Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-44893
Titel: A Pedaling Torque Observation Approach for Sensorless Electric Bicycles
VerfasserIn: Mandriota, Riccardo
König, Niklas
Grasso, Emanuele
Nienhaus, Matthias
Sprache: Englisch
Titel: IEEE Access
Bandnummer: 13
Seiten: 10619-10637
Verlag/Plattform: IEEE
Erscheinungsjahr: 2025
Freie Schlagwörter: Electric bicycles
Kalman filtering
pedaling torque estimation
road slope estimation
sensorless control
state observation
DDC-Sachgruppe: 500 Naturwissenschaften
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: This study proposes an innovative unknown input observation approach based on Kalman filtering to estimate the cycling torque and provide assistance in electrically powered bicycles. Specifically, a constant and a sinusoidal pedaling torque model are compared, underlining the need for an enhanced mathematical description to improve system performance. Using a nonlinear model of the bicycle longitudinal dynamics, the cycling torque is reconstructed with an Extended Kalman Filter. Also, an online low-computational effort road slope estimation method based on Kalman filtering, that accounts for cornering effect errors, is proposed. The considered approaches, that utilize wheel speed, inertial, and motor current measurements, are tested in an outdoor setting with variable slopes and curves. Differently from the current state-of-the-art, the estimation performances are not only expressed in terms of pedaling torque estimation error minimization. This work presents a novel pedaling power and delivered energy analysis to evaluate the provided electrical assistance and the consequent pedaling effort decrease. The experimental results show that a cycling endeavor reduction, similar to what can be achieved when electrical assistance is provided employing a torque sensor, is possible, especially when relying on improved pedaling modeling.
DOI der Erstveröffentlichung: 10.1109/ACCESS.2025.3529307
URL der Erstveröffentlichung: https://ieeexplore.ieee.org/document/10839373
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-448931
hdl:20.500.11880/39871
http://dx.doi.org/10.22028/D291-44893
ISSN: 2169-3536
Datum des Eintrags: 1-Apr-2025
Fakultät: NT - Naturwissenschaftlich- Technische Fakultät
Fachrichtung: NT - Systems Engineering
Professur: NT - Prof. Dr. Matthias Nienhaus
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Datei Beschreibung GrößeFormat 
A_Pedaling_Torque_Observation_Approach_for_Sensorless_Electric_Bicycles.pdf2,62 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons