on the ray defined by the image space
point o and the viewing ray n. This can be written as N x (p — o) = 0. This allows p
to move freely on n while constraining the other two dimensions.

An iterative Laplacian deformation method was concurrently developed by Sorkine and
Alexa [101] and de Aguiar et al. [27]. Here, after performing a differential update step
the rotation is estimated for every vertex, this rotation is performed explicitly, and the

linear deformation is repeated.

A different approach is followed by Sheffer and Kraevoy [94] who define local coordinates
that are invariant to rigid transformation. This is a significant step forward because
it directly allows preserving local shape during editing. These pyramidal coordinates
comprise edge lengths and angles between neighbouring vertices and the tangential plane
of a vertex. Unfortunately, reconstructing 3D coordinates of a mesh involves solving a
non-linear optimisation problem. Nonetheless, changing a 3D mesh such that significant

global rotations are introduced produces convincing interpolation results.

A different set of coordinates is proposed by Kircher and Garland [57]. Their coordi-
nates, developed in parallel with those proposed here [51], require a two-stage encoding.
Differential coordinates are used to encode the shape of individual triangles and the
differential transformation between neighbouring triangles is used to encode local cur-

vature. More details are provided in Section 4.1.

2.3.1 Variational Surface Deformation

This paradigm can easily be implemented using differential coordinates. A mesh is
transformed to differential coordinates and handle regions are constrained to the spec-
ified coordinates. The remaining part is then computed by reconstructing the absolute

coordinates by solving the equation system.
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FIGURE 2.3: A point p is constrained to lie on a plane defined by a point o in the
image plane and the normal n of the measured silhouette, o lies on. This allows p to
move along the silhouette edge as well as orthogonal to the image plane.

Another interesting type of deformation is called Poisson reconstruction. This technique,
which is also popular in image editing [76], can be used to join two or more objects/im-
ages such that the local gradients are preserved as closely as possible while ensuring that
the two edges of the seams are co-located [116]. Botsch [16] has shown that the resulting
equation systems are equivalent to the Laplacian systems described above. This can be
understood intuitively by considering the following. A gradient editing operation can
be thought of as changing the shape or orientation of a triangle/triangles. For example,
the orientation of a body part is changed. The mesh is now partially discontinuous.
However, the gradients representation can still be computed as described above because
the triangles (deformed or original) are still intactly representing the local gradients.
Solving this system results in a closed mesh that distributes the error introduced by the

rotation uniformly in the least-squares sense on the whole mesh.

For shape editing operations deformation constraints are normally set manually. In
contrast, in vision applications, the constraints may be chosen automatically. In this
case weighting the added equations can be used, e.g., to reflect the certainty that a
given constraint has been identified correctly. Additionally, in a typical vision setup,
where image-based input is used to determine the deformation of a 3D shape, it is not
possible to set the depth of a given constraint. Only 2D-3D constraints are available.
This cannot be reflected by the constraint equations introduced above. Of course, it
would be possible to make the assumption that the depth does not change significantly
but this is a baseless assumption. It would be much better to constrain the vertex only
in the image plane and leave the depth open for optimisation. This concept is visualised

in Figure 2.2.
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Such a 2D-3D constraint can be represented as a cross product
n; X (pi — Oi) =0. (29)

Here, n; is a vector in the viewing direction and o; any 3D point on the viewing ray
representing the image feature. Constraints of this type are frequently used in markerless
motion capture [17], [20]. In a context very similar to the problem addressed in this
thesis, de Aguiar et al. [29] use 2D-3D correspondences to track a deformable mesh
employing a multi-camera setup. Also in the context of markerless tracking with a
multi-camera setup Sunkel et al. adapt a 3D template mesh to conform more closely to

the observed silhouettes [105].

There is one more type of constraint used in this work constraining a vertex in only
one dimension. 1D-3D constraints are useful for matching a 3D shape to an image
silhouette. Normally, when using ICP style optimisation correspondences between the
projection of a 3D shape and a measured silhouette are computed. These matches define
2D-3D constraints. However, if the closest 2D point lies on an approximately straight
line using 2D-3D constraints introduces unnecessary resistance against slippage along
the edge. Gelfand and Guibas [41] and Bokeloh et al. [11] observe similar properties in

the context of 3D object analysis/matching. 1D-3D constraints can be written as
(pi —0i) 'n; =0. (2.10)

As shown in Figure 2.3 a 3D point constrained by this equation is able to move along

two dimensions without changing the error.

2.4 Modelling Human Shape

The automatic generation and animation of realistic humans is an increasingly impor-
tant discipline in the computer graphics community. The applications of a system that
simultaneously models pose and body shape include crowd generation for movie or game
projects, creation of custom avatars for online shopping or games, or usability testing of
virtual prototypes. But also other problems such as human tracking or even biometric

applications can benefit from such a model.

Realistic results for human animation can be obtained by simulating the tissue defor-
mation on top of modeled skeletal bones [33, 88]. This approach has been researched
extensively but involves a lot of manual modelling since not only the surface but also the
bones, muscles, and other tissues have to be designed. Additionally, these methods tend

to be computationally expensive since they involve physically based tissue simulation.
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FIGURE 2.4: Muscle bulging is not only a function of the underlying skeleton but is
instead closely correlated with the physique of the subject.

In order to reduce the required amount of manual modelling, several systems have been
proposed that attempt to learn general human models from 3D scans. The first systems
proposed to analyse human shape only, ignoring pose. Allen et al. [3] are the first to
present a method for computing a statistical model describing human shape given a set
of 250 3D scans of humans scanned in a similar pose. The main difficulty addressed
in this work is to find a parameterisation of the incomplete 3D scans that preserves
semantic correspondences. Afterwards, principal component analysis is performed on

the vertex positions of the registered meshes.

Similarly, Seo and Magnenat-Thalmann [93] present a method for generating or mod-
ifying human shapes given a set of 3D scans. They also fit a template model to the
scan, guided by manually placed markers. The residual error of the surface after fitting
the template is stored as a displacement map. New shapes are synthesised by Gaussian
Radial Basis Function interpolation given a set of body measures as input. Animation
of the resulting meshes is possible because a skeleton is embedded into the template and

resized along with the body shape.

Azous et al. propose a volumetric approach to the problem [7] by voxelising the 3D scans
of 300 male subjects in the CAESAR database [80]. All subjects are standing in a similar
pose. Nonetheless, the slight pose variations severely influence their statistical analysis

of the data.

One of the major difficulties with most previously suggested methods like SCAPE [6] or
[3, 93, 112, 113] is that they rely on different means for encoding shape and pose. Pose
(and the effects thereof, e.g., muscle bulging) are stored with the help of an underlying
skeleton while body shape is encoded using variational methods or envelope skinning.
During animation, the outcomes of the two methods have to be combined in an additional

step, e.g., by performing Poisson reconstruction.
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Allen et al., on the other hand, presented a method that learns skinning weights for
corrective enveloping from 3D scan data [4]. They propose to use a maximum a posteriori
estimation for solving a highly non-linear function which simultaneously describes pose,
skinning weights, bone parameters, and vertex positions. The authors are able to change
weight or height of a character during animation and the muscle deformation looks
significantly more realistic than linear blend skinning. However, since this function has
a high number of degrees of freedom, the optimisation procedure is very expensive.
Additionally, the number of support poses that can be computed per subject is limited

by the complexity of the approach, which in turn bounds the achievable realism.

A major benefit of the shared encoding is that it is easily possible to encode correlations
between pose and body shape, e.g., the body surface deformation generated by the
motion performed by an athletic person exhibits different properties than the same

motion carried out by a person with less pronounced skeletal muscles (¢f. Fig. 2.4).

The resulting shape coefficients and their variances are analysed using a statistical
method. Similar to Blanz et al. [10], regression functions are trained to correlate them
to semantically significant values like weight, body fat content, or pose. Allen et al. [3]
uses a simple linear method to generate models conforming to a set of semantic con-
straints. Allen et al. do not show quantitative analysis of the accuracy of their morphing
functions. In contrast Seo and Magnenat-Thalmann describe a method for generating
human bodies given a number of high level semantic constraints [93] and evaluate the
accuracy of linear regression based morphing functions. In Section 5.2.1 a quantitative
analysis comparing linear and non-linear regression functions for various body measures
is presented. Scherbaum et al. [90] have concluded in the context of face morphing
that although non-linear regression functions are numerically more accurate, the visual

difference to the linear counterpart is minimal.

2.5 Pose Estimation and Motion Capture

Motion capture plays an increasingly important role in modern media productions. Tra-
ditional marker based motion capture requires actors to wear special suits, and is com-
monly restricted to studio environments. Several markerless motion capture systems
have been proposed [70, 71]. However, most require that, in addition to the input video,
a model of the tracked person (e.g. a 3D scan [37], a cylinder [23], or blob [18] based
model) is supplied.
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2.5.1 Markerless Methods

Muybridge is commonly credited for being the first to do motion analysis. His famous
experiments published in 1887 [73] comprise sequences of photographies depicting the
locomotion of humans and some animals. The footage was shot using arrays of synchro-

nised cameras.

Vision based motion capture, however, was pioneered by Hogg [55] and Rohr [81] who
were both able to track a person walking parallel to the viewing plane of a single camera.
By using an a priori model of the human gait they effectively reduced the problem to
one dimension. Both authors used skeleton-based models of the tracked human made

up of cylinders which are deformed to best fit the edges of observed person and model.

Gavrila and Davis [40] introduced an approach that matches tapered superquadrics to
multi-view video frames and then employs an analysis-by-synthesis technique to match
a high degrees of freedom skeleton-based model to the observed data. The similarity of
model and video data is also evaluated using an edge-based metric. Tracked persons are

required to wear colour coded clothing.

The approach presented by Wren et al. [114] employs a statistical colour-based model
for segmenting foreground blobs from the background. The models are updated during
tracking compensating for slow changes in the background. The model of the person,
commonly consisting of several blobs with different colours, is generated automatically.
As the system is based on a single camera and uses simple texture analysis algorithms
significantly less information can be recovered by their approach than by modern mo-
tion capture algorithms. Yet, it has to be pointed out that they were able to perform
simple gesture analysis and that the proposed system works robustly even in cluttered

environments.

Only a short time later Bregler and Malik [17] introduced a new mathematical method
for tracking articulate bodies. By using products of exponential maps and twist motions
only a simple linear system has to be solved to update the kinematic chain. This allows
more sophisticated, hierarchically organised bodies with more degrees of freedom to be
tracked efficiently. While their approach models humans as a hierarchy of cylinders and
spheres triangular mesh models can just as well be used. An extension to the work was
published by Bregler et al. [18] proposing a technique that also allows the automatic

extraction of the kinematic chain.

The approach based on exponential maps can be extended to include additional con-
straints, for example by introducing motion priors [82] or by forcing body parts to adhere

to geometric constraints [83].
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Most of the systems mentioned above require either manual segmentation of the im-
ages/videos into fore- and background or use background subtraction to get the seg-
mentation. This can be avoided if an iterated pose-estimation/segmentation approach
is employed [19]. The segmentation algorithm is seeded with the texture covered by the
initial pose estimate and based on this segments the current image. This new segmenta-
tion is used to reestimate the pose, which is used to re-seed the segmentation algorithm.

These two steps are iterated until convergence is reached.

Statistically motivated methods such as Gall et al. [38] or Deutscher and Reid [32] at-
tempt to overcome the limitations of local search during motion capture by stochastically

sampling the space spanned by the degrees of freedom of the skeleton.

All of the approaches above have one common limitation. They require static cameras.
If, however, the procedure is coupled with a camera tracking algorithm, e.g., based
on structure-from-motion this limitation can be dropped. The only requirement for
such a system is that sufficient structured background is available. We present such a
system that is additionally able to temporally synchronise the video streams of handheld

cameras [50].

2.5.2 Shape Estimation

Most markerless motion capture methods have in common that they require a model of
the tracked person. In the following a few works that estimate the shape of the person

along with the pose are introduced.

An early method for estimating body shape from images has been presented by Hilton et
al. [54]. They require three predefined orthogonal views to fit a deformable template

model to silhouettes.

Balan et al. [22] propose a system that, in addition to the pose, estimates the body
shape of a tracked person in every frame of a given sequence. This becomes possible
because the tracking is based on a model (SCAPE) that is able to synthesise realistic

human body models.

Similarly, Sigal et al. [97] estimate pose and body shape in still images by training an
image descriptor on silhouettes synthesised with the SCAPE model. Given an unknown
image, the approach is able to roughly estimate pose and shape of the subject. A
generative stochastic optimisation method is then applied to finely fit the surface of
the observed human. It is also possible to estimate simple anthropometric measures
from the model. Height and arm span are extracted by bringing the model into the

T-pose. Length measures can then easily be extracted in 3D. By computing the volume
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of the mesh and assuming that human bodies primarily consist of water, an estimate of

a subject’s weight is also computed.

Balan et al. [21] approach a similar problem. They also perform pose and shape estima-
tion from single images. However, their setup includes a light source that creates a hard
shadow. During optimisation they additionally estimate the position of the light source.
This allows them to use the shadow as an additional projection of the subject which
stabilises monocular pose estimation significantly. A disadvantage of this approach is

that its use is restricted to carefully controlled in-door environments.

A system for estimating body shapes, also based on SCAPE, that is additionally robust
to clothing, given images of dressed persons, was recently presented by Balan et al. [24].
They integrate several multi-view images of a subject to improve stability of the shape
estimate. Colour-based segmentation of the scans into dressed and naked parts helps
them to tune the shape fitting procedure. Optimisation is performed using the direct
search simplex method. Tracking results are also shown but these are initialised using a

cylinder based tracker [23] and shape estimation is performed as a fine tuning step only.

In a recent work, Guan et al. [44] estimate pose and shape from single images given
only a number of manual correspondences from the image and the height of the subject.
After fitting the SCAPE model to the markers, the resulting mesh is used to initialise a
graph cut based segmentation algorithm [84]. In addition to the silhouette they propose
to use edges to improve fitting for overlapping body parts. Shading cues restrict them

to naked subjects but improve the accuracy of the estimation.

