Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-44837
Dateien zu diesem Datensatz:
Datei Beschreibung GrößeFormat 
gels-11-00185-v2.pdf3,69 MBAdobe PDFÖffnen/Anzeigen
Titel: Towards a Comprehensive Framework for Made-to-Measure Alginate Scaffolds for Tissue Engineering Using Numerical Simulation
VerfasserIn: Bäumchen, Alexander
Balsters, Johnn Majd
Nenninger, Beate-Sophie
Diebels, Stefan
Zimmermann, Heiko
Roland, Michael
Gepp, Michael M.
Sprache: Englisch
In:
Titel: Gels
Bandnummer: 11
Heft: 3
Verlag/Plattform: MDPI
Erscheinungsjahr: 2025
Freie Schlagwörter: alginate hydrogels
tissue engineering
scaffolds
cross-linking
multi-phase modeling
finite element method (FEM)
DDC-Sachgruppe: 500 Naturwissenschaften
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: Alginate hydrogels are integral to many cell-based models in tissue engineering and regenerative medicine. As a natural biomaterial, the properties of alginates can vary and be widely adjusted through the gelation process, making them versatile additives or bulk materials for scaffolds, microcarriers or encapsulation matrices in tissue engineering and regenerative medicine. The requirements for alginates used in biomedical applications differ significantly from those for technical applications. Particularly, the generation of novel niches for stem cells requires reliable and predictable properties of the resulting hydrogel. Ultra-high viscosity (UHV) alginates possess alginates with special physicochemical properties, and thus far, numerical simulations for the gelation process are currently lacking but highly relevant for future designs of stem cell niches and cell-based models. In this article, the gelation of UHV alginates is studied using a microscopic approach for disc- and sphere-shaped hydrogels. Based on the collected data, a multiphase continuum model was implemented to describe the cross-linking process of UHV alginate polysaccharides. The model utilizes four coupled kinetic equations based on mixture theory, which are solved using finite element software. A good agreement between simulation results and experimental data was found, establishing a foundation for future refinements in the development of an interactive tool for cell biologists and material scientists.
DOI der Erstveröffentlichung: 10.3390/gels11030185
URL der Erstveröffentlichung: https://doi.org/10.3390/gels11030185
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-448373
hdl:20.500.11880/39856
http://dx.doi.org/10.22028/D291-44837
ISSN: 2310-2861
Datum des Eintrags: 27-Mär-2025
Bezeichnung des in Beziehung stehenden Objekts: Supplementary Materials
In Beziehung stehendes Objekt: https://www.mdpi.com/article/10.3390/gels11030185/s1
Fakultät: NT - Naturwissenschaftlich- Technische Fakultät
Fachrichtung: NT - Biowissenschaften
NT - Materialwissenschaft und Werkstofftechnik
Professur: NT - Prof. Dr. Stefan Diebels
NT - Prof. Dr. Heiko Zimmermann
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes



Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons