Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen:
doi:10.22028/D291-25211
Titel: | Inside-outside estimation meets dynamic EM : gold |
VerfasserIn: | Prescher, Detlef |
Sprache: | Englisch |
Erscheinungsjahr: | 2001 |
Quelle: | Kaiserslautern ; Saarbrücken : DFKI, 2001 |
Kontrollierte Schlagwörter: | Künstliche Intelligenz |
DDC-Sachgruppe: | 004 Informatik |
Dokumenttyp: | Forschungsbericht (Report zu Forschungsprojekten) |
Abstract: | It is an interesting fact that most of the stochastic models used by linguists can be interpreted as probabilistic context-free grammars (Prescher 2001). In this paper, this result will be accompanied by the formal proof that the inside-outside algorithm, the standard training method for probabilistic context-free grammars, can be regarded as dynamic-programming variant of the EM algorithm. Even if this result is considered in isolation this means that most of the probabilistic models used by linguists are trained by a version of the EM algorithm. However, this result is even more interesting when considered in a theoretical context because the well-known convergence behavior of the inside-outside algorithm has been confirmed by many experiments but it seems that it never has been formally proved. Furthermore, being a version of the EM algorithm, the inside-outside algorithm also inherits the good convergence behavior of EM. We therefore contend that the yet imperfect line of argumentation can be transformed into a coherent proof. |
Link zu diesem Datensatz: | urn:nbn:de:bsz:291-scidok-50019 hdl:20.500.11880/25267 http://dx.doi.org/10.22028/D291-25211 |
Schriftenreihe: | Research report / Deutsches Forschungszentrum für Künstliche Intelligenz [ISSN 0946-008x] |
Band: | 01-02 |
Datum des Eintrags: | 5-Dez-2012 |
Fakultät: | SE - Sonstige Einrichtungen |
Fachrichtung: | SE - DFKI Deutsches Forschungszentrum für Künstliche Intelligenz |
Sammlung: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Dateien zu diesem Datensatz:
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
RR_01_02_neu.pdf | 2,66 MB | Adobe PDF | Öffnen/Anzeigen |
Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.