2.5.3 Performance Capture

In so-called performance capture a slightly different goal is pursued. Not just the pa-
rameters of a skeleton embedded inside a mesh are estimated but, the surface of the
dressed person, including folds and wrinkles is sought-after. The general approaches are
similar to those used in markerless motion capture. Only mesh deformation techniques

are additionally needed to reconstruct the deforming surface.

De Aguiar et al. [28] use a skeleton-based tracking procedure to match the pose of a
tracked person to observed silhouettes. In a second step colour consistency is used to
improve the resulting surface. In a later work they forego using a skeleton [27] and

instead employ a mesh-deformation based procedure operating at two resolutions.

Vlasic et al. [111] also use a skeleton-based model for pose estimation. They also apply a
similar iterated Laplacian mesh editing procedure to improve the accuracy of the surface

fit. A similar approach has also been proposed by Gall et al. [39] who also first fit a
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skeleton-based template to observed silhouettes and then deform the surface to create a

more accurate fit.






In theory, there is no difference
between theory and practice. But, in

practice, there is.

Chapter 3 JAN VAN DE SNEPSCHEUT

Scan Database & Registration

In this chapter the database of 3D scans captured as part of this thesis is introduced
and the registration procedure for establishing semantic correspondences is described.
When this project was initiated no database of 3D scans of humans was freely available.
Consequently, it was not directly possible to generate a statistical model that would
allow implementing the applications introduced in Chapters 5 and 6. So as a first step
a database was designed, captured, and registered as an additional contribution. The
database is designed to sample both, the space of human shapes and the space of human
poses at a density that allows generic interpolation, and generation of arbitrary humans

in any realistic pose.

The largest part of this chapter (Sec. 3.2 to 3.4) is concerned with the non-rigid reg-
istration procedure that brings the 3D scans into correspondence. The main challenge
addressed is that the deformations for mapping one model onto another are in some
cases large. Additionally, the subsequent statistical analysis requires a highly accurate
registration. If the vertices are not registered accurately enough, statistical analysis fails.
Linear Laplacian deformation is consequentially not an option. Instead, an optimisation
framework is used that minimises the difference between neighbouring transformation

matrices from a template mesh to the 3D scan.

3.1 Scan Database

The database of dense full body 3D scans was captured using a Vitronic laser scanner.
Of the 114 subjects aged 17 to 61, 59 are male and 55 female. The average age is
23.6 years with a standard deviation of 6.2 years. In addition to one standard pose that

allows the creation of a shape-only model, all subjects are scanned in at least 9 poses

27
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selected randomly from a set of 34 poses, which are shown in Fig. 3.1. See Fig. 3.2
for the scan distribution. The poses were designed to elaborate all major degrees of
freedom of the human skeleton. Most poses elaborate one degree of freedom only, while
keeping the rest of the body in the standard pose. This choice increases the number of
poses but simplifies the task of explaining the pose a subject is supposed to perform,
which may sound trivial but turned out to be harder than expected. The different global
orientations of the scans are a result of the limited scan volume of the scanner. Some
poses had to be performed to fit diagonally into the volume. All subjects were asked to
make fists during scanning because the laser scanner was unable to capture flat hands
with sufficient detail for the registration to work reliably. During the experiments, we
realised that a significant portion of the pose set works with the head. As head motions
are comparably subtle and relatively hard to register accurately we decided, after the
first four subjects, to scan at most one of the head poses. This also explains the lower

density for poses 18-24 in Figure 3.2.

Unlike SCAPE [6] or more recently [4] we sample the space more densely. This allows
our model to capture pose-body-shape correlations more easily. Furthermore, sex, age,
and self-declared fitness level are noted. Likewise, a number of measures are captured
with a commercially available impedance spectroscopy body fat scale, namely weight,
body fat percentage, percentage of muscle tissue, water content, and bone weight are
measured. We also use a medical grade pulse oximeter to capture the oxygenation of the
subjects’ hemoglobin and their pulse. The scans are arranged in a database S, ;, where
s is the subject identifier and p the pose, containing the points and their respective
normals as generated by the scanner. This database is available to the scientific public
[47].

In order to create a unified model of all the captured data, the scans have to be brought
into semantic correspondence. The simplest and most common way to achieve this is to

fit a single template model to every scan (cf. [3, 6, 10, 93]).

The symmetric template mesh is created by triangulating a 3D scan, enforcing symmetry
by hand and manually fitting a skeleton into the model. Skinning is performed using

the technique by Baran and Popovi¢ [8].

3.2 Registration

Non-rigid registration of 3D models is a challenging task. Starting from a common tem-

plate rather than triangulating each point cloud independently, ensures identical mesh
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FI1GURE 3.1: The poses used during scan database creation are shown. In the top row

the standard pose, performed by every subject is shown plus the head articulations.

Every subject was scanned in at most one of the head articulations. In the second

row poses articulating hip and knee are shown. In the third row the three degrees

of freedom of the torso and two for the hip are elaborated. The bottom row shows
poses exploring elbow and shoulder articulations.
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FIGURE 3.2: Every dot marks a scan taken from a subject in a given pose. Left:
SCAPE-like approach - only one subject is scanned in different poses. Right: Our
model covers the space of body shapes more densely.
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topologies and, to a certain degree, semantic correspondences are established automat-
ically. Additionally, due to the large number of 3D scans the procedure to register all
scans from the database has to be robust and almost fully automatic since the massive
number of scans does not allow tedious manual intervention to be performed on every
scan. We have consequently opted for a two stage process. First, skeleton-based defor-
mation of the template is used to estimate pose and rough size of the scanned subject.
Then, a non-rigid deformation technique is employed to fit the template to the scanned
point cloud. Performing these two steps is necessary and desirable since the stability
of non-rigid registration increases significantly when the initial mesh configuration is
close to the point cloud that is to be matched. For complex poses (cf. Fig. 3.3) direct
non-rigid deformation converges very slowly. In contrast, due to the limited number of
degrees of freedom, a skeleton based method converges quickly even in extreme cases.
Using skeleton fitting for a first estimate also allows us to use the resulting data for pose

regression.

F1GURE 3.3: A few examples of scans included in our database.

The process depends only on a few manually placed correspondences for each scan as the
scans do not feature any prescribed landmarks as present for example in the CAESAR
database [80]. The template, an example of a labelled scan, the skeleton based fitting,

and the final registration result are shown in Figure 3.4.

3.3 Skeleton Based Pose Estimation

The skeleton based fitting procedure employs an approach commonly used in marker-
less motion capture systems [17]. Any rigid body motion can be modeled as a single
rotation around a chosen axis followed by a suitable translation. Together, the trans-
formation can be stored as a twist £ with 6 degrees of freedom. See Murray et al. [72]
for mathematical properties and a more in depth description. The deformation of the
template model is additionally governed by a kinematic chain with k joints which arises
from the embedded skeleton. Only simple revolute joints are considered, which can be
parameterised by a single angle +;. By parameterising the complete pose of a person as a

vector = = [€,71 .. .7k] we can easily generate a linear system of constraint equations to
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F1cURE 3.4: This figure shows the registration pipeline used in the presented approach.

Left to right: The template model, the result after pose fitting, the result after non-

rigid registration, transfer of captured surface details, and the original scan annotated
with manually selected landmarks are shown.

optimise the pose. An ICP style optimisation scheme similar to Bregler et al. [18] is used
that generates up to three constraint equations per point of the template surface. Addi-
tionally, the manually selected landmark coordinates are used to ensure global stability
of the fitting process. The results from this step are used on the one hand as training
data to learn regression functions for modifying the pose of a subject. On the other
hand, the extracted pose can be used to initialise the non-rigid registration technique

described in the following.

3.4 Non-Rigid Registration

The posed template is used as initialisation for a more detailed non-rigid registration
step, that captures the remaining details of the current scan. The procedure follows the
ideas presented in the work by Allen et al. [3] and Amberg et al. [5]. The registration is
expressed as a set of 3 x 4 affine transformation matrices T; associated with each vertex

p! of the posed template, which are organised in a single 4n x 3 matrix
X =[T;...T,]" (3.1)

We define the cost function E(X) of our deformation as a combination of three energy
terms: F4(X), which penalises distance between template and target surface, Es(X),
which acts as a regularisation term to generate a smooth deformation, and finally E;(X),

which is a simple landmark distance term,

E(X) = aBy(X) + BE,(X) + 7 Ei(X). (3.2)
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Unlike Amberg et al., we do not express the distance term using the closest point of the
target surface from the template vertices, but as a projection onto a plane fitted to a
local patch of the target surface. Amberg et al. are forced to handle vertices bordering
on holes in the target surface specially to avoid artefacts. This is not necessary if the

inverse procedure is used and allows us to skip the border labelling step.

To find this projection, we first find the closest mesh vertex p! for each target surface
point pj. We discard matches where the angle between the respective normals are above
a threshold ¢, = 30° or the distance between the points is bigger than ¢4 = 50 mm. We
now go through all mesh vertices p! and gather the set P; of all points that were matched
to it. We then use a least-squares procedure to fit a local plane to them and project the
point p} onto that plane, resulting in a target point p! unless P; contains fewer than
4 points. In the latter case the set is discarded and we assign the closest point of the
surface p§ as the target position f)f unless this point also fails the requirements given

above. Our distance energy term can now simply be expressed as

Eq(X) =" ||p! — Tipt | (3.3)

The regularisation term Es(X) in Amberg’s original paper is expressed as the Frobenius-
Norm of the transformation matrices of neighboring vertices in the mesh. This original
term does not take into account irregular sampling of the mesh, and thus may exhibit
some artifacts. Additionally, in our case missing data needs to be extrapolated only in
localised regions where we have holes in the scan. In our experiments we therefore confine
the second order differences of the transformation matrices by applying a Laplacian
constraint with cotangent edge weights. This regularisation term tries to make changes
in the transformation matrices over the mesh as smooth as possible, and not as similar

as possible as originally proposed. The regularisation term can be written as

F

By(X) =D wiy(Ti = Ty)]| (3.4)
J
where w;; are the cotangent Laplacian weights based on the original template mesh

configuration and ||||*" denotes the Frobenius Norm.

The final term F;(X) is a simple landmark distance term:
= 2
Ei(X) =Y _IIT; - Tipf| (35)

The general registration procedure follows the work of Amberg and coworkers. The
energy term (3.2) can be written as a linear system and solved in the least-squares sense
for a given configuration. This process is iterated t,,4; = 1500 times, during which we



3.5. Discussion 33

change the energy function weighting terms in the following way:
B =ko-eM, (3.6)

where t is the number of the iteration, kg = 3000, and

A=In (:0) [tmas (3.7)

oo

with koo = 0.01. Additionally, o can be kept constant at 1 and v = k, - 8 with k, = 2.

3.5 Discussion

In this chapter the database of 3D scans, which the rest of this thesis is based upon is
introduced. It has been designed to sample the space of human shapes and poses at
a sufficiently high sampling density such that it becomes possible to generate a model
describing human shape and pose. As described in the following chapters, such a model
can be used to create human shapes given semantic constraints or to regularise shape and
pose estimation procedures. Obviously, the more samples are taken, the more expressive
the resulting model becomes. However, a balance between quality requirements and the
amount of work necessary to capture the data has to be found. After all, just capturing

ten scans of one subject takes approximately 30 minutes.

The captured database is the most diverse database published to date. The CAESAR
database [80] contains significantly more subjects (2400 vws. 114) but each subject is
captured in only three poses in contrast to 10 the poses we randomly sample from a
set of 35 poses. It would be possible to combine the two databases to create even more
expressive models of human shape and pose. This step would significantly increase
the variance of shapes as the subjects we captured are sampled from a fairly uniform
population. Most of our subjects were approximately 24 year old caucasian students,
whereas the CAESAR database samples a more diverse population with a higher age

and ethnicity variation.

The registration procedure applied here is not the only option but experimenting with
an iterated Laplacian deformation technique provided only insufficient results. More
concretely, the RMSE of the fitted surfaces was good using this method but the semantic
correspondence between the different scans was not preserved at an adequate level. A
drawback of the current registration procedure is that it is computationally expensive.
Registering a single scan takes up to an hour. As future work, an approach for iteratively
improving the registration could be implemented. Using a model of human pose and

shape, generated from the current scan database, the 3D scans could be fitted again.
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Since the model cannot represent misregistration very well because this appears as low
magnitude noise after principal component analysis, refitting the scans results in a more

consistent fit.



If we knew what it was we were
doing, it would not be called research,

would it?

Chapter 4 ALBERT EINSTEIN

Model Representations

In this chapter four different representations, describing the space of human pose and
shape are introduced. In Sections 4.1 a rotation invariant encoding is presented, which
allows the conjoint description of pose and shape variations. In the following section
(Sec. 4.2) the encoding is modified such that pose and shape parameters can be controlled
separately. A factorisation based approach is introduced in Section 4.3, which is faster
to compute but is unable to capture correlations between pose and shape. Finally, a
system focused on real-time synthesis of 3D models is presented in Section 4.4. It is
based on the popular linear blend skinning. A learning approach to generate skeletons
that represent both pose and shape variations in the same way with linear blend skinning

is presented. A short discussion concludes this chapter in Section 4.5.

4.1 Rotational Invariance

It is useful to encode the registered meshes in such a way that the relevant differences
between a pair of scans can be extracted easily. For example, if the subject raises
an arm between two considered scans, we want the representation of the hand of the
person to be identical, although both position and rotation of the hand relative to the
main body have changed. Simple Laplacian coordinates cannot be used directly as they
provide only translational invariance but rotational invariance is also required for highly
articulated models such as humans. A common method to achieve rotational invariance
is to embed a skeleton into the model and encode the surface as a function of the
skeleton [6]. Additionally, the correlation between pose and body shape becomes harder
to capture. E.g. in [6] three components are combined to create a final 3D model. The
first describes shape variations, the second component encodes a kinematic skeleton and

the membership of triangles to the respective bones, and the third component models

35
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non-rigid deformations as a result of the pose change. Instead of this complex approach,
in the following, we describe an encoding that allows us to describe both pose and body
shape in a unified way. As we show in Section 5.1, this non-linear transformation allows
us to work with linear functions for modifying pose or body shape without significant

loss of accuracy.

Translational invariance can easily be achieved by using variational approaches, as for
example introduced by Yu et al. [116] or Sorkine et al. [102]. The mesh can be re-
constructed given only the original connectivity and the triangle gradients by solving
a sparse linear Poisson system. We can also edit and modify the shape by ‘exploding’
it, i.e., applying an arbitrary transformation to each triangle separately. If we then
solve the so modified linear system, we effectively stitch the triangles back together in
such a way that the prescribed triangles transformations are maintained as accurately
as possible in the least-squares sense. This fundamental idea has been used for shape

editing (as for example in [117]), but also forms the basis of SCAPE [6].

Unfortunately, this variational representation is not invariant to rotation, meaning that
the same shape will be encoded differently depending on its orientation. To remedy this,
we encode each triangle as a transformation U; relative to a rest-pose triangle t;. This
transformation can be split up into a rotation R; and a remaining stretching deformation
S; using polar-decomposition. The stretching deformation is by construction rotation-
invariant, which means that we only need to construct a relative encoding for the rotation
matrices R;. This can be achieved by storing relative rotations R;; between pairs of
neighbouring triangles, i.e.,

R;; =R; R}, (4.1)

where ¢ and j are neighbouring triangles. So, for every triangle three relative rotations
connecting it with its neighbours can be generated. This encoding may seem wasteful as
three rotations are stored instead of just one but this redundancy significantly improves
the stability of the reconstruction when a deformation is applied to the encoded model.
Additionally, on average only 1.5 rotations are stored as only one of R; ; and R, ; has to
be stored. Recently, Kircher and Garland [57] have introduced a similar representation

for editing mesh animations.

Reconstructing a mesh from this encoding involves solving two sparse linear systems.
First we need to reconstruct U; = R;S;. Then, Poisson reconstruction yields the com-
plete mesh. Creating the per-triangle rotations R; from the relative rotations R; ; re-
quires solving a sparse linear system, which can be created by reordering Equation (4.1).

For every set of neighbouring triangles equations of the form

Ri’j . Rj -R;=0 (4.2)
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FIGURE 4.1: Due to the relative rotation encoding (RRE) direct linear interpolation of

two scans (left and right) results in realistic intermediate poses (middle right) whereas

linear interpolation of vertex positions fails as can be seen, e.g., in the subject’s degen-
erated right arm (middle left).

are added to a sparse linear equation system. As long as the model is encoded and
decoded without modification, the rotations R; computed by solving this system are
identical to the input, up to floating point accuracy and a global rotation. However,
if any modification is applied to the encoded model, the resulting matrices R; are not
necessarily pure rotation matrices but may contain scale or shear components. To im-
prove the stability of the reconstruction we perform matrix ortho-normalisation of the

resulting R; using singular value decomposition.

Now that a reversible procedure for encoding a model in a locally rotation invariant
way has been described, we can think about how exactly the different components of
the description are represented. The main requirement of the encoding is that linear
interpolation leads to intact representations. Shear matrices are already in a suitable
format if only one half of the symmetric matrices are stored. Rotation matrices, however,
are badly suited for direct interpolation. Evaluation of a number of different encodings
leads directly to rotation vectors because this representation allows easy interpolation
and unlike quaternions all possible combinations of values are valid and, in contrast to
Euler Angles, the encoding does not suffer from gimbal lock [78]. Additionally, in order
to further linearise the encoding space, all parameters are stored relative to the corre-
sponding triangle of the mean model, which is constructed by averaging all components
of all models in the relative encoding. The resulting final encoding has 10.5 degrees of

freedom per triangle (4.5 for rotation and six for in-plane deformation).

The advantage of this complex representation is that it is hard to generate inconsistent
meshes and that many common deformations, namely scaling during shape morphing
and rotation during pose modification, are linear operations. This improves the quality

of trained regression functions significantly and allows us to use linear regressors without
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visible loss of quality. As shown in Figure 4.1, it is even possible to linearly interpolate

between two poses of a subject and obtain realistic results.

Unfortunately, high frequency information, as present, for example, in the wrinkles of
the pants the subjects are wearing, is very hard to represent with our model. Subjects
sometimes adjust the fit of the pants between scans and the intra subject variance of
wrinkles is even higher. So we opted to use a simple detail transfer procedure to re-add
high frequency information after morphing, similar to displacement subdivision surfaces
by Lee et al. [60]. This step improves firstly the accuracy of the estimated regression
functions as noise is removed, secondly the efficiency since the computationally intensive
steps operate on lower quality meshes, and thirdly the visual quality as high frequency
information is retained during morphing instead of getting smoothed out. It works as
follows: After fitting, the base mesh is subdivided using the simple mid-edge scheme
and projected onto the scan. The offsets of the subdivision vertices in normal direction
of the base mesh are stored with each triangle. During recall the mesh is subdivided

again and the stored offsets are added.

4.1.1 Principal Component Analysis

Concatenating the rotations represented by rotation vectors and the components of the
stretch matrices yields a high dimensional representation of human bodies that can be
approximated linearly with respect to the most common deformations occurring in the
combined body shape and pose space. Running principal component analysis (PCA)
on the set of 3D scans yields a matrix of eigenvectors E, describing the combined body

shape and pose space and a set of low dimensional descriptors x of a scan m such that
m=E x+a, (4.3)

where m is a model in the relative rotation encoding and a the average model. Every
eigenvector of E corresponds to properties of the encoded human with different scales of
influence on the body shape. However, if an unknown body shape is to be represented

in the human body shape space a least squares system needs to be solved

argmin (m — E - x4 a)?. (4.4)

X

In this naive representation the influence of eigenvectors corresponding to small eigen-
values is overemphasised. This problem can be alleviated by dividing each eigenvector
e; by its eigenvalue e;, yielding a matrix W of whitened coefficients (see [34]). In this

new representation, every scaled eigenvector has the desired influence. Projecting a
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3D model into the space of human shapes is equivalent to
x=WT.(m-a), (4.5)

where W is the pseudo-inverse of W. As a result of whitening the coefficients, the
least-squares solution of Equation (4.5) results in a model m that is as close to the

average human in a space that evenly describes all human traits as possible.

4.2 Splitting Shape and Pose

The elegant encoding introduced in the previous section describes pose and shape in
a unified way. It even encodes correlations between the two. Unfortunately, for some
applications it is necessary to control the components independently. In human motion
capture, for example, it is known that the subject does not change from one frame to
the next. Thus, it makes sense to keep the shape constant and allow only the pose to
vary. In this section we present an approach that describes a 3D model as a sum of two

components, one describing pose and one for shape.

Given a 3D model m;, encoded as described in Section 4.1, it can also be represented as
a vector of PCA coefficients x;, given the whitened matrix of eigenvectors W and the
average model a

m; = W -x; +a. (4.6)

The coefficients here specify pose and shape in an interdependent fashion. This is desir-
able in many applications because it allows the system to capture correlations between
pose and shape. For markerless motion estimation, however, it is essential that pose and
shape can be controlled separately, because body shape does not change significantly
over the course of a sequence, whereas pose must be allowed to vary for every frame. We
consequently propose to split the space spanned by the statistical model into a shape S

and a pose P dependent space. So m; can be represented by
m; = [S|P] x} + a. (4.7)

By splitting the vector x} into two parts x; = [s,p, |, with shape s; and pose p;, a
consistent linear model of pose and shape can be generated. In order to compute S and

P a linear system of equations is generated

ST

M=% BT

, (4.8)
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FIGURE 4.2: Left to right: The average model, the first two most significant shape
variations, and the three most significant pose dependent eigenvectors (+2 standard
deviations) are shown.

where the matrix M comprises all scanned models (m; —a) ' as rows, and Z is a sparse
matrix, where in each row the corresponding shape and pose are marked with a 1. In
our case 114 subjects and for each model a subset of 55 possible poses are used. In
total we use 532 input scans from the database. Solving the overdetermined system for
S and P in the least-squares sense and performing PCA separately on S and P yields
a set of variations of pose and shape sorted by relevance in the input dataset. In the
resulting model 114 shape vectors and 55 pose vectors are retained. Finally, the Gram
Schmidt algorithm [43] applied to [S | f’} ensures that P spans a space orthogonal to
S. Consequently, assuming that S encodes all possible shape variations, pose transfor-
mations are unable to change the shape, because the relevant subspace does not overlap
the space spanned by S. The resulting variations of pose and shape are displayed in
Figure 4.2. The observed shape variations are consistent with the literature [6]: Body
height, weight, and gender cause the most significant changes in body shape. The three
most important changes in pose cause two different arm/upper body motions and a

walking style leg motion.

4.3 Factorisation

In this section, we derive a method for estimating pose and shape parameters from
registered 3D meshes of many subjects in many poses. The main idea of the approach
presented here is that both shape and pose variations can be represented as affine trans-
formations, and the vertices of each triangle can be explained by multiplication of the
two transformation matrices. This is a bilinear model whose parameters — pose and
shape — can be estimated by a linear, non-iterative procedure. The introduced algo-
rithm is robust to missing scans, i.e. not every subject has to be scanned in every pose.

Furthermore, new meshes which are not in the database can be synthesised easily.

Assuming a bilinear model of pose and shape parameters implies that the vertices of

each triangle can be factorised into

M'ijk = szS]kT (49)
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FIGURE 4.3: These subjects were asked to perform the same pose. Yet, variations in
pose are significant.

Here, M;;;, is a 3 x 3 matrix consisting of the vertices of the kth triangle of subject j
in pose i, and T is a canonical template triangle in the zy-plane. Matrices P and S are

affine transformations applied to T.

The problem defined by Eq. (4.9) is to decompose Mj;, into pose and shape components
P, and Sji, respectively. The classical factorisation algorithm [109] estimates them for
all triangles of all scans simultaneously. Thereby, the constraint is imposed that pose @
performed by one subject is identical to the same pose performed by a different subject.
This implies that the differences between the two measurements are solely a result of
body shape variations. Unfortunately, this prerequisite does not hold (c¢f. Fig. 4.3).
Since individual poses vary, any algorithm must consider this during estimation. In the
following, we will show that very few further assumptions are sufficient to obtain pose
and shape parameters which satisfactorily explain the observed 3D meshes and which

can be used to generate new 3D models not yet in the database.

The assumption that all poses of the individuals differ implies that each triangle M,
can be decomposed into a shape parameter Sj; and a shape-dependent pose parameter
P;ji. The pose transformation P;j; decomposes into a rotation matrix R, and a
deformation matrix D;j;, for shearing and scaling. Similarly, the shape transformation
S, can be written as the product of a rotation R, and a shearing-scaling deformation
Djy,

Pjir = RijpDyjr and Sj, = RjpDji. (4.10)

Hence, M;j;, can be written as

M;jr = RijiDijuRjxD;i T, (4.11)
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For every triangle M;;; of subject j, shape parameters Rj; and Dj; are computed as

the mean rotation and mean deformation over all poses of each subject.

Having estimated Sj;, it seems that we may compute P;j;, simply as P, = MijkT+S;rk
where (-)T denotes the generalised inverse. Unfortunately, if P;;j, is computed as de-
scribed above, it cannot be applied to another subject. Simply transferring a pose of
one subject to any other person violates the implicit assumption that triangles depend

on the shape of the subject.

To generalise P; ;i so that it may be applied to other subjects, we introduce the constraint
that deformations D always act on triangles in the zy-plane. This idea is motivated

by the fact that shearing and scaling are not rotation-invariant. Therefore we define
i = Ry DRy (4.12)

and insert it into Eq. (4.11). This reverses the order of shape rotation Rj; and pose

scaling D1, so that deformations always act on triangles in the zy-plane.

To be able to solve for R;j; we need to further define

i = R RixRyp. (4.13)

Finally, we obtain
M, ;r = PixS;i = Rj; R}, D}, D, T. (4.14)

The decomposition of Eqgs. (4.10) is performed by polar decomposition. However, when-
ever it is used care must be taken that the obtained rotation has a positive determinant.
If the determinant of any rotation matrix happens to be negative, the sign of the right
singular vector corresponding to the smallest singular value can be safely reversed since

it only affects the unused deformation component in z-direction.

In summary, shape is computed as the average of all scans of a subject, and pose is
considered to be a residual transformation. By immediately enforcing the various con-
straints during the estimation procedure, a separate correction step after factorisation

becomes unnecessaryl .

Principal component analysis is finally employed to learn a lower dimensional model of
the parameters of pose and shape bases. Pose and shape bases are used to explain the
observed 3D mesh (¢f. Sec. 6.1). This requires that a linear combination of pose and

shape rotations is defined. Since this cannot be done directly with rotation matrices, we

In fact, the factorisation algorithm as introduced in [109] estimates affinely distorted parameter
sets. The original algorithm therefore requires a second stage called “metric upgrading” in which certain
constraints are imposed on the model.
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FIGURE 4.4: The overall optimisation pipeline is shown. Starting from a set of ex-
amples, different subjects in different poses, first an initial segmentation is computed
with spectral clustering. Then, by iteratively solving for skinning weights and rotation-
s/translations final skinning weights are generated. The transformations are used to
compute the rigidity of potential connections between bones. The minimum spanning
tree on this rigidity matrix, is equivalent to the corresponding hierarchy. If both, a
pose and a shape skeleton are available, a combined skeleton can be used to control
pose and shape of the mesh independently.

represent rotations as rotation vectors, which can be interpolated safely. We do similarly
for the parameters of deformation. This is also motivated by a further compression,

namely that rotation and deformation are reduced to only 3 parameters each.

4.4 Skeleton Based Description

In this section an approach for estimating rigid skeletons given a set of example meshes
is detailed. The proposed method is able to estimate a combined linear blend skinning
skeleton that changes shape and pose. In contrast to previous methods, the proposed

approach allows controlling shape and pose independently.

It is based on an elaborate optimisation procedure that can in the simplest case be split
into five parts. Figure 4.4 visualises the involved steps. Firstly, a rough segmentation of
the mesh into parts belonging to different bones is computed using spectral clustering
(Sec. 4.4.1). Secondly, factorisation leads to initial skinning weights and estimates of
the involved bone rotations and offsets (Sec. 4.3). In the third step, the bone hierarchy
is computed by constructing the minimum spanning tree using joint location stability as
the penalty function (Sec. 4.4.3). The joint locations are initialised to lie on the plane
separating involved bones. An optimisation scheme then improves skinning weights and
joint locations (Sec. 4.4.4). Finally, an optimal bind shape can be synthesised by solving

a linear equation system (Sec. 4.4.5).
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If scans from several subjects are given and both pose and shape are to be described
by the skeleton, then, in order to preserve orthogonality of pose and shape, initially two
skeletons are generated, one for shape and one for pose. These skeletons can be merged
in a final step (Sec. 4.4.6). This allows pose and shape of a mesh to be controlled

independently but with a joint representation.

4.4.1 Initialisation

One of our stated goals is to improve the skeleton estimation by incorporating several
different subjects into the computation. The main idea to achieve this goal is that
deformations between models are considered rather than using a global criterion. So by
grouping the models according to subject, we can limit the observed deformations to

pose dependent deformations while gathering information from several subjects.

Initially, the bind shapes for all subjects are computed using the relative rotation encod-
ing proposed by [51]. Encoding all example models, computing the mean, and decoding

the results leads to a suitable average model.

We further compute a rough initial segmentation of the mesh into rigid parts. Starting
from a given template, we can compute the transformation T; . into example e for every
vertex i. Vertices that undergo similar transformations are moving rigidly. Considering
only the rotational part R; . of T; . the angle between the transformations for vertices ¢
and [ can be computed by converting Ri,eRlT,e into a log-quaternion and computing its
magnitude. This is a measure for the non-rigidness of the vertices. Spectral clustering
(we use the self tuning variant [118]) of the resulting rigidity matrix leads to an initial

segmentation into a specified number of body parts.

4.4.2 Factorisation

Linear blend skinning makes the assumption that a transformed vertex p) can be rep-
resented by the original vertex p;, the rotations R; for each joint j, and scalar weights
wj;, such that
/
p; = Y wji(Rj - pi +v;), (4.15)
J

where v; is an additional offset that encodes the position of the joint centre. In our
context, a number of these equations can be set up for each group of models belonging
to one subject. Generally, it is possible to compare every model from a group with
every other model from the group. However, if more than a few example models are

considered, it becomes computationally intractable to consider all combinations. Since,
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the primary objective is to optimise the deformation starting from a single bind shape,
it is sufficient to consider the transformations from bind shape to examples but not the

transformations between different examples.

Since a first weight matrix W is available from the initial segmentation, we can rearrange
Equation (4.15) and solve for R; and v;. Unfortunately, the resulting matrices R; are
not necessarily orthonormal. This can be fixed by SVD based ortho-normalisation [53]
but the resulting rotations may deviate significantly from the desired results. This

situation can be improved by adding additional equations of the form
pi = Y wi(R; " pj+v)), (4.16)
J

/.
J

resulting matrices are very close to symmetric and the resulting ortho-normalisation is

where v are additional offset vectors but R; remains the same because RjT = R;l. The
much closer to a reasonable rotation. Enforcing true rotation matrices leads to a non-
linear cost function. Thus, the current result for R;, v;, and v} can be optimised further

with the Levenberg-Marquardt algorithm [64].

In a second step we consider the rotations fixed and optimise the weight matrix. This
can be done by solving a linear system, e.g., with a non-negative least squares solver.
However, this approach does not results in localised regions of influence of the bones. I.e.
a bone may influence spatially distant regions, which can lead to unsightly artefacts. It
also leads to many non-zero weights. [86] propose to perform segmentation on the weight
map and keep only the most influential patch for each bone. Additionally, they cut off
all non-zero influences beyond the strongest four. This approach is easy to implement
and seems to work. Yet, it may be desirable to have one joint control two limbs if
they are always moving synchronously and the limit of four influences seems, apart from

efficiency reasons when implementing LBS on graphics hardware, arbitrary.

In contrast, we opt to introduce an additional constraint into the optimisation. Namely,
the L1-norm of the weight matrix, which induces sparseness, is minimised simultane-
ously. This optimisation target is obviously in conflict with the constraint ) jwii = 1.
However, as the sum of weights constraint is minimised in the least squares sense while
sparsity is enforced with the L1-norm, after renormalisation, the result is still more
sparse than a non-negative least squares solution. We use the implementation provided
by [119]. After about 10 iterations of solving for rotations and weights the method

converges and we can continue by computing a hierarchy of bones.
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4.4.3 Hierarchy Generation

The bone rotations and translations computed in the previous step cannot be trans-
formed directly into a skeleton hierarchy because the offset vectors v; are not necessarily
consistent with the intrinsic joint hierarchy. This can easily be seen if we consider the
following: The position of point p; after rotating it by R around point pg is determined
by

p1 = Ro - (p1 — Po) + Po = Rop1 + po — Rop1 - (4.17)

NI
vo

The optimisation, performed in Section 4.3, employs Equation (4.15), and allows v; to
be chosen freely. This additional degree of freedom effectively allows the optimisation
to freely move the joint centres for every example. However, due to the underlying
assumption that the 3D models consist mostly of rigidly moving body parts, we can
nonetheless use the estimates to compute connectivity and rough positions of the true
joint centres. The basic insight that, given two connected bones j and k, the connecting

joint centre j; is invariant with respect to the child bone’s rotation, leads to
Rjjjk +vj = Rajjk + Vi (4.18)

Thus, given a number of observations R, v,, the joint centre can be determined by

solving the overdetermined system of equations
(ij - Rk,n)jj,k =Vin — Vjin (419)

for j; . Determining the residual error leads to a measure of the connectedness of two
bones [86]. Computing the full connectedness graph and finding the minimum spanning

tree [59] leads to an optimal skeleton hierarchy.

Determining the root node is mostly a question of ease of use for a human modeller. For
optimisation purposes it is not really relevant. A human, however, expects the root to be
lie near the perceived centre of the model. We accordingly choose the graph centre [45]

as the root node.

4.4.4 Joint Position Estimation

The main challenge when determining joint centres lies with hinge joints because the
joint centre of a hinge joint can lie anywhere on the hinge axis. Of course in real world
examples with measurement inaccuracies and non-rigid deformation this case cannot be
detected by Eigenanalysis of the rotation matrices, which would be a good indicator in

the ideal case. The joint centres computed with Equation (4.19), however, exhibit the
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FIGURE 4.5: Comparison of the initial bind shape (red) and the improved bind shape
(green) for a female and male example (with detail magnification)

described artefact. The points lie anywhere on the approximate hinge axis. Again, the
skeletons are fully functional but the human modeller expects the bones to lie within the
surface of the model. So we initialise the joint centres by placing them on the interface

between the two involved bones using the equation provided by [86]

_ > min(w; 1, w;2)Pi
Zi min(wi,l, ’UJZ‘72) ’

(4.20)

where p; are all vertices with non-zero weights for the two bones. Afterwards, the
positions j are refined with a Levenberg-Marquardt gradient descent scheme, optimising
Equation (4.15), which can be expressed as a non-linear function of j. It also proved
beneficial to repeat the skinning weight optimisation from Section 4.3 after updating the

joint positions.

4.4.5 Bind Shape Synthesis

In a final step, the bind shape of the model can be optimised. So far, all existing
approaches have used an arbitrary example as the bind shape. This model is typically
chosen manually. In contrast, in our method, the initial bind shape is the average model
generated using the relative rotation encoding (¢f. Section 4.4.1). It is easy to improve
on this, however, by solving the overdetermined system of linear equations resulting
from Equation (4.15) for p; (¢f. Figure 4.5).
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4.4.6 Combining Shape and Pose

The above procedure describes a method for generating a skeleton given a set of example
models. With it, we can create skeletons for changing either pose or shape. Yet, it
is not feasible to directly create a combined model of pose and shape that separates
the contributions of shape and pose. This would be of great importance for simple
manual animation of the resulting skeleton. In this section an approach is introduced
for generating such a combined skeleton starting from two skeletons, one describing pose

and one for shape.

Firstly, a shape deformation skeleton is computed, using models of different persons
each scanned in a similar rest pose using the approach described above. The generated
skeleton is then used to recreate the subjects in their rest poses. Secondly, these models
derived with the shape skeleton serve as bind shapes for the second skeleton, which
describes pose variations. Since the two skeletons are coupled via the bind poses, a
combined skeleton can be created by performing the two transformations one after the

other. So, similar to Equation (4.15), the combined transformation can be expressed as

pi= [ Swn® v | R+ | b (4.21)
J J

In this formulation every shape bone influences every pose bone. This is undesirable
because the resulting graph structure is highly connected, whereas common graphics
packages can only handle tree structures. Consequently, it is necessary to simplify the
graph to a tree. This is an approximation to the real structure but since the areas
of influence of the bones are highly localised, most bones don’t overlap significantly.
The corresponding factors can consequently be dropped. Since the weight matrices
of the skeletons describe the areas of influence, it is clear that the multiplication of
the two results in a merit function that clusters bones by their area of influence. By
concatenating the two weight functions W, = [W,, W], a general merit matrix M can

be computed.

M=W/W, (4.22)

Similar to Section 4.4.3, the minimum spanning tree leads to a reasonable tree struc-
ture fitted into the graph. In the given problem, however, additional constraints have
to be respected. Namely, it is essential that the hierarchy of the original skeletons is
preserved. A joint a that is a child (direct or indirect) of joint b in a shape skeleton
has to remain a child of joint b in the combined hierarchy. It is admissible, however, to

introduce additional nodes between a and b as long as they are from the pose skeleton.
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FIGURE 4.6: A shape skeleton a) and pose skeleton for different subjects that were

estimated simultaneously b) are merged into a combined pose and shape skeleton c).

In the combined skeleton the hierarchy of the pose skeleton is enforced. Since shape

skeletons are not as sensitive to changes in the hierarchy, the shape hierarchy is allowed
to be broken if no overall consistent tree can be found.

The reverse delete algorithm for computing the minimum spanning tree [59] can be mod-
ified to incorporate this type of constraint. Unfortunately, after the modified algorithm
terminates, some small cycles can remain. These cycles are dissolved by connecting the
involved nodes fully and rerunning the above modified reverse delete algorithm. This
time, however, only the pose hierarchy is enforced. Since these cycles normally appear
in the chest region, near the root of the tree, violations of the shape hierarchy which
primarily performs translation and only little rotation are not vital. In the resulting
skeletons pose and shape bones frequently alternate because the constraints allow only

insertion of nodes from the respective other skeleton (cf. Fig. 4.6).

4.4.7 Translation vs. Scaling

Since the articulated motion of humans can be described well by distinct rigid body
motions with blending, skeleton based systems describing rotation and translation for
every bone are very successful. Shape changes, on the other hand, can be explained more
easily by a hierarchy of scale and rotation transformations. Thus, for shape describing

skeletons we incorporate additional terms into Equation (4.15)

P, =Y wji(R;S; - pi +vy), (4.23)

J
where S; is a diagonal matrix and v; does not encode any translation beyond the initial
offset of a joint relative to its parent. The optimisation strategy described above has
to be adjusted accordingly but the necessary changes are straight-forward. Figure 4.7
shows the difference in quality that can be achieved when computing a shape skeleton

with translation or scaling.

A significant disadvantage of incorporating scale into a skeleton hierarchy is that it
invariably introduces shearing in dependent nodes during articulation. This effect is not

substantial if all examples are in approximately the same pose but can introduce serious
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FIGURE 4.7: Transforming a bind shape (left) to another shape using a shape skeleton
that allows rotation and scale (middle) in comparison with a shape skeleton that allows
rotation and translation (right).

artefacts during pose animation. The artefact can be avoided by performing the scaling
in the untransformed coordinate system of the bone, i.e., the transformation T, of bone

a, which is a child of bone b can be written as
T, = R.R;S.R; , (4.24)

where R and S denote rotation and scale matrices, respectively. Unfortunately, this non-
standard approach is not generally supported. Since the difference between the shape
described by translation and that described by scaling is not significant, as shown in
Figure 4.7, we instead opt to allow translation instead of scaling during shape skeleton

construction.

4.4.8 Estimation Error

In this section experiments are described that show the effectiveness of the approach
presented in the previous section. We start by showing results exploring the classic
pipeline for estimating a pose dependent skeleton (the top branch in Figure 4.4). Then,

new poses of the combined shape and pose model are shown.

As described above, the bind shape is first approximated by the rotation invariant mean
of the examples and refined by solving a linear equation system as the last step of the
pipeline. A comparison of the two is shown in Figure 4.5. Although the differences
are subtle, slightly more detail is visible in the refined shape and the numerical error is

significantly (for the horse on average 11%) smaller.
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Final results for the three single entity sets are shown in Figures 4.9, 4.10, and 4.11. They
show the refined bind shapes, the input meshes used during optimisation, the estimated
skeletons, skinning weights, and a few poses not present in the input sets. Of course,
the input sequences used for these three models were generated with similar methods as
the technology underlying our approach. It may consequently be unsurprising that it is
possible to achieve accurate results with it. The human dataset, however, was obtained
by registering 3D scans of real persons to a template mesh. So the assumptions we make
(all deformations are based on a rigid skeleton) are only approximately true. The results

we obtain are nonetheless as good as for the synthetic sequences.

Table 4.1 summarises the residual root mean squared errors (RMSE) for recreating the
input examples as a function of the number of bones for the male and female models,
as well as the horse and the cat. As shown, the accuracy is comparable to other recent
methods [30, 86]. It is also interesting to note that, despite the gross simplification
introduced by merging the skeletons (c¢f. Sec. 4.4.6), the error for the combined model
is not significantly higher than that of the solely shape or pose dependent models.

Since the final model does not use any non-standard techniques, it is possible to load
the resulting skinned mesh into common modelling packages. Figure 4.8 shows the horse

model posed in 3D Studio Max.

For symmetric shapes, a user might expect the algorithm to find a symmetric skeleton.
Yet, the only symmetrisation we currently perform is, that for the humans, we add
mirrored versions of the examples to the input set. The resulting pose skeletons are
frequently fairly symmetric but the shape skeletons are not. This is probably related to
the fact that, since shape skeletons are mostly controlled by translation, the exact hier-
archy of the bones is not as important as for pose skeletons. The undesired translation
of a parent node can then be compensated for by translating in the opposite direction,
which is not possible for rotations. Nonetheless, it would be possible and easy to enforce

symmetric skinning weights, and joint positions for either type of skeleton.

The presented approach is limited in that it can only estimate bones if the relative
motion is non-zero in at least one example. If, for example, in a set of meshes the arms
of a subject move in parallel, it is impossible for the algorithm to determine that two
bones are required. A user may, on the other hand, expect that the prongs of a forklift
are controlled by a single bone. Distinguishing these two cases is, in the general case,
difficult. An additional limitation of the method is that when combining shape and
pose skeletons, the correlations between pose and shape are lost. This effect cannot be

avoided unless the commitment to a strict skeleton hierarchy with LBS is dropped.
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model S N RMSE (%)

# Bones 10 11 12 13 14
pose (men) 4 8 | 070 0.62 0.61 0.59 0.57
pose (women) 6 120 0.66 0.61 0.60 0.61 0.56
# Bones 0 15 20 25 30
shape (men) 59 118 | 0.48 0.41 0.37 0.34 0.32
shape (women) 55 110 | 0.54 0.45 0.41 0.37 0.35
# Bones 34 39 44
combined (men) 59 190 1.12 0.88 0.96
combined (women) | 55 218 0.88 0.92

# Bones 10 15 20 25

horse 1 12 | 090 0.56 0.51 0.38

# Bones 12 13 14 15

cat 1 8 | 1.45 1.20 1.16 1.02

TABLE 4.1: The residual RMSE normalised by the bounding volume diagonal is shown

as a function of the number of joints. S denotes the number of subjects and N the

number of examples. The shape model and the combined model allow rotation and
translation of the bones only.
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FIGURE 4.8: The final model is compatible with current 3D modelling tools and game
engines. Here, the horse is posed in 3D Studio Max.

Despite these limitations, a powerful method for converting a sparse set of examples into

a fully rigged kinematic skeleton, has been presented.

4.5 Discussion

In this chapter four representations for general models of human pose and shape are
presented. Although all presented approaches solve the same problem, emphasis is

placed on different aspects and applications.
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FIGURE 4.9: Top: input examples, Middle (left to right): bind shape, segmentation,
extracted bone skeleton, Bottom: new poses generated with the extracted skeleton.

The first approach is aimed at high quality synthesis. This model is able to model muscle
deformations and even their correlations to body shape, i.e., muscles deform differently
depending on the markedness of skeletal musculature of the modelled subject. Secondly,
a derivative model is introduced, which allows controlling shape and pose parameters
independently. This is advantageous, e.g., in a markerless motion capture context be-
cause here, it is known that the body shape of the tracked subject is unchanged, while
the pose varies every frame. However, this increase in controllability comes at a cost.
The correlations between muscle deformation and shape are lost. Only generic muscle

deformations can be represented.

The factorisation-based method is also unable to capture correlations between pose and
shape but global muscle deformation, as present, e.g., in the SCAPE model can also
be represented. This approach has the advantage that the synthesis of 3D meshes is
computationally cheaper and in the context of vision-based shape matching it converges

more stably than the above methods.
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FIGURE 4.10: Top: input examples, Middle (left to right): bind shape, segmentation,
extracted bone skeleton, Bottom: new poses generated with the extracted skeleton.

Finally, a description based on linear blend skinning is presented. Unlike the other
approaches, the representation itself is not a contribution. On the contrary, linear blend
skinning is the industry standard for real-time mesh animation. The contribution here is
the approach for computing a linear blend skinning skeleton that is able to represent both
shape and pose variations. Since the resulting representation uses linear blend skinning
only, a system for real-time synthesis of generic humans in arbitrary shapes and poses,

compatible with most common modelling packages and game engines, is presented.

Applications of these models are presented in the following chapters (Ch. 5 and 6) and

a comparison of all methods on a morphing task is offered in Section 5.1.
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FIGURE 4.11: Top: input examples, Middle (left to right): bind shape, segmentation,
extracted bone skeleton, Bottom: new poses generated with the extracted skeleton.
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Chapter 5 BRUCE BINDNER

Generative Applications

Using the shape descriptions developed in the previous chapter many applications can be
realised. These applications can be grouped roughly into two categories: generative and
estimative. Generative methods are used to synthesise new shapes just given semantic
constraints or by morphing a template, for example, for animation purposes. The expres-
siveness of these methods also shows their general applicability to vision tasks/estimation
applications because the analysis-by-synthesis approaches, applied there, generate suc-
cessively more accurate results and the accuracy of an estimate depends significantly on

the expressiveness of the underlying shape model.

This chapter focuses on generative applications. In particular, different morphing and
deformation approaches are presented (Sec. 5.1 to 5.4), followed by two section on ani-
mation. In the first section a morphing task is performed with all models described in
the previous chapter. This shows that similar results can be obtained with any of the de-
scribed methods. Yet, since the differential rotation encoding, described in Section 4.1,
achieves the highest quality, all but the last section apply this model, trusting that simi-
lar results could be obtained with any of the models. In the last section (Sec. 5.6) results

using the real-time animatable model from Section 4.4 are shown.

5.1 Morphing

Morphing is the most basic application that can be performed with any shape model.
On its own it may not even be considered an application. Yet, it is essential to show that
this most basic operation works well for all approaches to lay the foundation for more
complex applications. Figure 5.1 shows the three models side-by-side performing the

same morphing functions. The results of the relative encoding (left) and its derivative

o7
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FI1GURE 5.1: The three different shape descriptions are compared on a simple morphing
task. The corners of the squares show input data while the inner meshes are generated
from the neighbours indicated by the arrows. Left to right: The relative rotation
encoding, the split relative encoding, and the factorisation method are shown. Please
note that for the split relative encoding (middle column) the pose of the top subject is
replicated in the middle row, whereas on the left the poses in the middle column are
interpolated between top and bottom. The morphs based on the factorisation model
were computed on a lower resolution mesh.

with direct control of the pose (middle) are almost identical. Only using the split model
the pose of the top subject is replicated in the middle row. This is not possible with
the simple relative encoding. On the right, the factorisation approach is shown. These
results are less detailed because the model has been computed on lower resolution meshes
only. Overall, the visual quality of all morphs is high. All meshes look convincingly
realistic. The detail of the factorisation model is lower because in order to increase
its speed lower resolution meshes were used to train the model. However, its primary
application is in vision tasks and it is doubtful that these tasks would benefit from
higher resolution meshes. Only the perceived detail of the results would be higher.
These details, however, would mostly stem from the training data instead of truly being

estimated from image data.

5.2 Semantic Constraints

In addition to simple shape or pose interpolation, it is interesting to introduce semantic
constraints. It may, for example, be necessary to generate a large number of male

humans with certain height constraints. Enforcing a single constraint is fairly straight
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forward. If measurements of some semantic variable v are available for every subject 1,

a linear system can be set up that correlates PCA coefficients with v.
ﬁAT}fzv (5.1)

Here, A is the matrix of shapes projected into human shape/pose space and f denotes
a vector describing the learned linear function. Enforcing the constraint, given an input
mesh can then be achieved by projecting the mesh first into the PCA space and then
solving an underdetermined linear system in the minimum norm sense for the necessary
offset ¢

@@T+ﬂﬂf:a (5.2

Here, ¢ denotes the prescribed value for the given semantic constraint and x is the input

mesh’s representation in the space of human shapes and poses.

5.2.1 Semantic Model Basis

In addition, it is interesting to rotate the original PCA basis such that the first vectors
correspond to semantically meaningful directions since this allows morphing a subject
while keeping some constraints constant. For example, increasing body height normally
results in additional weight. However, by keeping weight constant while increasing

height, results in progressively slimmer subjects.

The Gram-Schmidt algorithm [43] is used to span the subspace of the original PCA
space such that it is orthogonal to all given semantic morphing vectors. Then PCA is
used to generate a basis for the remaining subspace. The new basis and all morphing
vectors now span the original PCA space. Thereafter, all scans are transformed to the
new base. The reconstruction of these models using only the subspace not spanned by
semantic variables leads to a representation in which all models are invariant to the
semantic constraint variables. The PCA of these reconstructions in combination with
the semantic constraint vectors represents the final basis. The desirable properties of
this basis are that the first vectors directly represent semantically meaningful gradient
directions and the remaining human body shape space is spanned by a PCA basis. By
applying Gram-Schmidt on the semantic vectors as well and normalising their lengths, we
can enforce orthonormality of the transformation. A mixing matrix and scale factors can
be used to directly specify semantically meaningful constraints. However, in most cases
this step is unnecessary because the semantic constraints are held constant at specific
values and solving of linear systems is only performed on the remaining subspace. So

minimum norm solutions behave as expected.
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Regressor Height Weight Body Fat Muscles Waist
simple linear | 3.68 3.03 3.38 5.63 2.78
filtered linear | 1.43 1.33 2.02 2.41  0.945
non-linear 1.15 1.17 1.66 2.38  0.858

TABLE 5.1: Root mean squared errors estimated by 10-fold cross validation for different

semantic variables and regressors on a model that contains every subject exactly once.

Weight is measured in kg, Body Fat, and Muscles in %, and Height and Waist Girth in
cm.

5.2.2 Evaluation

In line with research conducted by Allen et al. [3] and Seo and Magnenat-Thalmann [93]
we present body shape morphing driven by high level semantic variables. We also
conduct quantitative analysis of the accuracy of the trained functions. In Table 5.1
mean squared errors generated by 10-fold cross validation of different semantic functions
are presented. It is doubtful that changes within the range of these error bounds are
perceptible when the corresponding meshes are rendered. The data also shows that,
as a result of the non-linear relative rotation encoding, the achievable accuracy is only
slightly better when using non-linear rather than linear regression. This assumption is
confirmed by the observations summarised in Table 5.2. Mean and standard deviation of
the angles between morphing directions for selected functions computed for all subjects
in the shape-only model are shown. All of these values are small indicating that morphing
directions are highly collinear independent of the position in shape space. Apparently,
the relative rotation encoding linearises the space sufficiently so that it is now admissible

to use a linear function to represent the changes.

Unfortunately, many semantically meaningful functions cannot easily be evaluated quan-
titatively. For example, in order to define a muscledness function the subjects in the
database have to be labelled somehow. Yet, it is hard for a human judge to assign a
number to the muscledness of a person. It is much easier to compare two given scans and
decide on the more muscled subject. Each random pairing of scans defines a gradient
direction. The judge only chooses the sign of the gradient towards greater muscularity.
By first normalising and then averaging the gradients, a general muscularity function

can be generated. Results of applying the function are shown in Figure 5.2.

Since morphing functions can operate directly on the relative encoding, it is trivial to
constrain morphing to selected body parts. A multiplicative mask allows deformation to
occur in selected areas. The reconstruction process spreads out the error arising at the
edge of the selected region evenly, preventing the development of steps in the surface.

Figure 5.2 shows selective morphing of the upper body using the muscledness function.
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F1cURE 5.2: The effects of applying the muscledness function. Left to right: Original,
a selective mask was applied to increase only upper body muscles, full body muscle
augmentation, and an extremely muscular caricature.

| Height Weight Body Fat Waist Girth
2.04 1.47 2.78 2.00
0.688  0.520 0.853 0.715

I
o

TABLE 5.2: Mean and standard deviation of angles (in degrees) between morphing
directions computed by the non-linear model for all subjects.

FIGURE 5.3: Several women were randomly generated using the semantic basis. We
applied the constraints sex = female and weight = 65kg. As expected the taller the
woman the slimmer she is.

5.3 Character Generation

As shown recently, it is essential for the perception of the diversity of a crowd that the
body shapes of the characters differ significantly [66]. It is consequently important to
have a simple method that allows the generation of diverse body shapes. Yet, it may also
be important to be able to tightly control a generated character’s body shape. Employing

our model both objectives can be achieved by combining two different approaches.

The PCA projects the largest variances of a dataset in the first components while noise

like features are displaced to the last components. This is a most welcome feature for
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many applications. For the purpose of generating a random character that exhibits a
unique physique while creating a natural, human look, a PCA based shape-only model is
the tool of choice. We use a model consisting only of scans of subjects in the resting pose.
The model that contains all scans cannot be used for this purpose since it contains pose
dependent components in the first PCA vectors. So, a randomly generated character
with the limited model would exhibit not just changes in shape but also in pose. Yet,
for animation the generated characters can be plugged directly into the full model as

described in Section 5.5.

The advantage of the PCA based technique is that the diversity of the generated char-
acters is very high. On the downside, control over the type of generated character is
fairly low. Neither gender nor body weight or height can easily be controlled as the PCA
vectors do not, unlike often assumed, directly pertain to a single semantically relevant
measure. We can, however, take a given starting point, generated, e.g., with the above
technique and apply the morphing described in Section 5.1 to enforce a given set of
constraints. Unfortunately, this approach, although workable, may produce suboptimal

results since the morphed distance may be large, introducing artifacts on the way.

It is much more efficient to use the semantic basis introduced in Section 5.2.1. This
technique allows us to specify semantic constraints such as height between 1.70 m and
1.90m and sex between 0.9 and 1.1 male and allow the system to fill in the details.
Ultimately, this approach is used to generate the models displayed in Figure 5.3 whereas

Figure 5.4 shows a crowd that was generated without constraints.

5.4 Handle Based Body Shape Modelling

Additional adjustments may be deemed necessary by the responsible artist. Obviously
morphing along semantic trajectories is a simple option. In this section a different ap-
proach is introduced. By adding moveable handles to the body model a very intuitive
way of changing body shape is established. This avenue is opened by our use of Poisson
reconstruction in the last step which allows the inclusion of additional positional con-
straints. The deformation that is required to conform to the constraints is distributed
evenly. In fact, mesh editing has been performed using this technique [116]. However, we
want the constraints to influence the body shape realistically instead of just deforming
the initial shape in the least squares sense because this inevitably leads to unrealistic
distortions. This, however, can easily be mended by projecting the candidate body
model into the PCA space spanned by the body shape database since primarily valid
body models can be represented in this space. It may thus not be possible to represent

the proposed model in shape-space and constraints are not met exactly. So, we iterate
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FIGURE 5.4: An example of a randomly generated set of characters.

between deforming the model and projecting it back into the space of body shapes.
After about 10 iterations the system converges. Still, the method acts as a very strong
regulariser, so that constraints are frequently not met exactly and it may be necessary
to exaggerate them to achieve a desired effect. A simple editing session is shown in

Figure 5.5.

