Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-45463
Titel: Machine Learning Based Assessment of Inguinal Lymph Node Metastasis in Patients with Squamous Cell Carcinoma of the Vulva
VerfasserIn: Klamminger, Gilbert Georg
Nigdelis, Meletios P.
Bitterlich, Annick
Haj Hamoud, Bashar
Solomayer, Erich-Franz
Hasenburg, Annette
Wagner, Mathias
Sprache: Englisch
Titel: Journal of Clinical Medicine
Bandnummer: 14
Heft: 10
Verlag/Plattform: MDPI
Erscheinungsjahr: 2025
Freie Schlagwörter: vulvar cancer
lymph node metastasis
machine learning
artificial intelligence
cancer
DDC-Sachgruppe: 610 Medizin, Gesundheit
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: Background/Objectives: Despite great efforts from both clinical and pathological sides to address the extent of metastatic inguinal lymph node involvement in patients with vulvar cancer, current research attempts are still mostly aimed at identifying new imaging parameters or superior tissue diagnostic workflows rather than alternative ways of statistical data analysis. In the present study, we therefore establish a supervised machine learning algorithm to predict groin metastasis in patients with squamous cell carcinoma of the vulva (VSCC) based on classical histomorphological features. Methods: In total, 157 patients with VSCC were included in this retrospective study. After initial exploration of valuable clinicopathological predictor variables by means of Spearman correlation, a decision tree was trained and internally validated (5-fold cross-validation) using a training data set (n = 126) and afterwards externally validated employing a holdout validation data set (n = 31) using standard metrices such sensitivity, positive predictive value, and AUROC curve. Results: Our established classifier can predict inguinal lymph node status with an internal accuracy of 79.4% (AUROC value = 0.64). Reaching similar performances and an overall accuracy of 83.9% on an unknown data input (external validation set), our classifier demonstrates robustness. Conclusions: The presented results suggest that machine learning can predict groin lymph node status in VSCC based on histological findings of the primary tumor. Such research attempts may be useful in the future for an additional assessment of inguinal lymph nodes, aiming to maximize oncological safety when targeting the most accurate diagnosis of lymph node involvement.
DOI der Erstveröffentlichung: 10.3390/jcm14103510
URL der Erstveröffentlichung: https://doi.org/10.3390/jcm14103510
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-454638
hdl:20.500.11880/40051
http://dx.doi.org/10.22028/D291-45463
ISSN: 2077-0383
Datum des Eintrags: 28-Mai-2025
Bezeichnung des in Beziehung stehenden Objekts: Supplementary Materials
In Beziehung stehendes Objekt: https://www.mdpi.com/article/10.3390/jcm14103510/s1
Fakultät: M - Medizinische Fakultät
Fachrichtung: M - Frauenheilkunde
M - Pathologie
Professur: M - Prof. Dr. Rainer M. Bohle
M - Prof. Dr. E.-F. Solomayer
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Datei Beschreibung GrößeFormat 
jcm-14-03510.pdf817,03 kBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons