Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen:
doi:10.22028/D291-46117
Titel: | eyeNotate: Interactive Annotation of Mobile Eye Tracking Data Based on Few-Shot Image Classification |
VerfasserIn: | Barz, Michael Bhatti, Omair Shahzad Alam, Hasan Md Tusfiqur Nguyen, Duy Minh Ho Altmeyer, Kristin Malone, Sarah Sonntag, Daniel |
Sprache: | Englisch |
Titel: | Journal of Eye Movement Research |
Bandnummer: | 18 |
Heft: | 4 |
Verlag/Plattform: | MDPI |
Erscheinungsjahr: | 2025 |
Freie Schlagwörter: | eye tracking interactive machine learning area of interest (AOI) mobile eye tracking visual attention eye tracking data analysis fixation-to-AOI mapping |
DDC-Sachgruppe: | 370 Erziehung, Schul- und Bildungswesen |
Dokumenttyp: | Journalartikel / Zeitschriftenartikel |
Abstract: | Mobile eye tracking is an important tool in psychology and human-centered interaction design for understanding how people process visual scenes and user interfaces. However, analyzing recordings from head-mounted eye trackers, which typically include an egocen tric video of the scene and a gaze signal, is a time-consuming and largely manual process. To address this challenge, we develop eyeNotate, a web-based annotation tool that enables semi-automatic data annotation and learns to improve from corrective user feedback. Users can manually map fixation events to areas of interest (AOIs) in a video-editing-style inter face (baseline version). Further, our tool can generate fixation-to-AOI mapping suggestions based on a few-shot image classification model (IML-support version). We conduct an expert study with trained annotators (n = 3) to compare the baseline and IML-support versions. We measure the perceived usability, annotations’ validity and reliability, and efficiency during a data annotation task. We asked our participants to re-annotate data from a single individual using an existing dataset (n = 48). Further, we conducted a semi structured interview to understand how participants used the provided IML features and assessed our design decisions. In a post hoc experiment, we investigate the performance of three image classification models in annotating data of the remaining 47 individuals. |
DOI der Erstveröffentlichung: | 10.3390/jemr18040027 |
URL der Erstveröffentlichung: | https://doi.org/10.3390/jemr18040027 |
Link zu diesem Datensatz: | urn:nbn:de:bsz:291--ds-461171 hdl:20.500.11880/40439 http://dx.doi.org/10.22028/D291-46117 |
ISSN: | 1995-8692 |
Datum des Eintrags: | 29-Aug-2025 |
Fakultät: | HW - Fakultät für Empirische Humanwissenschaften und Wirtschaftswissenschaft |
Fachrichtung: | HW - Bildungswissenschaften |
Professur: | HW - Keiner Professur zugeordnet |
Sammlung: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Dateien zu diesem Datensatz:
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
jemr-18-00027.pdf | 2,86 MB | Adobe PDF | Öffnen/Anzeigen |
Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons