Please use this identifier to cite or link to this item: doi:10.22028/D291-25980
Title: Changes and bugs mining and predicting development activities
Author(s): Zimmermann, Thomas
Language: English
Year of Publication: 2008
SWD key words: Software
Softwareentwicklung
Datenbank
Analyse
Free key words: Software-Entwicklung
software development
database
analysis
DDC notations: 004 Computer science, internet
Publikation type: Dissertation
Abstract: Software development results in a huge amount of data: changes to source code are recorded in version archives, bugs are reported to issue tracking systems, and communications are archived in e-mails and newsgroups. In this thesis, we present techniques for mining version archives and bug databases to understand and support software development. First, we present techniques which mine version archives for fine-grained changes. We introduce the concept of co-addition of method calls, which we use to identify patterns that describe how methods should be called. We use dynamic analysis to validate these patterns and identify violations. The co-addition of method calls can also detect cross-cutting changes, which are an indicator for concerns that could have been realized as aspects in aspect-oriented programming. Second, we present techniques to build models that can successfully predict the most defectprone parts of large-scale industrial software, in our experiments Windows Server 2003. This helps managers to allocate resources for quality assurance to those parts of a system that are expected to have most defects. The proposed measures on dependency graphs outperformed traditional complexity metrics. In addition, we found empirical evidence for a domino effect: depending on defect-prone binaries increases the chances of having defects.
Software-Entwicklung führt zu einer großen Menge an Daten: Änderungen des Quellcodes werden in Versionsarchiven, Fehler in Problemdatenbanken und Kommunikation in E-Mails und Newsgroups archiviert. In dieser Arbeit präsentieren wir Verfahren, die solche Datenbanken analysieren, um Software-Entwicklung zu verstehen und unterstützen. Zuerst präsentieren wir Techniken, die feinkörnige Änderungen in Versionsarchiven untersuchen. Wir konzentrieren uns dabei auf das gleichzeitige Hinzufügen von Methodenaufrufen und identifizieren Muster, die beschreiben wie Methoden aufgerufen werden sollen. Außerdem validieren wir diese Muster zur Laufzeit und erkennen Verletzungen. Das gleichzeitige Hinzufügen von Methodenaufrufen kann außerdem querschneidende Änderungen erkennen. Solche Änderungen sind typischerweise ein Indikator für querschneidende Funktionalitäten, die besser mit Aspekten und aspektorientierter Programmierung realisiert werden können. Zum Abschluss der Arbeit bauen wir Fehlervorhersagemodelle, die erfolgreich die Teile von Windows Server 2003 mit den meisten Fehlern vorhersagen können. Fehlervorhersagen helfen Managern, die Ressourcen für die Qualitätssicherung gezielt auf fehlerhafte Teile einer Software zu lenken. Die auf Abhängigkeitsgraphen basierenden Modelle erzielen dabei bessere Ergebnisse als Modelle, die auf traditionellen Komplexitätsmetriken basieren. Darüber hinaus haben wir einen Domino-Effekt beobachtet: Dateien, die von fehlerhaften Dateien abhängen, besitzen eine erhöhte Fehlerwahrscheinlichkeit.
Link to this record: urn:nbn:de:bsz:291-scidok-31990
hdl:20.500.11880/26036
http://dx.doi.org/10.22028/D291-25980
Advisor: Seidel, Raimund
Date of oral examination: 26-May-2008
Date of registration: 9-Jul-2010
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Informatik
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
Dissertation_1638_Zimm_Thom_2008.pdf3,15 MBAdobe PDFView/Open


Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.