Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-24934
Titel: Computing cost estimates for proof strategies
Verfasser: Hinkelmann, Knut
Hintze, Helge
Sprache: Englisch
Erscheinungsjahr: 1994
Quelle: Kaiserslautern ; Saarbrücken : DFKI, 1994
SWD-Schlagwörter: Künstliche Intelligenz
DDC-Sachgruppe: 004 Informatik
Dokumentart : Report (Bericht)
Kurzfassung: In this paper we extend work of Treitel and Genesereth for calculating cost estimates for alternative proof methods of logic programs. We consider four methods: (1) forward chaining by semi-naive bottom-up evaluation, (2) goal-directed forward chaining by semi-naive bottom-up evaluation after Generalized Magic-Sets rewriting, (3) backward chaining by OLD resolution, and (4) memoing backward chaining by OLDT resolution. The methods can interact during a proof. After motivating the advantages of each of the proof methods, we show how the effort for the proof can be estimated. The calculation is based on indirect domain knowledge like the number of initial facts and the number of possible values for variables. From this information we can estimate the probability that facts are derived multiple times. An important valuation factor for a proof strategy is whether these duplicates are eliminated. For systematic analysis we distinguish between in costs and out costs of a rule. The out costs correspond to the number of calls of a rule. In costs are the costs for proving the premises of a clause. Then we show how the selection of a proof method for one rule influences the effort of other rules. Finally we discuss problems of estimating costs for recursive rules and propose a solution for a restricted case.
Link zu diesem Datensatz: urn:nbn:de:bsz:291-scidok-37172
hdl:20.500.11880/24990
http://dx.doi.org/10.22028/D291-24934
Schriftenreihe: Research report / Deutsches Forschungszentrum für Künstliche Intelligenz [ISSN 0946-008x]
Band: 94-10
SciDok-Publikation: 28-Jun-2011
Fakultät: Sonstige Einrichtungen
Fachrichtung: SE - DFKI Deutsches Forschungszentrum für Künstliche Intelligenz
Fakultät / Institution:SE - Sonstige Einrichtungen

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
RR_94_10.pdf248,37 kBAdobe PDFÖffnen/Anzeigen


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.