Please use this identifier to cite or link to this item: doi:10.22028/D291-25964
Title: Dynamic programming based RNA pseudoknot alignment
Author(s): Möhl, Mathias
Language: English
Year of Publication: 2009
SWD key words: RNS
Alignment <Biochemie>
Dynamische Optimierung
Algorithmus
Bioinformatik
Free key words: RNA-Struktur
Pseudoknoten
dynamische Programmierung
RNA
pseudoknot
alignment
dynamic programming
DDC notations: 004 Computer science, internet
Publikation type: Dissertation
Abstract: Pseudoknots are certain structural motifs of RNA molecules. In this thesis we consider the problem of RNA pseudoknot alignment. Most current approaches either discard pseudoknots in order to be efficient or rely on heuristics generating only approximate solutions. This work focuses on dynamic programming based alignment methods and proposes two new approaches for an exact solution of the alignment problem in the presence of pseudoknot structures. The first approach is able to handle arbitrary pseudoknots, however, does not guarantee a polynomial runtime for all instances, due to the NP-hardness of the problem. Nevertheless, an analysis in terms of parameterized complexity shows that the algorithm is fixed parameter tractable for a parameter that is small in practice. The second approach is a general scheme for the alignment of restricted classes of pseudoknots in polynomial time. It is motivated by existing RNA pseudoknot prediction algorithms. We show how to embed seven of those algorithms in a common scheme and present an analogous scheme for the alignment problem, which yields for each of the structure prediction algorithms a corresponding alignment algorithm. The alignment algorithms handle the same class of pseudoknots as the corresponding prediction algorithms and the time and space complexity is only increased by a linear factor, compared to the respective prediction algorithm. Both approaches have been implemented to evaluate their applicability in practice.
In dieser Dissertation beschäftige ich mich mit dem Alignment von bestimmten RNA Strukturen, die als Pseudoknoten bezeichnet werden. Da dieses Problem NP-hart ist, berücksichtigen die meisten bisher verfügbaren Alignmentverfahren um effizient zu sein entweder keine Pseudoknoten oder berechnen nur approximierte Lösungen mit Hilfe von Heuristiken. In der vorliegenden Arbeit beschreibe ich zwei neue Verfahren, die mit Hilfe von dynamischer Programmierung eine exakte Lösung für das Alignmentproblem von Pseudoknotenstrukturen berechnen. Das erste Verfahren kann beliebige Pseudoknoten alignieren und hat, da es sich hierbei um ein NPhartes Problem handelt, im allgemeinen keine polynomiell beschränkte Laufzeit. Eine parametrische Komplexitätsanalyse zeigt allerdings, dass der Algorithmus parametrisierbar (fixed parameter tractable) in Bezug auf einen in der Praxis kleinen Parameter ist. Das zweite Verfahren ermöglicht es, unterschiedliche eingeschränkte Klassen von Pseudoknoten in polynomieller Zeit zu alignieren. In einem ersten Schritt zeige ich hierzu, wie man existierende Vorhersagealgorithmen für sieben solcher Klassen in ein gemeinsames Schema einbetten kann. Dann entwickele ich ein analoges Schema für das Alignment von Pseudoknoten, das zu jedem der Vorhersagealgorithmen einen entsprechenden Alignmentalgorithmus mit nur linear erhöhter Speicher- und Zeitkomplexität liefert. Beide Verfahren wurden auch implementiert um die Praxistauglichkeit zu evaluieren.
Link to this record: urn:nbn:de:bsz:291-scidok-29611
hdl:20.500.11880/26020
http://dx.doi.org/10.22028/D291-25964
Advisor: Smolka, Gert
Date of oral examination: 11-Feb-2010
Date of registration: 5-May-2010
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Informatik
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
Dissertation_6715_Moehl_Math_2009.pdf1,61 MBAdobe PDFView/Open


Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.