5.5 Animation

Every scan’s pose is estimated during registration. Thus we can easily train functions
that each change a specific degree of freedom of the pose. That way, we can morph any
scan into a specified pose. Since animations are frequently parameterised by a set of
joint angles for every frame, we can simply morph a given model to conform to these

constraints to animate it. This works well for most joints and poses.

However, improvements are possible if two minor issues are addressed. Some functions’
areas of influence are not localised to the expected area but also include areas on the
mirrored side of the body. This is a result of the choice of scanned poses. In most

poses arm movements are symmetric. Fortunately, the effect can be compensated for by
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F1cURE 5.5: A handle based interface for editing body shapes. The red markers are
held in place while the yellow arrows show where attached markers are moved. First
the height is increased, then hip width is decreased, and last the crotch is raised.

computing some functions, namely all functions concerning arm movement, only on one
side of the body. Similarly, it proved beneficial to split PCA vectors into left and right
halfs during reprojection of candidate models to assist independent motion of left and

right arms.

Furthermore, absolute positioning accuracy of end effectors can be improved by follow-
ing Wang et al. [112] who propose to add positional constraints to the tips of limbs
during the Poisson reconstruction step. This step also serves to correct correlations that
were wrongly learned. For example, in one of the poses the subjects stand on one leg
(¢f. Fig. 3.3). In order to keep balance and not to move for the 10s it takes to perform
the scan a very unrelaxed upper body posture was commonly adopted by the subjects.
This has led to undesired correlations. Also note that these artifacts cannot be prevented
unless fast 3D scanning of moving subjects is performed, which is not available today
at a comparable accuracy. A side-by-side comparison of using end effector constraints
vs. not using them is shown in Figure 5.6. Figure 5.7 shows several frames from an
animation. In one of the frames the subject crosses his legs. This is significant as no
pose of a scan in the database is even close to the displayed pose. A subject is morphed
into a pose that is not in the database and compared to a scan in a similar pose in

Fig. 5.8. Additionally, a person who is not in the database is represented by our model.
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FI1GURE 5.6: By adding positional constraints during reconstruction of deformed mod-

els it is possible to ameliorate accumulated pose errors. Here the effect of using posi-

tional constraints is demonstrated. Left: No constraints, Middle: Constraints, Right:
Reference Pose.

FIGURE 5.7: Animation result. The subject on the right is crossing his legs. This is
significant as no subject in the database has been scanned in a similar pose.
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FIGURE 5.8: left: Morphing a scan into a pose that is not in the database in comparison

with the original scan. The hands are not turned into the same direction which results

in the main difference between the two. Middle: The scan of a person who is not in

the database is projected into the space of body shapes. Right: The subject on the
left is morphed into the spear-thrower’s pose.

5.6 Real-time Animation

Using the skeleton based model both pose and shape can be changed in real-time. Se-
lected morphing results are presented here. Figure 5.9 shows two shape skeletons, one
describing female body shape and one for males and three pose skeletons for different
subjects. Each is shown in two significantly different poses/shapes. Exemplary results
of the merge of pose and shape skeletons are shown in Figure 5.10. Here a woman walks

and simultaneously changes body shape.

5.7 Discussion

In this chapter, animation related applications of the different models are explored.
For the most part only the differential rotation encoding is employed. However, the

deformation methods can be applied analogously to the other models.

One particularly interesting conclusion that can be drawn from this chapter is that even
complex functions such as perceived muscularity or measured physical properties can
be approximated well by linear functions. Although, artefacts are to be expected when
shapes far from the mean shape are morphed. This favourable property is probably a re-
sult of the differential rotation encoding as intuitively most of the investigated properties

can be approximated well, given triangle shape and local curvature information.
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a)

FIGURE 5.9: a) changing the shape of the human model with the extracted shape
skeleton, b) changing the pose of the human model with the extracted pose skeleton.

FiGURE 5.10: The extracted combined shape and pose skeleton allows independent
control of shape and pose. In this example a walking motion is performed while changing

the body shape.

Similar to the muscularity application and following a current trend of face beautification

papers [35, 61, 67], it would be interesting to do the same for human body shapes, i.e.,

to create a body shape beauty evaluation system which could then be used to improve

the perceived physical attractiveness of a person. Morphing a subject tracked in a video

according to this deformation field would be a further interesting step.

Furthermore, a variation of the handle based deformation technique introduced in Sec-

tion 5.4 can be applied to vision tasks as detailed in the next chapter. The main difference

is that the constraints are extracted from vision input data rather than being specified

manually.
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Chapter 6 WOLFGANG GULLICH

Estimation Applications

In contrast to the previous chapter, which showed applications focused on synthesis of
shapes given semantic constraints, in this chapter estimation applications are explored.
That is, given typical vision input data, the task is to estimate shape and pose of
an observed person. The methods are mainly targeted at estimating shape and pose
parameters from multi-view stereo images, videos, and monocular images but also from

3D scans of dressed subjects.

Since not all representations lend themselves equally well to the presented applications
they have been implemented using only the most appropriate approaches. The approach
in Section 6.1 assumes an exceptional position because its input data are 3D scans rather
than images, which is still an uncommon input data format in today’s vision community.
Yet, since the advent of affordable time-of-flight depth cameras, 3D data as input has
become increasingly popular. A general approach for estimating pose and shape from
still images or multi-view video streams using the differential rotation encoding is pre-
sented in Section 6.2. Results for various input data generated with the approach are
presented. Multiview images are analysed in Sec. 6.3, multiview markerless motion cap-
ture is performed in Sec. 6.4, and monocular pose estimation is carried out in Sec. 6.5.
Section 6.6 addresses a very similar problem as Section 6.5, namely, estimating pose
and shape of a subject from monocular images. Only the second approach generalises
the setting. In addition to pose and shape estimation a rough estimate of a projective
camera is made and instead of the differential rotation encoding (from Sec. 4.2) the
factorisation method (from Sec. 4.3) is employed. A discussion concludes the chapter in

Sec. 6.7.
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FIGURE 6.1: Overview of the fitting algorithm

6.1 Shape Estimation from Dressed 3D Scans

Fitting a human model M to a 3D scan or model S is done with an iterative approach
as illustrated in Figure 6.1. We start with a sparse set of user specified correspondence
points. Marking feet, hands, elbows, and head is usually sufficient. We then iterate
three steps until convergence. In the first step M is aligned rigidly to & by finding
the set of closest points from M to § and minimising the squared distance. Next, the
matches are used to drive a least-squares Laplacian deformation, moving M closer to
S. As this action normally moves the model out of the space spanned by the statistical
model of human bodies, we finally project M back into the human body shape space.

In the following we describe the three main steps in more detail.

6.1.1 Alignment

For every point of M the closest point on § is computed. Matches are dropped if
the distance is too big (> 10cm) or normal directions of source and target deviate too
strongly (> 30°). The remaining matches are stored in a list C. Then, the optimal rigid
body motion is calculated by minimising the squared distances of the matches in C.
Then, M is transformed accordingly. This procedure is iterated until the mean residual
error g of matches converges. The ICP procedure is necessary because the best alignment
can only be computed for a given set of matches. It is possible, and in our experience
quite likely, that given the configuration after a single alignment step, a better set of

matches can be found because the objects are now aligned more closely.

6.1.2 Laplacian Deformation

Next, M is deformed using a simple linear least-squares Laplacian mesh deformation

[2]. Specifically, the following energy is minimised:

argmin (Lx —d)? 4 (Cx — c)?, (6.1)

X
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where L and d are a Laplacian system with cotangent weights, and C and c represent
the constraints C computed in the previous step, weighted by the importance function
W (i). If the person in the target scan is wearing tight fitting clothes, generating uniform
weights is sufficient to produce convincing results. In case of wider and more obstructive
clothes though this scheme fails. One main observation leading to an improved weighting
function is that the human body always lies either exactly on the target surface or
beneath it. Thus it is important to weight matches that constrain vertices, which lie on
the outside (as determined by normal direction) of the target surface stronger than those
which lie on the inside of the target. In case of a given segmentation of S computed
with prior knowledge, for example the skin colour detection [24] or garment detection
employing a model of the clothes as in [49], we could further modify the importance

function to reflect this information.

6.1.3 Humanisation

Once the mesh has been deformed with the given constraints, it needs to be projected
back into the space of human body shapes defined by one of the statistical models
described in the previous chapter because we are not interested in just fitting the surface
of the scan but to find the human body shape that best fits the scan. In principle this

step projects the unconstrained solution back onto the solution manifold.

This is achieved by transforming the current model M into the relative rotation en-
coding m. The model is then projected into the space of human body shapes using
Equation (4.5). Since the pseudo-inverse of the matrix describing shape and pose W+
can be precomputed (cf. Eq. (4.5)), this step reduces to a matrix vector multiplication.
The result of which is a closest fit of M in the space of human body shapes. Due
to the limited dimension of the shape descriptor s, shapes that are not human body
shapes cannot be represented easily. Reconstructing M’ from s using Equation (4.1)
with subsequent Poisson reconstruction [116] yields the humanized model in Euclidean

space.

6.1.4 Error Evaluation

Given the humanized mesh, we can calculate the mean length ¢’ of the matches generated
in the alignment step. If ¢’ is lower than ¢ we continue with the alignment step, otherwise
the Laplacian Deformation is repeated with reduced weights for the matches. After a

fixed number of iterations (10) with ¢’ > ¢ the algorithm terminates.
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As for all ICP methods, the initial configuration has to be fairly close to the solution
for the approach to converge. This issue can be avoided if a few markers are placed
manually on the target surface. Then, to generate the initial configuration the same

algorithm is run with these fixed matches.

6.1.5 Experiments

In this section several experiments are performed to evaluate the approach. Of course,
since no statistical analysis is performed, no definitive conclusions about the approach
can be drawn. However, we believe that strong evidence towards general applicability
of the method is presented. First, the hidden body geometry of several persons is
estimated and biometric measures are extracted and compared to the true values. Then,
registration bootstrapping, a technique for improving the quality of scan registration and
increasing the size of the scan database, is demonstrated. Last, the same technique is

applied to shape estimation from partially missing and severely noise corrupted data.

The experimental setup is conceivably simple. A full body 3D scanner is used to scan
the subjects, which takes about 10 seconds. Then, using a custom tool, markers are
selected (2min). Finally, the proposed approach is run. The runtime of our Matlab
implementation of the algorithm is in the order of minutes per scan. FE.g., for the scan
shown in Figure 6.3b, marker based registration takes 3.5min (20 iterations) and the

surface registration 8 min (22 iterations).

6.1.6 Hidden Body Geometry

We evaluate our technique for estimating hidden body geometry, on the one hand, by
showing overlays of the scan with the estimated geometry and on the other, by extracting
biometric measures from the estimations. Overlays of resulting estimations are shown in
Figure 6.3. As can be seen, the estimated body shapes are highly plausible and fit well
into the overlaid 3D scans. For a scan as shown in Figure 6.4 it is extremely difficult to
estimate measures such as dress size or body weight of the Santa impersonator because
the thick coat generates an ambiguous situation that is even difficult for humans to
resolve. However, some measures, such as the length of arms and legs and his total
height, can be recovered quite well (¢f. Table 6.1). Note that the input data for the
algorithm does not have to be generated by a 3D scanner. Structured light scanners or

multi-view stereo techniques provide sufficient 3D geometry.

The progression of the optimisation is displayed in Figure 6.2. Starting from the average

man, markers are used to get an initial pose estimate. Please note that the body shape
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*

FIGURE 6.2: The optimisation procedure is based on iterative deformation of the

model using Laplacian editing followed by a projection of the result onto the solution

manifold spanned by the model of human body shapes. This figure shows some of

the steps performed during the optimisation. In a the initial mesh (the average man)

and in b the result of the marker based fitting is shown. ¢ and d display a Laplace

deformation step followed by a humanisation at different points in the optimisation.
Lastly, the final humanized result is displayed in e.

of this initial estimate (Fig. 6.2b) differs significantly from the final result (Fig. 6.2e).
This indicates that the markers merely stabilise the optimisation but do not contribute
considerably to the shape estimate. The initial estimate is taller, thinner and uses

outstretched instead of slightly bent arms to reach the hand markers.

Estimating biometric measures given a 3D model of a human is a difficult problem. Two
of the simplest and most prominent solutions include computing the measures directly
on the estimated 3D model or employing the statistical model of human body shapes
to learn functions that compute the desired measures. Some measures, such as weight,
cannot be computed directly from a given mesh of a human. However, even for length
measurements that can easily be computed on a mesh surface, we found that fitting a
filtered linear function to the statistical model achieves better results [51]. The measures
summarised in Table 6.1 are consequently computed by training a linear function on the
statistical human body shape model. For dressed humans, a weight factor of 10 between

matches of vertices lying outside vs. inside the target surface was found to be optimal.

6.1.7 Registration Bootstrapping

Given, for example, a scan, as shown in Figure 6.5a, we apply the surface registra-
tion procedure described in [51]. First, a skeleton based pose estimation is performed
(Fig. 6.5b) to generate a starting point for the subsequent non-rigid surface registra-
tion shown in Figure 6.5¢. Unfortunately, due to the large difference in body shape of

template and scan a registration error occurs in the left armpit. This is a result of the
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FIGURE 6.3: Body shape estimation can be performed given 3D data generated by a
laser scanner (a) or by silhouette based multi camera systems (b and c).

Height Arm Length Leg Length Weight Waist Girth
Santa 178 61 7 76 (0]
full 178 60 77 71 75
partial 181 57 79 64 75
ground truth| 182 57 79 63 74
Toga 175 61 80 69 73
ground truth| 179 59 84 67 74

TABLE 6.1: Biometric measures of one person: First dressed as a Santa impersonator

(Fig. 6.4), and second wearing every day clothing (Fig. 6.7) using the full and a partial

scan, as well as manually acquired ground truth values for comparison. Additionally,

biometric measures of the subject wearing a toga shown in Figure 6.12a are compared
to ground truth. Lengths are measured in cm and weight in kg.

skeleton based initial pose estimation which does not model different body shapes. As a
result, the starting configuration for the non-rigid surface registration step may be quite
far away from the target surface, if the body shape is significantly different. This is not
much of a problem in smoothly varying areas, such as the chest region, but in unfortu-
nate circumstances, the mesh can self-intersect or creases may develop. These problems
can be alleviated, if a better initial guess can be generated (c¢f. Fig. 6.5d). Our approach
is similar to the bootstrapping for facial scans described by Blanz et al. [10]. We per-

form the same fitting algorithm as described above for naked/tightly dressed scans with
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FIGURE 6.4: Even for humans, it is impossible to accurately estimate the body shape

of a person wearing heavy clothing. So, the estimation of some biometric measures can

only be achieved with limited accuracy. Generally, lengths, e.g. arm length or body

height can still be estimated but circumference based measures (waist girth, weight,
etc.) are obscured.

uniform constraint weights. Figure 6.5e¢ shows the improvements when bootstrapping is

applied.

