
Computing Cost Estimates for Proof StrategiesKnut Hinkelmann Helge HintzeDFKI, Postfach 2080, 67608 Kaiserslautern, F.R. Germanye-mail: hinkelma@dfki.uni-kl.deAbstractIn this paper we extend work of Treitel and Genesereth for calculatingcost estimates for alternative proof methods of logic programs. We considerfour methods: (1) forward chaining by semi-naive bottom-up evaluation, (2)goal-directed forward chaining by semi-naive bottom-up evaluation after Gen-eralized Magic-Sets rewriting, (3) backward chaining by OLD resolution, and(4) memoing backward chaining by OLDT resolution. The methods can in-teract during a proof. After motivating the advantages of each of the proofmethods, we show how the e�ort for the proof can be estimated. The calcu-lation is based on indirect domain knowledge like the number of initial factsand the number of possible values for variables. From this information we canestimate the probability that facts are derived multiple times. An importantvaluation factor for a proof strategy is whether these duplicates are eliminated.For systematic analysis we distinguish between in costs and out costs of a rule.The out costs correspond to the number of calls of a rule. In costs are thecosts for proving the premises of a clause. Then we show how the selectionof a proof method for one rule inuences the e�ort of other rules. Finally wediscuss problems of estimating costs for recursive rules and propose a solutionfor a restricted case.
1

Contents1 Introduction 32 Proof Methods 43 Proof Strategies 74 Cost Estimates for a Proof Strategy 85 Computing Cost Estimates 95.1 Number of Rule Instantiations : 95.2 Unique Rule Instantiations : 105.3 Separating In-Costs and Out-Costs for a single Rule : : : : : : : : : : 126 Propagating Cost Estimates 157 Recursive Rules 188 Conclusion 19

1 IntroductionBesides the traditional depth-�rst backward-chaining (top-down) strategy for evalu-ating logic programs there are a number of alternative proof methods. The motivationfor considering alternative approaches comes from the following two main drawbacksof the depth-�rst search underlying most implementations. First, the operationalsemantics does not correspond to the model-theoretic semantics. The proof of atheorem may not terminate although the theorem is in the model of the program.Second, a large portion of the problem space may be searched redundantly if thereare multiple ways in which a subgoal can be derived. A well-known example is thestandard speci�cation of Fibonacci numbers.These disadvantages can be overcome bymemoing or caching queries and their so-lutions for later use. This led to the development of extension tables [Dietrich, 1987]and the tabulation extension of OLD resolution [Tamaki and Sato, 1986]. Deduc-tive databases contribute another motivation for alternative approaches: the tuple-oriented execution performs a lot of database accesses with small granularity. Forthe coupling with a database a set-oriented approach would be preferable, e.g. theQuery-Subquery approach [Vieille, 1986].Forward-chaining (bottom-up) evaluation corresponds to a model-generation ap-proach. It is both complete and e�cient because it avoids the derivation of du-plicates. But if bindings for some argument positions are given in the query, itderives a lot of redundant facts which do not contribute to the proof. Recent de-velopments in bottom-up query evaluation, which are based on program transforma-tions, retain the focusing properties of top-down evaluation ([Ramakrishnan, 1988;Rohmer et al., 1986; Beeri and Ramakrishnan, 1991; Sacca and Zaniolo, 1986]).Which of these proof methods should be used for a logic programming system?In [Bancilhon and Ramakrishnan, 1988] performance evaluations of several recursivequery evaluation algorithms are presented. They measure the computation cost ofeach method individually over �ve examples.Instead of deciding on a proof method once and for all, however, it might beadvantageous to have a collection of them in one system. Then the problem isto decide when to use which proof method. We will discuss criteria on which theselection of a proof strategy for one particular query depends. Thereby we willconcentrate on criteria that a�ect the e�cient execution. In [Treitel, 1986] algorithmsfor estimating the computation costs of forward and backward application of rules1for LLNR resolution have been presented. For one query both forward and backwardchaining inference steps can be mixed. In the following sections of this paper we willextend this approach. The main di�erence lies in the proof methods that we consider.In our system we do not only have forward and backward reasoning but also goal-directed forward reasoning (after Generalized-Magic-Sets rewriting) and backwardreasoning with tabulation. We will also clarify how the cost estimates for one rulehave to be propagated to other rules by distinguishing between in costs and out costs1We use the term deduction rule or short rule synonymously for clause.3

of a rule.2 Proof MethodsAs pointed out by [Beeri and Ramakrishnan, 1991] there are two modes of informa-tion passing in evaluating a query to a logic program. The �rst is called sidewayinformation passing. By solving a premise predicate variable bindings are obtainedwhich can be passed to another premise in the same rule to restrict the computationfor that predicate. In the second mode information is passed to a rule from the queryby uni�cation with the head of the rule; it is called top-down propagation.In principle, logic programs may be evaluated by forward or backward chaining.Backward chaining supports both information passing modes but the declarativemeaning of a program is contradicted by the termination problem of many imple-mentations.Example 1 The simple left-recursive ancestor programancestor(X,Y) :- ancestor(X,Z), parent(Z,Y).ancestor(X,Y) :- parent(X,Y).with query?- ancestor(john,A).will not terminate, when evaluated by a depth-�rst, left-to-right backward-chainingproof method like OLD resolution. To avoid this problem, we have to change theorder of the clauses and of the premises in the �rst clause to get a right-recursiveprogram. It would be nice, however, if the programmer would not need to thinkabout it. Therefore we are looking for complete methods.By memoizing (sub)goals and their solutions for further use, we can get a com-plete version of backward-chaining evaluation (e.g. OLDT resolution [Tamaki andSato, 1986], extension tables [Dietrich, 1987], QSQR [Vieille, 1986], RQA/FQI [Ne-jdl, 1987]). The principle of memoing is similar for all methods. The backwardchaining system has an additional memory, the so-called solution table. At the �rstoccurrence of a query Q, a new entry into the solution table is created. The solutionlist for Q is still empty. Then Q will be proved by ordinary backward chaining. Ev-ery solution of Q will be added to the solution list of Q. If the same query Q occursmultiple times { i.e. there already exists an entry for Q in the solution table { no newproof will be started but the solutions already in the solution list are retrieved. Bythis approach every query is proved only once. Additionally, some non-terminatingloops are avoided: if a query Q occurs a second time but no solutions have been4

derived the evaluation stops. For a more detailed description of this approach and aproof of its completeness see for example [Tamaki and Sato, 1986].Evaluating the above left-recursive program of Example 1 with a memoingmethodwill terminate. Since memoing is space-consuming, the incomplete, non-memoingapproach can still be useful but only for `safe', e.g. non-recursive, programs. Besidesbeing complete the memoing methods can also dramatically increase e�ciency ofprograms by reusing previously computed solutions:Example 2 A well-known example for redundant recomputation is the standardspeci�cation of Fibonacci numbers.fib(0,1).fib(1,1).fib(N,F) :- N1 = N - 1, fib(N1,F1),N2 = N - 2, fib(N2,F2),F = F1 + F2.The complexity can be reduced from exponential to linear by memoizing instead ofrecomputing the values of the �rst n-1 �bonacci numbers.Forward chaining by naive or semi-naive evaluation is a complete �xpoint proce-dure [Bancilhon and Ramakrishnan, 1986]. Since pure forward chaining evaluationdoes not take into account a query, sideway information passing is the only informa-tion passing mode (see above). To restrict model generation to those ground factsrelevant to answer a particular query, the Magic-Sets rewriting technique introducesauxiliary `magic' predicates to simulate the second (top-down) information passingmode [Bancilhon et al., 1986]. An additional fact { called Magic Seed { carriesthe bindings of the query; the arguments of the seed fact are exactly the variablebindings of the query. All relevant rules will get an additional premise that can besatis�ed by magic facts. Thus, the variable bindings of the query are passed to thebody of the applicable rules. The Generalized Magic Sets (GMS) transformation[Beeri and Ramakrishnan, 1991] extends the sideway information passing strategyfrom base predicates to derived predicates. The rewriting strategy depends on theparticular strategy for sideway information passing. A detailed description of GMSrewriting would require too much space. Therefore we will demonstrate it with anexample. For more information and an algorithm see [Beeri and Ramakrishnan, 1991;Balbin et al., 1991].In addition to the introduction of Magic Sets an adorned version of the programis created. The adornment of a predicate depends on the binding pattern of the goalfor which it can be called: A predicate pbbf is assumed to be evaluated with the �rsttwo arguments bound to a ground term and the third argument being a term withfree variables.Example 3 The simple ancestor program5

ancestor(X,Y) :- ancestor(X,Z), parent(Z,Y).ancestor(X,Y) :- parent(X,Y).with query?- ancestor(john,A).will be rewritten tomagic_ancestor_bf(john).magic_ancestor_bf(Y) :- magic_ancestor_bf(X), parent(X,Y).ancestor_bf(X,Y) :- magic_ancestor_bf(X),ancestor_bf(X,Z),parent(Z,Y).ancestor_bf(X,Y) :- magic_ancestor_bf(X), parent(X,Y).The initial bindings of the query are given by the seed magic ancestor bf(john)while the rule for magic ancestor bf is responsible for the simulation of the top-down propagation of variable bindings. The adornment bf indicates that the argu-ment of magic ancestor bf delivers the bindings for the �rst argument of ancestor.This transformation is data independent. For every set of facts forward chain-ing of the rewritten program derives all the facts necessary to answer the queryancestor(john,A).Model generation without rewriting may pay if the query does not restrict themodel generation so much. A trivial example would be that the program consistsonly of facts containing John's ancestors. But also for more realistic programs, if thequery does not heavily restrict the model generation, it might be better to renouncerewriting. A preferable approach would be simply to select the relevant rules, executethem by simple bottom-up evaluation, and select the matching facts.As part of the CoLab knowledge representation system [Boley et al., 1993] wehave extended a logic programming language with various alternative proof meth-ods. These are a modi�cation of OLDT resolution [Tamaki and Sato, 1986], wherewe can explicitly specify the tabulation predicates, and the semi-naive bottom-upevaluation [Bancilhon, 1985] with optional Generalized-Magic-Sets [Beeri and Ra-makrishnan, 1991] rewriting. Thus, we distinguish four kinds of proof methods inour system:Forward Chaining: semi-naive bottom-up evaluationGoal-Directed Forward Chaining: semi-naive bottom-up evaluationafter Generalized-Magic-Sets rewritingBackward Chaining: top-down proof by OLD resolution6

Memoing Backward Chaining: top-down proof by OLD resolutionwith tabulation (OLDT resolution)There are interfaces between the forward-chaining and the backward-chainingimplementation, such that for proving a theorem any combination of the four proofmethods can be applied. The programmer may prejudice (part of) the strategy byexplicitly determining the proof methods for individual rules. The control of thecombined forward/backward-chaining system is rather complex: Evaluation startswith the bottom-up execution of the (potentially GMS-rewritten) rules that canbe triggered by the facts of the program. The top-down reasoner is called for theremaining backward-provable premises of an applied rule (if any). The derived factsof this phase are added to the program. If the query has already been derived inthis phase, execution stops. Otherwise, the backward-chaining component is appliedreusing forward-derived facts without recomputing them. A detailed description ofthe system can be found in [Labisch, 1993].As already mentioned above, the choice of the proof method depends on complete-ness and e�ciency criteria. In the following sections we will present an approach forestimating the e�ciency of a proof based on cost estimates. It extends the compu-tation of cost estimates as described in [Treitel, 1986] and [Treitel and Genesereth,1987], where only the �rst two types of evaluation (forward and backward chaining)were considered. The cost estimates can then be used to choose a proof method forevery rule.3 Proof StrategiesSince there are a number of proof methods available for logic programs, we have todecide when to apply which method. We will �rst de�ne what a proof strategy is:De�nition 4 (Proof Strategy) A proof strategy is an assignment of a proof methodto each clause of a logic program P.Now we will consider at which level and time a decision for a proof method canbe made. Possible levels on which a strategy can be determined are (in order ofdecreasing speci�city):Rule: Each rule is associated with one of the four proof methods. Thiscould mean that two clauses de�ning the same relation are evaluatedby di�erent proof methods.De�nition: All clauses de�ning one predicate must be evaluated by thesame proof method.Module: Procedures can be collected to modules, for which a uniformproof method is seeked. 7

Program: There is no collaboration between proof methods. A goal isproved by selecting one of the available proof methods in advance,which is used for the whole program.System: Only one proof strategy is available in the system and conse-quently there is no choice. This is the case for most of the logicprogramming languages. Prolog, for instance, only supports a kindof SLD-resolution.In principle, control decisions can be made either at run time or at compiletime. Decisions made at run time can bene�t from up-to-date information (e.g.actual variable bindings) and therefore are more precise. Their overhead, however,may counteract their improvement. Decisions made at compile time might be lessaccurate, but they can be made once and used several times. Also they can be morecomplex because the time they consume themselves does not increase the waitingtime for an answer. Our approach is a compile-time approach making a decision atde�nition level and taking into account information from the query. The decisionfor a rule's strategy depends on cost estimates for its application. Then an overallstrategy is an assignment of one of the four proof methods to every clause of theprogram such that all rules de�ning a particular predicate are evaluated by the samemethod.It should be noted that it can be advantageous to apply di�erent proof methodsto a single rule depending on the variable bindings of the query. This will notbe considered by our approach, but can be achieved in combination with programspecialization techniques like partial evaluation [Komorowski, 1992]. In this case,the rules de�ning a predicate p are duplicated and specialized for a particular queryp(a,X). After renaming the predicate we have a new predicate p', which will beapplied if p is called with �rst argument bound to a. The rules de�ning p' can beassigned a proof method di�erent from that of p.4 Cost Estimates for a Proof StrategyFor each clause the cost estimates for evaluating them by any of the available proofmethods are calculated. The total cost of a strategy S for a program P is computedby the following equation:cost(S) = (1)Xr2Pvf(r; S) � ef(r) + vb(r; S) � eb(r) + vgf(r; S) � egf(r) + vmb(r; S) � emb(r)where ef(r) is the estimated cost for applying rule r in forward direction by semi-naive evaluation, eb(r) is the estimated cost for applying r in backward direction,egf(r) is the estimated cost for using a goal-directed forward-chaining approach (after8

rewriting), and emb(r) is the estimated cost for applying memoing backward chainingby OLDT resolution. The parameters vx play the role of selectors:vf(r; S) = (1 if r is executed as a forward rule according to strategy S0 elsevb(r; S) = (1 if r is executed as a backward rule in strategy S0 elsevgf(r; S) = (1 if r is executed as a goal-directed forward rule in S0 elsevmb(r; S) = (1 if r is executed as a backward rule with memoing in S0 elseThe task is to choose values for vf (r; S), vb(r; S), vgf(r; S), and vmb(r; S) suchthat cost(S) is minimal.5 Computing Cost EstimatesThe decision is made on indirectly domain-dependent information. It is more informa-tive than purely syntactic approaches which are applicable to any program withoutany advice concerning their content. On the other hand, they abstract from deepknowledge about the domain and the concrete data of the program. In particular,we consider� estimates on the number of facts for each predicate,� the probability of deriving duplicates,� the distribution of possible variable instantiations, and� the number of answers that are needed (one answer or all answers).� Additionally, we take into account the degree of restrictions given by the query.In this section we will �rst repeat some equations from [Treitel and Genesereth,1987] for calculating the basic values, i.e. the number of (unique) rule instantiations.Then we will present a systematic way for computing the costs of rule execution withany of the available proof methods.5.1 Number of Rule InstantiationsAn important value for the computation of cost estimates is the number of facts,which can be computed by a rule, i.e. the number of consistent instantiations of thebody of a rule. The instantiation of two literals is consistent if common variables9

have identical bindings. The probability of consistent instantiations depends on thenumber of possible values for common variables. Consider two literals p(X,Y) andq(X,Y,Z). Let n(Q) be the number of possible instantiations for a literal Q and letd(X) be the number of possible values for a variable X. Then the probability thattheir instantiation is consistent is equal to d(X)�1 � d(Y)�1 and thus the number ofconsistent instantiations isn(p(X; Y)) � n(q(X; Y; Z)) � d(X)�1 � d(Y)�1 :The number of consistent instantiations of a rule is calculated iteratively simulat-ing a left-to-right information passing strategy: Let r be a rule P Q1; Q2; : : : ; Qn,let �i be the set of variables of premise Qi+1 that have already been bound by thepremises Q1; Q2; : : : ; Qi. Let A(r; i) be the number of consistent instantiations of the�rst i premises. ThenA(r; 1) = n(Q1)A(r; i+ 1) = A(r; i) � n(Qi+1) � YV2�i d(V)�1 (2)and the number n(P) of derivable facts is equal to A(r; n).Example 5 If the premises of a rule do not share any variable, the number of possiblefacts derived by a rule is computed by the product of the possible instantiations foreach premise. Consider the following rule:p(X,Y) <- s(X), t(Y).If there are 100 possible instantiations for s and 10 possible instantiations for t, therule can compute 1000 facts. If the premises share variables, these must have thesame value at each occurrence, which reduces the number of possible derivations.Then the number of consistent instantiations is equal to the number of possibleinstantiations divided by the number of possible values for each multiple occurrenceof a variable. Consider the rulep(X,Y) <- s(X,Z), t(Z,Y).If the number d(Z) of possible values for variable Z is 5 and there are again 100possible instantiations for s and 10 possible instantiations for t, then the number ofderivable facts is computed by 100 � 10=5, i.e. there are 200 possible derivations.5.2 Unique Rule InstantiationsDi�erent instantiations of the variables in a rule may lead to identical instantiationsof the conclusion. This may be the case, for example, if rule instantiations di�er10

only for variables, which do only occur in the premises. These multiple derivations ofidentical facts are called duplicates. A substantial factor for the selection of a methodis whether duplicates are eliminated or proved redundantly. Therefore this has to beconsidered by the cost estimation. This means that we need to know not only howmany consistent instantations of a rule can be found but also how many of them areunique.Consider a rule p(X) Q1; Q2; : : : ; Qn. Let again d(X) be the number of possiblevalues for a variable X. We �rst assume that every possible value for a variableoccurs with equal probability. Then the number EX(m) of unique derivations afterm derivation steps is computed by the following recursive formula:EX(1) = 1EX(m+ 1) = EX(m) + Pu(m) :with Pu(m) being the probability that the m-th fact has not already been derived:Pu(m) = 1� EX(m)d(X)The recursive de�nition for EX(m) can be approximated by the following formula:EX(m) = 1� (1 � d(X)�1)md(X)�1 :Now we generalize this formula for conclusions with multiple variables: Let P Q1; Q2; : : : ; Qn be a rule, let X1; : : : ;Xk be the variables of P and let m = n(P) =A(r; n) be the number of consistent instantiations for P computed by formula (2).Then the number of unique instantiations nunique(P) is approximated by the formulanunique(P) = EX1;:::;Xk(m) = 1 � (1 � p)mp with p = kYi=1 d(Xi)�1 (3)Example 6 Assume that the rulep(X) <- s(X,Z), t(Z,Y).has 100 consistent instantiations, i.e. n(p(X)) = 100, and the domain of X has cardi-nality 200, i.e. d(X) = 200. Using formula (3) above we get78 < EX(100) = 1� (0:995)100200�1 = 78:8 < 79Thus, from 100 derived facts we get probably 21{22 duplicates if they are not elimi-nated. 11

For these approximations it has been assumed that every possible value for avariable occurs with equal probability. If it is known that some values occur more orless often, we can use weight factors. The formulaEX(n; a) = 1� (1� (g(a) � d(X)�1))ncomputes the probability that variable X is instantiated with value a after n deriva-tion steps. The weight g(a) is a measure for the frequency of the value a being aninstantiation for X.5.3 Separating In-Costs and Out-Costs for a single RuleWith these basic values we can now compute the costs for evaluating a rule with anyof the available proof methods. For systematic analysis we distinguish between incosts and out costs of a rule. The out costs correspond to the number of calls of arule. In costs are the costs for proving the premises of a clause. Then the total costsof a rule are equal to the product of in costs and out costs because for each call thepremises have to be tested.The main value for in costs of a rule is the number of consistent instantiationsfor its premises. Here the elimination of duplicates has to be taken into account.However, premises are not proved by the rule itself, but by other rules. Thus, we seehow the costs of one rule are inuenced by the proof method of other rules. Let I(r,i)be the number of instantiations for the ith premise of rule r. Depending on the proofmethod of the rule that derives these instantiations, its value is calculated either byformula (2) or (3):I(r; i) = 8><>: EX1 ;:::;Xk(A(r; i)) if the ith premise is proved by aduplicate-eliminating methodA(r; i) if duplicates are not elimated.For goal-directed reasoning (i.e. goal-directed forward chaining, backward chain-ing and memoing backward chaining) we have to consider that a rule is called witha query, such that not all instantiations are computed. Therefore we compute theircosts with respect to a binding pattern.Forward ChainingThe in costs of a forward rule are equal to the number of instantiations of thepremises. To these costs we have to add the costs S for storing each of the uniquederived facts.InCostsf(r) = nXi=1 I(r; i) + EX1;:::;Xk(A(r; n)) � S12

The out costs for forward chaining are equal to 1 because each instantiation is com-puted exactly once and can be used multiple times. This means that the forwardcosts for a rule r are simply the in costs:ef(r) = InCostsf(r) �OutCostsf(r)= nXi=1 I(r; i) + EX1;:::;Xk(A(r; n)) � S (4)Goal-directed Forward ChainingGoal-directed forward chaining is based on a rewriting of the rules to restrict thederivation of facts. The cost estimates must reect the e�ort of evaluating the rewrit-ten rules: the rewriting algorithm adds an additional premise with a magic predicateto the original rule and introduces new rules to derive instantiations for this newpredicate. Thus, for goal-directed forward chaining the number of premises is in-creased because of the magic predicates, but the number of instantiations is reduced.The Magic-Sets rewriting depends on the binding pattern of the query. Consequently,the cost estimates are also computed with respect to a binding pattern.Given a rule p(�X) Q1; Q2; : : : ; Qn and a query ?� p(�Xb) with binding pattern(adornment) ad. �X stands for a vector of terms involving variables and constantsand �Xb stands for the ground terms of �X. The rewriting algorithm generates a newrule rad with additional premise magic pad(�Xb):rad : pad(�X) magic pad(�Xb); Q1; Q2; : : : ; Qnand k rules m:rad1 ; : : : ;m:radk de�ning magic pad, one for each rule de�ning p.Rewriting does not e�ect the calculation of a rule's out costs. Because the outcosts for forward-chaining rules are always equal to 1, this is also true for each of therules that result from rewriting. The in costs, however, must be calculated di�erently.They are calculated by adding to the in costs of the original rules the costs of derivingthe magic facts, which are equal to the costs for the rules m padi :egf(r) = InCostsgf(r; ad)= InCostsf(r) + kXi=1 ef(m:radi)= InCostsf(r) + kXi=1 InCosts(m:radi) : (5)Backward ChainingSimilar to forward chaining the in costs for backward chaining depend on the num-ber of rule instantiations. The number of instantiations is less, however, because13

some of the variables are assumed to be already instantiated by the query. Multipleinstantiations in backward chaining mode are computed by backtracking steps. Butfor backtracking an additional price has to be paid for restoring the environment.We assume that these additional costs B are constant. If we assume that a rulep(X;Y) Q1; Q2; : : : ; Qn is called with unbound arguments in the query (i.e. theadornment ad is �), the in costs areInCostsb(r;�) = nXi=1 I(r; i) �B :For ordinary backward chaining a rule can be called from many places with iden-tical binding pattern. Each time a rule is called all the instantiations are derivedagain. This is taken into consideration by the out costs. The out costs are equal tothe number of calls for the rule with repect to a binding pattern for the query. If onlyone solution is needed, the out costs are 1. Most frequently, even if for the topmostgoal one solution is su�cient, identical subgoals may be proved multiple times (cp.the Fibonacci numbers of Example 2).Let the rule r be called by premise i + 1 in the body of another rule r'. Thenumber of valid partial instantiations of premises 1; : : : ; i (as given by the interme-diate solutions A(r0; i)) corresponds to the calls of the backward chaining rule r. Tocalculate the number of calls for rule r we can use formula (2). The �nal out costsare computed by adding up the number of partial instantiations of every calling rule.There is no upper bound for the out costs.To compute the cost estimates of a rule for backward chaining we have to sumup the product of in and out costs for each binding pattern ad:eb(r) =Xad (InCostsb(r; ad) �OutCostsb(r; ad)) : (6)Memoing Backward ChainingWhile for ordinary backward rules the out costs are equal to the number of calls forthe rule, for the memoing method from these costs the probability for duplicates hasto be subtracted. This means that the out costs are less than or equal to the numberof the unique instantiations of the query Q with adornment ad. On the other hand,we have to add the costs S for storing the derived facts.OutCostsmb(r; ad) � nunique(Q) � S � A(r; n) � S :The costs of looking up the tables, however, are much smaller than for redoingthe proof and are therefore neglected. Thus, the in costs for backward chaining withmemoing are the same as without memoing and we get:emb(r) =Xad (InCostsmb(r; ad) �OutCostsmb(r; ad)) : (7)14

p(X) <- r(X), t(b,X)

p(X) <- r(X), s(a,X)

q(X) <- p(X), r(X)

Goals

Facts
t r sFIGURE 1: A rule graph6 Propagating Cost EstimatesNow that we can compute cost estimates of individual rules we must �nd a strategywith optimal cost value, i.e. we have to minimize cost(S) as de�ned by formula (1)in Section 4. To illustrate the types of proof strategies we will extend the de�nitionof a rule graph introduced in [Treitel, 1986]:De�nition 7 (Rule Graph [Treitel, 1986]) A rule graph is a directed graph. Thenodes in the graph are labeled by rules. There is an arc from rule r to rule s i� r'soutput literal (the head of the clause) is uni�able with one of s's input (body) literals.The rule r is said to be a predecessor of s and s a successor of r.Fig. 1 shows a rule graph with sample rules. At the bottom we see the facts andat the top we see the goal for the proof. The direction of an arc is from bottom totop. A proof strategy is drawn in the rule graph by using di�erent kinds of arrowsfor the di�erent evaluation methods of rules. Downward arrows starting from a nodedenote a backward rule and upward arrows ending in a node denote a forward rule(see Fig. 2). No rule can have both downward arrows starting from its correspondingnodes and upward arrows ending in its node.An important aspect is the sequence of calculation. On the one hand, we sepa-rated in costs and out costs to determine the inuences of the evaluation. In Sec-tion 5.3 we saw that the in costs of a rule depend on the number of consistentinstantiations of its premises, where we have to take into account, whether dupli-cates are eliminated. On the other hand, the distinction between in and out costs15

Goals

Facts FIGURE 2: A coherent rule graph
Goals

Facts

r4

r1

r
3

r2FIGURE 3: The rule graph for example 8shows that the direction of one rule can only have a restricted inuence on the costsof other rules.Example 8 The simple rule systemr1 : p1(Y) <- p2(Y), p3(Y).r2 : p2(Y) <- b1(Y,W).r3 : p3(Y) <- p4(X,Y).r4 : p4(X,Y) <- b2(X,Y,Z).is represented by the rule graph of Fig. 3. From the arrows we see that r2, r4 areforward rules and r1, r3 are backward rules. The number of derived facts can becalculated bottom-up in the graph rule by rule. For example, we have to considerr2 and r3 before r1. The number of instantiations for p4(X,Y) and for p2(Y) canbe calculated from the base facts for b1 and b2. The number of instantiations for16

p4(X,Y) again is used to compute the number of instantiations for p1(Y). The incosts for each rule are computed in the same order as the facts because they requirethe number of instantiations, while the out costs are computed top-down using thevalues of the in costs and the number of derived facts. The out costs mainly dependon the number of times the rules are evaluated.In general, the problem of �nding an optimal strategy is NP-complete if onlyforward and backward chaining of rules are available [Treitel and Genesereth, 1987].We have considered memoing backward chaining and goal-directed forward chainingas additional proof methods. Thus, the search space for the optimal strategy isincreased by giving more alterntives to evaluate a rule. Restrictions on allowedstrategies can reduce the e�ort. Coherence is an important property of strategies:De�nition 9 (Coherence) A strategy is called coherent, if all successors of a back-ward rule are also backward rules and all predecessors of a forward rule are alsoforward rules. Otherwise the strategy is called incoherent.In the rule graph a coherent strategy can be identi�ed, if it is possible to make acut through the arcs, such that all rules below the cut are forward rules and all rulesabove are backward rules (Fig. 2).The algorithm for computing an optimal strategy depends on the A� algorithm[Nilsson, 1980] and a lower bound of the estimates for the in costs and the number ofderived facts of the rules. If only coherent strategies are allowed, the cost estimatesfor a rule do not depend on the direction of other rules. An important reason forthis is that in a coherent strategy only rules at the cutting edge can change theirdirection for the strategy to remain coherent. This means that changing the directionof one rule cannot require changing the direction of any other rule. As [Treitel andGenesereth, 1987] and [Treitel, 1986] showed, for coherent strategies where no rulescan generate duplicates an optimal strategy can be computed with e�ort O(N3),where N is the number of rules.For incoherent strategies, changing the proof method of one clause can inuencethe costs for neighboring rules in the rule graph. This can lead to the consequencethat the proof method for other rules should be changed. In our system a strategyis not required to be coherent. Any combination of proof methods is allowed. Butalso for incoherent strategies the propagation of costs (and consequently changingthe direction of rules) is restricted. Considering these restrictions can improve thepropagation algorithm. Most important, forward rules have the function of a wallfor propagation, because their out costs are always equal to 1. This means that anychanges of their in costs does not a�ect the out costs. Additionally, it does not matterhow often their derived facts are used. This means that changing the direction ofany rule that uses the result of a forward rule does not a�ect its costs.17

