Please use this identifier to cite or link to this item: doi:10.22028/D291-25293
Title: Predicting dialogue acts for a speech-to-speech translation system
Author(s): Reithinger, Norbert
Engel, Ralf
Kipp, Michael
Klesen, Martin
Language: English
Year of Publication: 1996
SWD key words: Künstliche Intelligenz
Free key words: artificial intelligence
DDC notations: 004 Computer science, internet
Publikation type: Report
Abstract: We present the application of statistical language modeling methods for the prediction of the next dialogue act. This prediction is used by different modules of the speech-to-speech translation system VERBMOBIL. The statistical approach uses deleted interpolation of n-gram frequencies as basis and determines the interpolation weights by a modified version of the standard optimization algorithm. Additionally, we present and evaluate different approaches to improve the prediction process, e.g. including knowledge from a dialogue grammar. Evaluation shows that including the speaker information and mirroring the data delivers the best results.
Link to this record: urn:nbn:de:bsz:291-scidok-53413
hdl:20.500.11880/25349
http://dx.doi.org/10.22028/D291-25293
Series name: Vm-Report / Verbmobil, Verbundvorhaben, [Deutsches Forschungszentrum für Künstliche Intelligenz]
Series volume: 151
Date of registration: 12-Jun-2013
Faculty: SE - Sonstige Einrichtungen
Department: SE - DFKI Deutsches Forschungszentrum für Künstliche Intelligenz
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
report_151_96.pdf185,89 kBAdobe PDFView/Open


Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.