This procedure can not only be applied to increase the database size but to improve the
quality of scans already part of the database. In fact, the model shown in Figure 6.5

was already part of the database.

It may seem surprising, that for a model which is already in the database, the gradient
descent based fitting procedure does not arrive at the exact representation of the scan.
Since fitting starts from the average model and registration errors, as shown in Fi-
gure 6.5¢, can be considered outliers, the gradient descent based registration technique

is unable to find that specific minimum of the cost function.

An example of employing the bootstrapping procedure to a scan that is not in the
database is shown in Figure 6.6. The initial guess models the scan very well already. So
the surface fitting step is only required to fill in minor details instead of being responsible

for performing major alignment of template and target surface.

6.1.8 Scan Completion

In a similar vein, it is possible to estimate body shape from incomplete scans as present,
for example, when structured light or range scanners are used. In Figure 6.7a a laser scan

acquired from a single direction is shown. In comparison the full scan and the resulting
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FIGURE 6.5: The quality of registration can be improved by using the statistical model
to generate an improved starting point for the surface fitting step. The figure shows an
input scan (a), a skeleton based initial guess (b), the surface fitting result using that

initial guess (c), the initial guess generated by our system (d), and the final surface
fitting result.

FIGURE 6.6: Using a bootstrapping technique, it is easily possible to increase the size

of the scan database. Here, the input scan, the initial, model based estimate, and the

final surface fit are shown. Since the initial estimate is already very close to the scan
surface, a high quality semantic registration can be reached.

body shapes are shown in Figure 6.7b. The two reconstructions are very similar as also
evidenced in Table 6.1.

6.1.9 Noise

Robustness to noise is an important property for any algorithm working on real world
input data. In Figure 6.8 Gaussian noise is added to a 3D scan. Then, the unmodified
algorithm described in Figure 6.1 is run on the data. The result looks plausible and the

pose is only slightly misestimated.
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FIGURE 6.7: The model is fitted to a single view 3D scan of a subject wearing every
day garments (top) as well as to the corresponding full multi-view 3D scan (bottom).

6.2 Pose and Body Shape Estimation

In this section, a similar approach is applied to the related problem of estimating human
pose and body shape from still images or multi-view video streams, given a statistical
shape and pose model. First, the method for finding the pose and shape in images or for
initialising the first frame of a sequence is presented. Afterwards, the tracking procedure

is introduced.

6.2.1 Pose and Shape from Silhouettes

For the initialisation of pose and shape from a single image or a set of images a silhouette
based ICP procedure is employed. As shown in Fig. 6.9, it comprises the three steps:

match, deform, and rehumanise, which are described in the following.
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FIGURE 6.8: The approach is robust even to severe noise corruption. Here we analyse

the body of a fully dressed emergency medical technician (EMT). On the left the

uncorrupted scan overlaid with a model fit to that scan is shown. The rest of the figure

shows the noise corrupted scan, the result overlaid with the original scan, and the result
on its own.

Average Model

1. Match

v

2. Deform

v

3. Rehumanize

Pose and Shape Estimate

FIGURE 6.9: Steps of the optimisation procedure for silhouette based fitting. Starting

from the average model, three steps are iterated until convergence is reached. First,

matches between measured and rendered silhouettes are computed; second, based on

these constraints, non-rigid deformation of the model is performed; and third, the model
is rehumanised.

6.2.1.1 Match

In this step, first the contour of the 3D model is rendered into the input frame and the
silhouette of the subject is extracted from the input image. Then, closest point matches
between contour and silhouette are computed. Matches are discarded, if the estimated
normals do not match (> 30°) or no approximate inverse matches can be found. The

remaining matches are associated with vertices of the mesh.

The matches are fundamentally 2D-3D correspondences, i.e., only two degrees of free-
dom of the 3D geometry can effectively be constrained. The depth as seen from the
camera is completely unconstrained. But not even two constrained dimensions can nec-

essarily be justified by the input data. Szelinski showed that in the context of general
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FIGURE 6.10: By replacing 2D-3D constraint with 1D-3D constraints performance of

the gradient descent algorithm can be improved significantly. Left: Initialisation with

the average human. Middle: The optimisation result using 2D-3D constraints. Right:
The optimisation result using 1D-3D constraints.

feature detection a feature can be located exactly, if its variance is large in both image
directions [106]. In many cases, however, a silhouette can locally be approximated by
a straight line. In this case the variance of a feature on this silhouette is large only in

normal direction to the boundary of the silhouette.

Therefore, in contrast to existing approaches, we employ 1D-3D constraints instead of
2D-3D constraints by only considering the distance to the measured silhouette in normal
direction. This allows slippage of the constraint along the contour. It can be observed
that by replacing all 2D-3D correspondences with 1D-3D correspondences, the range of

convergence can be increased drastically.

In Figure 6.10 a comparison of 1D-3D and 2D-3D constraints is performed. For the
photograph of Abraham Lincoln optimisation was performed twice comparing 1D-3D and
2D-3D constraints. Due to the large height difference between the mean human shown
on the left and Lincoln’s 1.93 m frame and the sticky behaviour of 2D-3D constraints,
the model is not able to grow. Using 1D-3D constraints, however, solves the issue. For

details about the fitting procedure for monocular still images please refer to Section 6.5.

6.2.1.2 Deform

First, the rigid body motion (RBM) with rotation matrix R and translation vector t is
computed, which best fits the current mesh to the constraints. This requires solving a

system of equations of the form
(Rli-i-t —OZ') ‘n; =0, (6.2)

where 1; is the ith constrained vertex, and o; and n; are the corresponding constraint

position in world coordinates and its normal. Afterwards, the matches are used as
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one dimensional constraints for a linear least-squares Laplace deformation [2]. After
several iterations of these steps, a deformed mesh that fits well to the data is generated.
However, depending on the quality of the input silhouettes, the resulting mesh may have

lost some of its human traits.

6.2.1.3 Rehumanise

To ameliorate this problem the statistical model is taken into account to maintain a
plausible human shape. The aim is to fit the mesh as closely as possible to the observed
silhouettes while maintaining a semblance of humanness. Here, the rotation invariant
encoding proposed in Section 4.1 is employed. The database of scanned humans re-
presents a solution manifold, which must not be left for the result to be valid. This
can be enforced by projecting the resulting mesh of the Laplace deformation into the
eigenspace of human shapes and poses and reconstructing a rehumanised mesh from the
coefficients. Dependent on the application, the splitting in pose and shape introduced
in Section 4.2 can be used to restrict the allowed deformation to pose, shape, or the full

body shape and pose model.

6.2.2 Forward Tracking

After the initialisation of the first frame has been computed based on silhouettes alone,
a more complex tracking procedure is used, which is, however, still based on the con-

strained ICP procedure proposed above.

Assuming that a good approximation of the previous frame has been computed, we can
use feature tracks computed on the input video to track the mesh forward through time.
The well-known KLT tracker [95] is used to compute sparse feature tracks on the input
video. Ray casting is used to associate the 2D position of tracks in the first image with
vertices. The target positions are used as 2D constraints. Performing a few (3) iterations

of the constrained ICP procedure, leads to a good initialisation for the next frame.

6.2.3 Optical Flow Based Correction

In order to improve the fitting, additional constraints need to be generated. Optical
flow is computed between a rendered model in the current pose and the current multi-
view input frame. In both images the green channel is replaced with the measured and
rendered silhouette, respectively, to improve fitting in areas where the texture of fore-

and background are very similar. With most optical flow algorithms severe problems
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occur at occlusion boundaries because smoothness constraints in the flow computation
create artifacts in the mesh deformation step. The flow by Ogale and Aloimonos [75],
however, detects occlusion boundaries and outputs a map of occluded pixels in addition
to the optical flow vectors. By masking these areas out, the problems with occlusion
boundaries can be reduced. The flow constraints can be trivially converted to 2D-

3D constraints, which, in turn, are applied to deforming the mesh as described above.

6.2.4 Constant Shape

Usually, if this approach is applied to a sequence of images, the body shape does not
stay constant. However, since a model is available that effectively splits the solution
space into shape and pose dependent subspaces, it is possible to enforce constant shape
coefficients. We propose to optimise a given frame n using first the full model (shape and
pose), then optimising the shape for all frames seen so far, and lastly estimating the pose
for frame n given the shape. Using Equation (4.15) the optimisation of the full model
can easily be done. Afterwards, the following equation is solved for the accumulated
shape s,
m; S P.p; a
| | s+ : +1 0, (6.3)
m,, S P-p. a

where all poses p; are held constant. The least squares solution of this equation system
is equivalent to computing the mean of all shape coefficients s; seen so far. In the last

step, the following equation is solved for p
m=P-p+S-s,+a. (6.4)

Since all these equation systems involve constant matrices, the respective pseudoinverses
can be precomputed. Thus, computing a solution involves only a single matrix vector

multiplication.

6.3 Shape Estimation from Multi-View Images

In order to quantitatively estimate the method for shape estimation from images, we
project 3D scans of subjects (¢f. Figs. 6.11 and 6.12) who are not part of the scan
database into a number of views. The shape estimation algorithm is run on different

numbers of projections. Since the silhouette-based ICP algorithm converges to a local
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FIGURE 6.11: Four subjects, who are not in the database, are scanned with a 3D laser

scanner. The scans are projected into four views and the shape estimation algorithm is

run on the generated silhouettes. Here, the input scan overlaid with the resulting mesh
is shown.

minimum, if the initial rotation of the mesh is significantly different from the real ori-
entation, the algorithm is run 16 times with orientations distributed evenly around the

vertical axis and the result with the smallest residual error is chosen as the final result.
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FIGURE 6.12: Four 3D scans of different subjects are projected into virtual cameras.

Shape estimation is performed and the result is overlaid into the input images (yellow).

The two additional images show that the estimation fits well also in views that were
not used in the optimisation (blue).

Quantitative analysis of the results is performed by extracting anthropometric measures
from the resulting scans using the method from [51] and comparing them to ground truth
values. The results, summarised in Table 6.2 and 6.3, show that one camera is already
sufficient to accurately estimate the height of a person. However, since the model was
trained on tightly dressed subjects the weight of casually dressed persons is generally
overestimated. For the tightly dressed subject, however, the weight can be estimated

accurately.

For the tightly dressed scan (subject 4), we also compute the root mean squared distance
from the estimated mesh to the scan, for one to eight projections. These distances are

summarised in Table 6.4. As this error as well as the height and weight estimates do
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estimated height using # projections |true
1 2 3 4 5 6 7 8
subject 1]1.75 1.76 1.75 1.75 1.75 1.76 1.76 1.76|1.76
subject 2|1.87 1.86 1.87 1.87 1.90 1.87 1.89 1.90|1.89
subject 3/1.70 1.72 1.73 1.71 1.73 1.73 1.74 1.74|1.73
subject 4]1.80 1.79 1.78 1.79 1.79 1.79 1.79 1.79|1.79

TABLE 6.2: Height estimates [m] and the true height of the four subjects shown in
Fig. 6.11 using an increasing number of views. Even in the monocular case accurate
results can be obtained.

estimated weight using # projections|true
12 3 4 5 6 7 8
subject 1|70 74 80 83 83 84 &85 86 73
subject 2|87 92 101 101 103 111 107 108 95
subject 3|74 83 83 92 86 91 90 95 85
subject 4|78 75 75 75 76 77 76 76 75

TABLE 6.3: Weight estimates [kg] and the true weight of the four subjects shown in

Fig. 6.11 using an increasing number of views. Although the information that can be

gained from a single view is limited, reasonable weight estimates can be computed even
in this case.

number of views| 1 2 3 4 5 6 7 8
RMSE [mm)] 928181797596 7983

TABLE 6.4: RMSE of the estimated body shape compared to the ground truth laser

scan of subject 4 using the given number of views. Evidently, the estimation error is

not significantly dependent on the number of views and degrades gracefully even for
the monocular case.

not vary considerably, we can assume that our approach is not significantly dependent

on the number of views.

We experienced that the visual quality of shape fitting can be further improved, if a
gender specific starting point is used. After first performing the silhouette-based ICP
procedure starting from an average model, the gender can be detected. Correct gender
classification is possible for all examples considered in this paper. Then the optimisation

is repeated starting from the average male/female model.

The algorithm is also tested on real images. If a calibrated set of images is available,
an accurate estimate of a person can be generated. Figure 6.13 shows a woman wearing
a skirt, whose shape and pose are estimated from three cameras. The resulting mesh

looks realistic and fits well even to the views not used in the optimisation.
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FIGURE 6.13: Estimated pose and body shape of a woman wearing a skirt. The result
is overlaid into input views in yellow. The blue silhouettes are results rendered into
additional views to show the accuracy of the estimation (not used in the optimisation).
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FIGURE 6.14: The per frame error as reported by the HumanEva-II evaluation com-
pared to ground truth. The mean error and corresponding standard deviation are (37.8,
std. dev. 9.6) mm

6.4 Tracking and Shape Stability

Starting from an initial pose and shape estimate, tracking is performed on calibrated
multi-camera image sequences. Silhouettes are extracted using background subtraction.
The estimation results are shown in Figure 6.16. For the HumanEva scene the precision
(percentage of the estimated silhouette that overlaps the true foreground) is 95.7% and
the recall (percentage of the true foreground that overlaps the estimated silhouette) is
79.0%. We also submitted the results of the HumanEva sequence to obtain a ground-
truth evaluation. Our method achieves a RMSE of 37.8 mm at a std. dev. of 9.6 mm for
the tracked sequence, which is comparable to other publications in the area (cf. [37]).

A plot of the mean error over time is shown in Figure 6.14.