7 Recursive RulesThe calculation of cost estimates works �ne for nonrecursive rules. If we allow recur-sion we need, besides the indirect domain knowledge (Section 5), additional directknowledge about the application domain. For example, it is hard to cope with tran-sitivity and with equivalence relations.Example 10 Consider the rulest(X,Y) <- g(X,Y).t(X,Y) <- g(X,Z, t(Z,Y).t(X,Y) <- t(Y,X).and the two fact bases:DB1: g(1,2). g(2,3). g(3,4). g(4,5). g(5,6).g(6,7). g(7,8). g(8,9). g(9,10).DB2: g(1,2). g(2,3). g(3,2). g(1,3). g(3,1).g(8,9). g(9,10). g(10,8). g(9,8).The rule system derives 100 tuples for t if using the facts from DB1 and only18 tuples for t if using the facts from DB2. This di�erence cannot be detected byour approach for calculating cost estimates, because it uses only indirect domainknowledge (number of facts and possible values for the variables) which is identicalfor both databases.But for a restricted form of recursion (e.g. without transitivity and equivalencerelations) we can calculate cost estimates2. In a �rst step we identify clusters ofmutually recursive rules. For propagating costs we collaps the rule graph treating allthe mutually recursive rules of one cluster as a single node (Fig. 4). All the rules of acluster are required to be evaluated in the same direction. To calculate the number offacts derived by the rules of one cluster we use an iterative approach. This iterativeapproach corresponds to the semi-naive strategy for evaluating recursive rules. Aproblem with this approach, however, is that { as for the corresponding evaluation{ the iterative computation of possible facts is not guaranteed to terminate if thenumber of possible facts is in�nite.Consider for instance the clauses de�ning ancestor in Section 2. These two rulesare collected into one cluster and the number of possible facts is estimated: Let'sassume that our program contains parent-relations of at least four generations. Tocalculate the cost estimates we use the additional domain knowledge that every2For the remaining cases the user can �x the proof method and give a constant cost estimationvalue. 18

FIGURE 4: Collapsing nodes in recursive rule graphsperson has at least two parents. By iteration of four steps we can see that there areat least 30 solutions for every query of ancestor with the �rst argument bound, e.g.?- ancestor(john,X). This estimated number of possible facts can then be used tocompute the in costs of the rules calling ancestor.The problems of calculating cost estimates for recursive rules must not be confusedwith the termination and completeness problems of the proof method. One problem isthat there may be an in�nite number of solutions. Then a complete system will deriveall these solutions and thus will not terminate. However, this must not be the casefor the calculation of cost estimates which must be �nite. Completeness is a problemonly for recursive programs. In Section 2 we saw that incompleteness occurs onlyif we execute recursive rules by ordinary backward chaining. To reduce terminationproblems we do not allow this method. If backward chaining is appropriate, thememoing version must be used.8 ConclusionWe have presented an approach for selecting an e�cient proof strategy for logicprograms, which is based on cost estimates for evaluating each rule with any of theavailable proof methods. The basic information for calculation is the number offacts for each base predicate and the cardinality of the domain for each variable.From these values we can estimate the probability that an actually derived facthas been derived already in a previous step. An important valuation factor for aproof strategy is, whether these duplicates are eliminated or whether they lead tofurther redundant derivations by evaluating other rules. Additionally, we considerstorage costs for derived facts and the expense for backtracking. To systematically19

analyze the inuence that the evaluation of one rule has for other rules, we distinguishbetween in costs and out costs of a rule. In general, the in costs for forward reasoningare higher than for backward reasoning because either the number of instantiationsis not restricted by a query or the e�ort of evaluating magic rules has to be added.For out costs the opposite is true because forward rules are evaluated exactly onceand their results can be used several times.The calculation of cost estimates for a strategy may vary with the particularimplementations of the proof methods and with the intended application of the pro-gram: For instance, an enormous e�ciency gain would be reached if we can usematching instead of uni�cation. This is possible if the rules are required to be range-restricted, i.e. every variable in the head of a clause has to be bound by a literal inthe body. This decreases the in costs for a forward chaining rule because the premiseshave to be tested against ground facts only requiring just matching instead of uni�-cation. This means that instead of simply counting the number of instantiations andbacktracking steps they have to be multiplied by di�erent factors for forward andbackward chaining, respectively.The memoing version of backward chaining can dramatically reduce the com-plexity of a proof compared to backward chaining without memoing. Since it alsoforces termination in many cases, memoing backward chaining should be preferredfor safety reasons. On the other hand, the tabulation of solutions may be very spaceconsuming. Since it cannot be determined automatically whether rules are safe, itshould be in the responsiblity of the programmer to annotate rules as `safe'. Onlyfor safe rules backward chaining without tabulation of solutions should be selectedas an allowed proof method.Bry showed by partial evaluation of an upside-down meta-interpreter that { withrespect to the proved subgoals { bottom-up reasoning of a Magic Set-rewritten pro-gram is equivalent to top-down reasoning of the original program [Bry, 1990]. Sincebottom-up evaluation avoids multiple derivations of lemmas, the cost estimates for atop-down proof with tabulation and goal-directed bottom-up reasoning are compara-ble. But for real implementations the e�ort for accessing previous solutions and forsatisfying premises may di�er. For example, having matching instead of uni�cationfor forward chaining reduces the costs compared to backward chaining. Also, whilebottom-up evaluation and the QSQR top-down evaluation are set-oriented, OLDTresolution is tuple-oriented. Therefore we have separated the computation of theircost estimates.Goal-directed forward chaining requires additional e�ort for program rewriting,in particular if there is a large number of rules. This e�ort has not been consideredby the cost calculation. It is assumed that the program will be rewritten at compile-time. This is usually the case for deductive databases and many applications oflogic programs, where queries are embedded into �xed application scenarios. Onthe other hand, there may be applications of information systems, where not everypossible query can be anticipated at compile time. Then the system has to react onvarious kinds of unpredicted queries, such that program rewriting would considerably20

increase the answer time and must not be ignored for cost estimation.Access to external data has not been taken into account in any way, although itmay considerably inuence the selection of a proof method. If some facts reside ina database instead of main memory, the number of accesses is a considerable value.For this reason, deductive databases heavily prefer set-oriented evaluation instead oftuple-oriented approaches.In summary, the decision for a proof strategy can depend on general as well asquery-speci�c factors. Many of these inuences are considered by the cost estimatespresented in this paper.References[Balbin et al., 1991] I. Balbin, G. S. Port, K. Ramamohanarao, and K. Meenakshi. E�cientbottom-up computation of queries on strati�ed databases. Journal of Logic Program-ming, 11:295{344, 1991.[Bancilhon and Ramakrishnan, 1986] Francois Bancilhon and Raghu Ramakrishnan. Anamateur's introduction to recursive query processing strategies. In Proceedings of theACM SIGMOD Conference, pages 16{52. ACM, 1986.[Bancilhon and Ramakrishnan, 1988] Francois Bancilhon and Raghu Ramakrishnan. Per-formance evaluation of data intensive logic programs. In Jack Minker, editor, Founda-tions of Deductive Databases and Logic Programming, pages 441{517. Morgan KaufmannPublishers, Inc., Los Altos, CA, 1988.[Bancilhon et al., 1986] F. Bancilhon, D. Maier, Y. Sagiv, and J. D. Ullman. Magic setsand other strange ways to implement logic programs. In Proceedings 5th ACM SIGMOD-SIGACT Symposium on Principles of Database Systems, pages 1{15. ACM, 1986.[Bancilhon, 1985] F. Bancilhon. A note on the performance on rule-based systems. Tech-nical Report DB-022-85, MCC, 1985.[Beeri and Ramakrishnan, 1991] Catriel Beeri and Raghu Ramakrishnan. On the power ofmagic. Journal of Logic Programming, 10:255{299, October 1991.[Boley et al., 1993] Harold Boley, Philipp Hanschke, Knut Hinkelmann, and ManfredMeyer. COLAB: A hybrid knowledge compilation laboratory. Research Report RR-93-08, DFKI, Kaiserslautern, Germany, January 1993. Also to appear in Annals ofOperations Research.[Bry, 1990] Francois Bry. Query evaluation in recursive databases: bottom-up and top-down reconciled. Data and Knowledge Engineering, 5:289{312, 1990.[Dietrich, 1987] S. W. Dietrich. Extension tables: Memo relations in logic programming.In SLP-87, 1987.[Komorowski, 1992] J. Komorowski. An introduction to partial deduction. In A. Pet-torossi, editor, Meta-Programming in Logic, Uppsala, Sweden, June 1992 (Lecture Notesin Computer Science, vol. 649), pages 49{69. Berlin: Springer-Verlag, 1992.21

[Labisch, 1993] Thomas Labisch. Developing a combined forward/backward-chaining sys-tem for logic programs in a hybrid expertsystem shell. Master's thesis, Universit�atKaiserslautern, June 1993. In German.[Nejdl, 1987] Wolfgang Nejdl. Recursive strategies for answering recursive queries { theRQA/FQI strategy. In Proceedings of the 13th International Conference on Very LargeDatabases (VLDB), pages 43{50, Brighton, 1987.[Nilsson, 1980] Nils J Nilsson. Principles of Arti�cial Intelligence. Tioga, Palo Alto, CA,1980.[Ramakrishnan, 1988] Raghu Ramakrishnan. Magic templates: A spellbinding approachto logic programms. In R.A. Kowalski and K.B. Bowen, editors, Proceedings of the 5thInternational Conference and Symposium on Logic Programming, 1988.[Rohmer et al., 1986] J. Rohmer, R. Lescoeur, and J. M. Kerisit. The alexander method - atechnique for the processing of recursive axioms in deductive databases. New GenerationComputing, pages 273{285, 1986.[Sacca and Zaniolo, 1986] D. Sacca and C. Zaniolo. The generalized counting method forrecursive logic queries. In First International Conference on Database Theory, 1986.[Tamaki and Sato, 1986] Hisso Tamaki and Taisuke Sato. OLD resolution with tabulation.In E. Shapiro, editor, Third International Conference on Logic Programming (ICLP),LNCS 225, pages 505{512, London, July 1986. Springer Verlag.[Treitel and Genesereth, 1987] Richard Treitel and Michael R. Genesereth. Choosing di-rections for rules. Journal of Automated Reasoning, 3:395{431, 1987.[Treitel, 1986] Richard Treitel. Sequentialization of logic programs. Technical ReportSTAN-CS-86-1135, Stanford University, Department of Computer Science, November1986.[Vieille, 1986] Laurent Vieille. Recursive axioms in deductive databases: Thequery/subquery approach. In L. Kerschberg, editor, Proceedings of the First Interna-tional Conference on Expert Database Systems, April 1986.
22

