Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-25211
Titel: Inside-outside estimation meets dynamic EM : gold
Verfasser: Prescher, Detlef
Sprache: Englisch
Erscheinungsjahr: 2001
Quelle: Kaiserslautern ; Saarbrücken : DFKI, 2001
SWD-Schlagwörter: Künstliche Intelligenz
DDC-Sachgruppe: 004 Informatik
Dokumentart : Report (Bericht)
Kurzfassung: It is an interesting fact that most of the stochastic models used by linguists can be interpreted as probabilistic context-free grammars (Prescher 2001). In this paper, this result will be accompanied by the formal proof that the inside-outside algorithm, the standard training method for probabilistic context-free grammars, can be regarded as dynamic-programming variant of the EM algorithm. Even if this result is considered in isolation this means that most of the probabilistic models used by linguists are trained by a version of the EM algorithm. However, this result is even more interesting when considered in a theoretical context because the well-known convergence behavior of the inside-outside algorithm has been confirmed by many experiments but it seems that it never has been formally proved. Furthermore, being a version of the EM algorithm, the inside-outside algorithm also inherits the good convergence behavior of EM. We therefore contend that the yet imperfect line of argumentation can be transformed into a coherent proof.
Link zu diesem Datensatz: urn:nbn:de:bsz:291-scidok-50019
hdl:20.500.11880/25267
http://dx.doi.org/10.22028/D291-25211
Schriftenreihe: Research report / Deutsches Forschungszentrum für Künstliche Intelligenz [ISSN 0946-008x]
Band: 01-02
SciDok-Publikation: 5-Dez-2012
Fakultät: Sonstige Einrichtungen
Fachrichtung: SE - DFKI Deutsches Forschungszentrum für Künstliche Intelligenz
Fakultät / Institution:SE - Sonstige Einrichtungen

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
RR_01_02_neu.pdf2,66 MBAdobe PDFÖffnen/Anzeigen


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.