Figure 6.15 shows that height and weight of the estimated models remain constant

during the tracking. This indicates that the proposed separation of shape and pose works
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FIGURE 6.15: Three different methods for estimating shape are compared. In the
first method (pose+shape) the full model including parameters for pose and shape

are optimised during the rehumanisation step,

i.e., the constant shape enforcement

(Sec. 6.2.4) is not used (std. dev. 1.65cm and 4.7kg). In the second and third method

(constant and accumulated shape) constant shape is enforced. The second method

(constant shape) estimates the anthropometric measures (std. dev. 0.93 cm and 1.8 kg)

from the final mesh (m in Equation (6.4)) while the third method (accumulated shape)
uses the accumulated shape of Equation (6.3) (std. dev. 0.59 cm and 1.6 kg).

effectively. Although, even the standard deviation of the optimisation without enforcing

shape constancy is low, constant shape constraints help to stabilise the estimated shape.

6.5 Estimating Pose and Shape from Photographs

The approach can also be used for pose and shape estimation of persons in photographs

if the silhouette of the person and a projection matrix are given. Figure 6.17 and 6.18

show four examples of shapes fitted to photographs. As with many systems, extracting

foot orientation is problematic but body shape and general pose are recovered well.

6.6 Uncalibrated Monocular Pose Estimation

Similar to the approach used in the previous section, in this section pose and shape

are estimated from single images. There are two main differences.

Firstly, instead of
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FIGURE 6.16: The markerless tracking procedure is applied to two four-camera se-

quences with one male and one female subject. The first sequence is taken from the

HumanEva-II dataset [96], which is captured in a cluttered lab environment, whereas

the second sequence is captured in a green-room. Left to right: Estimation results are

superimposed on input frames for five views. The next two images show textured result

meshes, which are used in the optical flow based correction. The last image shows the
estimated shape of the subjects.

FIGURE 6.17: Pose and body shape of three subjects are estimated from a single view

(an artist, Douglas Fairbanks as Robin Hood, Abraham Lincoln). Note that although

the silhouette under Robin Hood’s right arm is segmented badly, the fit in this area

is almost perfect. For Abraham Lincoln, who reportedly was 1.93m at 82kg, our
estimated mesh stands 1.89 m tall and weighs 82kg.

FIGURE 6.18: We also match shape and pose of this statue by Gaston Lachaise. Al-
though the body shape cannot be recovered exactly as the statue has an unrealistically
thin waist, a similar female shape is generated.
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using the differential rotation encoding used in the previous section, the factorisation
based model introduced in Section 4.3 is applied. Secondly, in the previous section an
orthographic camera model is estimated manually. Here, the orthographic camera is
used only to bootstrap the optimisation. Later, the parameters of a projective camera
are optimised to improve the shape estimation. The main idea used here is that the
3D shape of the subject can be estimated accurately enough given the orthographic

projection for using it as a calibration object.

6.6.1 Virtual Object Calibration

Having established 2D-3D correspondences between the silhouette and the estimated
3D shape, we can use the 3D shape as “virtual calibration object”. Generally, the cali-
bration of a perspective camera, i.e. determining its projection matrix and decomposing
it into intrinsic and extrinsic parameters, can be performed by means of direct linear
transformation once some 3D points of an observed object are known. This implies that
we can use the estimated 3D shape as virtual calibration object since its 2D-3D corre-

spondences are all known.

Since the projection ray of any 3D point X must be orthogonal to its 2D correspondence
x = [z y1]" [46], we obtain
xxPX=0 (6.5)

where P is the projection matrix of the perspective camera, and x denotes the cross

product. This induces a linear equation system we solve for the unknown camera matrix

P.

Let K be the 3 x 3 upper-diagonal matrix of the intrinsic parameters, R the 3 x 3
matrix indicating the orientation of the camera, and t a 3-vector of the translation of

the camera from the origin. Since
P = K [R]t], (6.6)

we can determine K and R from the first three columns of P using the fact that R is a

rotation matrix and K upper-triangular by using Givens rotations [46].

6.6.2 Camera Estimation

In Fig. 6.19 a subject is shown jumping to a climbing hold. The two images correspond
to two states of the optimisation procedure. For the left image, shape is estimated using

an initial orthographic camera. For the right image, a projective camera was estimated,
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FIGURE 6.19: Estimation computed with an orthographic (left) and a projective cam-
era (right).

FIGURE 6.20: Leftmost three images: input silhouette, result with an orthographic
(middle) and a projective camera (right). Rightmost two images: silhouette with
simulated occlusion (from hips downwards) and estimation result.

which optimally fits the shape to the silhouette as explained in Sec. 6.6.1. Especially the
parts of the subject that are most affected by perspective distortion, namely the feet,

fit much better to the silhouette.

A similar result is shown in Fig. 6.20. The left three images show the same experiment
as above. The model is fitted to the silhouette and results are shown before and after
camera estimation. Again, the perspective correction improves the result significantly.
The right two images correspond to an experiment where a partially visible silhouette
was simulated by occluding the silhouette from the hips downwards. The estimated
3D shape fits well to the visible silhouette, and the legs are estimated to have a matching

size. In the following, only the results after camera estimation are shown.

6.6.3 Automatic Segmentation

In many of our examples, unchecked lighting and low image quality make manual seg-
mentation of the input essential. In some cases, however, if the background is sufficiently
different from the subject, we are able to perform automatic segmentation. The example

in Fig. 6.21 shows such a case. The model is first fitted to four markers on the hands
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FIGURE 6.21: Automatic foreground segmentation. Top row (from left to right):

Initial estimate using four markers, input to GrabCut, output of GrabCut, and estima-

tion result. Bottom row: Second iteration of the approach. GrabCut input, GrabCut
output, and result are shown.

and feet of the subject. This first initialisation does not fit the pose very well but it is
sufficient to initialise the GrabCut segmentation algorithm [84]. The resulting silhouette
is accurate in most parts. Only between the legs the trees are wrongly classified as fore-
ground. This is the reason that the left foot of the snowboarder is estimated to be too
high. Repeating the procedure with a better starting point resolves the segmentation

issue, and the computed 3D shape finally fits the silhouette well.

6.6.4 Paintings

One difficulty with paintings is that the artist may have chosen to deform the subjects.
For instance, in the painting in Fig. 6.22 (Hay Harvest at Emgny by Camille Pissarro)
the women have unrealistically long arms. The effect on pose estimation is that the
fit seems to be of low quality at first glance but since the learned shape model forbids
unrealistic human shapes, the computed mesh adheres to regular human proportions.
For the image shown in Fig. 6.23 (Rembrandt’s Night Watch), the main difficulty during
estimation of the subjects lies in the irregular silhouettes. The militiamen wear hats,

carry guns and swords. Still, a good approximation of the characters can be computed.

6.6.5 Multiple Images

The previous examples showed pose and shape estimates computed from a single image.
If, however, several images of one subject are available an improved shape estimate
can be computed by considering all available information. This is demonstrated in
Fig. 6.24. It shows the input silhouettes (left image of each row), estimation results
by independently fitting a 3D shape to each image (second column), and the results

after enforcing that shape coefficients are equal for all input images (third column). The
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FIGURE 6.22: The women in the painting Hay Harvest at Emgny by Camille Pissarro
have exceptionally long arms. This cannot be explained by the model. The learned
shape model enforces a fit that strictly adheres to common human proportions.

FIGURE 6.23: The poses of three subjects from Rembrandt’s Night Watch are esti-
mated. The difficulty here is that the silhouettes are highly irregular.

figure also shows side-by-side comparisons of the estimated 3D shapes in the observed

poses (right column).

6.7 Discussion

In this chapter, diverse vision applications that benefit from the availability of a shape
and pose model are presented. In principle, all approaches presented in this chapter are
variations on three steps: Constraint computation, Deformation, and Humanisation.

Only the implementation details vary.

e Constraint computation is performed differently depending primarily on the type
of input data. For images and 3D scans closest points from the current solution
to the data are computed. For videos, additionally, feature tracks and optical flow

are computed to add constraints to the inside of the measured silhouettes.
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FI1GURE 6.24: If multiple views one subject are available conjoint optimisation improves

the stability of the estimation. Three columns (left to right) input silhouette, estimate

with variable shape, result after jointly optimising shape. The fourth column shows the
estimated shapes before and after optimisation with constant shape.

e Deformation is always performed using a type of Laplacian deformation. Yet,
using this method is not critical. Other deformation methods that result in smooth

surfaces could be used.

e Humanisation is achieved by projecting the deformed mesh into the space of shapes
and poses the particular model spans. This involves encoding it in a specific way,
solving a linear equation system (the projection), which can be preinverted, and
the generation of the final mesh. Depending on the used model, this step can be

computationally expensive.

This procedure basically solves a constrained optimisation problem in a gradient descent
fashion. The three steps map to the following actions: Constraint computation defines a
gradient, Deformation performs a step in this direction and Humanisation projects the

proposed solution back onto the solution manifold.
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Interestingly, the convergence of the algorithm is better when the factorisation model is
used than for the other two models, which exhibit about the same convergence behaviour.
The reason for this behaviour can be discovered by considering the following scenario.
Assume that in a tracked video sequence a subjects bends his arm from one frame to
the next and only three constraints are observed on the arm: one at the hand, one at
the elbow, and one at the shoulder. Laplacian deformation distributes the deformation
equally over the whole arm, resulting in an arc. So the angle between all triangles along
the length of the arm is approximately the same. The shape and pose model, however,
‘knows’ that significant bending is only allowed in the elbow region. The humanised
version when using the relative rotation encoding consequently straightens out the rigid
limbs and exhibits only weak bending of the elbow region. The factorisation model, on
the other hand, uses absolute rotations rather than relative ones. During humanisation,
the model tries to match the absolute rotations of all triangles. Thus, a much better fit

can be generated in a single step.

Three of the four models introduced in Chapter 4 are employed in this chapter. Only
the skeleton based model is not applied to any of the targetted vision applications
because in this representation the humanisation step used in all variations of the fitting
procedure cannot be implemented directly. However, using this model would be possible
if principal component analysis would be performed on the parameters of the shape
bones. Humanisation can then be performed by projecting onto the PCA basis of these

parameters as done with the other models.



Still round the corner there may wait
A new road or a secret gate,

And though we pass them by today,
Tomorrow we may come this way
And take the hidden paths that run

Chapt er 7 Towards the Moon or to the Sun.
The Lord of the Rings

J. R. R. TOLKIEN

Conclusion and Future Work

In this thesis an encompassing procedure for developing general models of human pose
and shape is presented. The approach is based on the statistical analysis of a database
of 3D scans of humans. The design and realisation of the database, aimed at covering
the space of human shapes and poses, is described. The comprehensive coverage of pose
and shape variations allows creating general models for synthesising human 3D models

in arbitrary poses and with any human shape.

The availability of such a model is essential for many task in today’s media industry. In
feature film productions or video games human crowds are routinely deployed. Such a
crowd can easily be created given one of the models proposed in this thesis. Similarly,
in action oriented motion pictures virtual doubles are employed to perform stunts, too
difficult or too dangerous to perform by real humans. In the motion picture industry
quality requirements for the achieved result are exceptionally high, whereas for a cus-
tomised game character the speed of animation is more important. As shown, both ends
of this application spectrum in the field of animation are covered by two of the models
proposed here. High quality synthesis is possible with the model based on a differential
rotation encoding and real-time animation is explicitly addressed by the approach for

learning linear blend skinning skeletons.

The other two models proposed in this thesis are aimed at vision tasks. Markerless
human motion capture can benefit greatly from a model of shape and pose because
normally a 3D model of the tracked person must be available. This requirement can be
circumvented given a model of human pose and shape as the generic human shape can
be adjusted to match the shape of the subject during tracking. This greatly simplifies

the experimental setup in real world applications, e.g., in biomedicine or sports science.
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Finally, the two methods targeted at vision problems are applied to pose and shape
estimation from single images. This very challenging problem is solved either fully au-
tomatically for upright standing poses or using a few manually placed markers for any
pose. This application not only shows that the used pose and shape models are general
enough to represent arbitrary human shapes in complex poses but that the proposed
iterative constrained optimisation procedure converges well, even from significantly dif-

ferent start poses.

The state of the art has been expanded on in several directions. The proposed high
quality model is the first model of human pose and shape that captures correlations
between shape and pose. The modified version of this model, which allows controlling
pose and shape independently is shown to perform competitively on the markerless
motion capture benchmark HumanEva II even without using the supplied 3D shape of
the tracked subject. The factorisation based method, is applied to the difficult monocular
pose and shape estimation problem, which is solved competitively. Finally, the method
for computing a linear blend skinning skeleton from example 3D scans is able to model
not just the pose of a subject but also shape while retaining independent control of the

two. This is not possible with previous methods.

As illustrated, the introduced models of human pose and shape are powerful tools with
applications in diverse areas ranging from character synthesis given semantic constraints

and animation to intricate vision tasks.

Except for the initial model, relative rotation encoding, none of the models introduced
here captures correlations between pose and shape. For these methods the generated
muscle bulging is identical independent of the base muscularity of the person, i.e., when
a very muscled person flexes the arm the bulging is the same as for a slim subject. This
is not a problem for vision applications as the quality of the estimation that can be
achieved given uncontrolled input images is too limited to make a difference but rein-
troducing correlations between pose and shape is beneficial for animation purposes. For
the factorisation based model this could be achieved by assuming a trilinear relationship
instead of the bilinear model assumed here. For the differential rotation encoding, a
linear model computed on the residual errors of the described model would lead to a

similar result.

As pose and shape estimation could be shown to converge well on single images, it
should be possible to extend the procedure to monocular pose tracking. Pose and depth
ambiguities would have to be handled by enforcing temporal consistency, but similar
to the presented tracking approach (Sec. 6.3), shape could be estimated taking a whole

sequence into account while pose is estimated for every frame.
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Markerless human motion capture is possibly the most valuable application, for which
an approach is presented in this thesis. The presented results are generally applicable
but in combination with the method for markerless motion capture with unsynchro-
nised moving cameras by Hasler et al. [50] the experimental setup could be simplified
even further. Such a system would require only four handheld camera streams and an
initial pose estimate. No 3D scan of the subject, no trigger based synchronisation, no
explicit calibration of the cameras, and no foreground /background segmentation would

be necessary any longer.
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